楊鑫 張昕 潘志娟
摘要: 醫(yī)用手術(shù)縫合線種類豐富,其制備原料可分為天然材料、合成材料及金屬材料等,其中天然高聚物基手術(shù)縫合線以其優(yōu)異的生物相容性、低免疫原性等特性在市場(chǎng)上占據(jù)主體地位,但仍存在機(jī)械性能較差、降解速率難以調(diào)控等問(wèn)題。為了改善天然高聚物基縫合線的性能,促進(jìn)新型縫合線的研究發(fā)展,并使其進(jìn)一步滿足醫(yī)用領(lǐng)域的應(yīng)用需求,本文綜述了蠶絲基、膠原基、甲殼素基三類天然高聚物基縫合線的研究現(xiàn)狀,比較了三者在實(shí)際應(yīng)用中的優(yōu)缺點(diǎn),并分析了三者存在的性能缺陷及改進(jìn)方向,以期為天然高聚物基手術(shù)縫合線的研究發(fā)展提供參考。
關(guān)鍵詞: 天然高聚物;手術(shù)縫合線;蠶絲;膠原蛋白;甲殼素;殼聚糖
中圖分類號(hào): TS101.4
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1001-7003(2023)03-0001-07
引用頁(yè)碼:
031101
DOI: 10.3969/j.issn.1001-7003.2023.03.001(篇序)
手術(shù)縫合線是外科手術(shù)中一種用以縫合傷口、結(jié)締組織的醫(yī)用材料,也是最為普遍的可植入人體的材料。其種類繁多,按照生物降解性分為可吸收縫合線與不可吸收縫合線;按照原料分類分為天然高聚物基縫合線、合成材料縫合線及金屬縫合線等。
20世紀(jì)50年代開(kāi)始,合成材料類手術(shù)縫合線才開(kāi)始進(jìn)入研發(fā)階段,其應(yīng)用歷史短暫[1],且生物相容性差、易引起炎癥反應(yīng),使得病人在術(shù)后恢復(fù)緩慢,痛感加劇。金屬縫合線的原料主要是銀與合金,具有強(qiáng)度高、可消毒抗菌等特點(diǎn),但柔韌性較差,打結(jié)處易引起組織的刺激與疼痛,目前已不常使用。相比而言,天然高聚物基縫合線應(yīng)用歷史悠久,5 000多年前古埃及人就開(kāi)始利用棉纖維、動(dòng)物鬃毛等材料縫合傷口[2];中國(guó)最早在漢代就已經(jīng)有了清理創(chuàng)口的記載,在唐代時(shí)開(kāi)始使用桑皮線進(jìn)行傷口縫合。該類縫合線具有良好的生物相容性、低免疫原性等優(yōu)點(diǎn),因此沿用至今,且成為外科手術(shù)中最常用的手術(shù)縫合線。現(xiàn)如今,在科技快速發(fā)展的時(shí)代背景下,新型天然材料被不斷開(kāi)發(fā)利用,天然高聚物基手術(shù)縫合線的種類也逐漸豐富?;诖耍疚木C述了蠶絲基、膠原基和甲殼素基三類應(yīng)用較為廣泛的天然高聚物基縫合線的研究及應(yīng)用現(xiàn)狀,對(duì)縫合線的物理機(jī)械性能和抗菌釋藥功能進(jìn)行比較和分析,以期為開(kāi)發(fā)新型功能性天然高聚物基手術(shù)縫合線、滿足不同外科手術(shù)縫合的需要提供參考。
1 蠶絲基縫合線
蠶絲是一種天然蛋白質(zhì)纖維,也是人類最早利用及最早商業(yè)化使用的紡織纖維之一,在縫合線領(lǐng)域應(yīng)用歷史悠久。醫(yī)用蠶絲縫合線具有優(yōu)異的吸濕性、可操作性[3]和打結(jié)穩(wěn)定性[4],常被用在眼科、神經(jīng)外科及心血管外科手術(shù)中,是目前國(guó)內(nèi)最主要的縫合材料之一。
單絲型蠶絲縫合線力學(xué)強(qiáng)度低,無(wú)法滿足傷口縫合對(duì)縫合線的力學(xué)強(qiáng)度要求[5],一般需要通過(guò)加捻、編織等工藝加工成復(fù)絲縫合線后應(yīng)用,但加捻縫合線在使用過(guò)程中易出現(xiàn)扭結(jié),因此外科手術(shù)中大多采用結(jié)構(gòu)更穩(wěn)定的編織型縫合線。蠶絲作為蛋白質(zhì)纖維,為微生物的生長(zhǎng)和繁殖提供了養(yǎng)分[6],且編織處理后的縫合線表面存在縫隙,更容易引起傷口的細(xì)菌感染。因此,在外科手術(shù)中應(yīng)用編織型蠶絲縫合線時(shí),需要對(duì)其進(jìn)行一定的抗菌處理,主要包括涂層、共混、嫁接等[7]方法,目前較為常見(jiàn)的是在縫合線表面負(fù)載抗菌涂層[8]。
涂層溶液中負(fù)載的抗菌劑及藥物可以覆蓋縫合線的纖維間隙和編織點(diǎn),并滲透到縫合線內(nèi)部,起到有效抗菌和持續(xù)釋藥的功能。Pethile等[9]以聚己內(nèi)酯(PCL)為藥物載體,聯(lián)合抗菌劑磺胺甲惡唑(SMZ)制備抗菌溶液,采用浸涂法將其涂在蠶絲縫合線上,涂層溶液黏度較大,可促使抗菌性藥物嵌入編織縫合線的表面,抗菌效果可維持至術(shù)后4 d左右。Wu等[10]將蠶絲(SF)編織成芯殼結(jié)構(gòu),并在縫合線表面涂覆了新型天然抗菌劑小檗堿(BB)。BB與SF間的相互作用使縫合線具有高達(dá)20.1%±1.1%的載藥率,可以在人體內(nèi)保持4 d以上的有效抗菌活性。相對(duì)而言,無(wú)機(jī)抗菌劑的抗菌效果更為顯著,Shubha等[11]在脫膠后的蠶絲纖維表面涂覆納米氧化鋅顆粒(ZnO NPs),ZnO NPs的交聯(lián)作用增強(qiáng)了纖維的抗拉強(qiáng)度,并賦予纖維良好的抗菌功能,可有效抑制微生物生長(zhǎng)長(zhǎng)達(dá)6 d。Cao等[12]選用多孔氧化鋅(PZ)對(duì)蠶絲纖維進(jìn)行改性處理,纖維對(duì)金黃色葡萄球菌和大腸桿菌的抑菌率均達(dá)到了80%左右。Syukri等[13]和Baygar等[14]將納米銀顆粒(Ag NPs)通過(guò)原位沉積法涂覆在蠶絲縫合線上,實(shí)驗(yàn)結(jié)果證明縫合線對(duì)金黃色葡萄球菌的抑菌率達(dá)到了99%,能穩(wěn)定抗菌12周以上,且殘留的微量金屬離子未對(duì)人體造成傷害。表1比較了不同涂層處理后蠶絲基縫合線的性能。從表1可以看出,通過(guò)不同涂覆方法負(fù)載了不同抗菌劑的縫合線均具有較好的抗菌效果,其中無(wú)機(jī)抗菌劑持續(xù)效果最久。但在現(xiàn)有研究中,從纖維本身出發(fā),制備再生蠶絲蛋白纖維并賦予其抗菌功能的研究較少,今后的研究中可以在這一方面發(fā)掘一些新的方法。此外,蠶絲縫合線能否在縫合的基礎(chǔ)功能上進(jìn)一步提升自身性能、實(shí)現(xiàn)功能化應(yīng)用也引起了眾多研究人員的關(guān)注。Liu等[15]受到天然蜘蛛絲纖維的“核—?dú)ぁ倍鄬咏Y(jié)構(gòu)的啟發(fā),以再生絲素為原料,制備了一種集仿生、抗菌、傳感于一體的具有分層結(jié)構(gòu)的功能性縫合線,在減少傷口部位炎癥和細(xì)菌感染的基礎(chǔ)上,附加了實(shí)時(shí)監(jiān)測(cè)縫合處組織張力變化情況、控制藥物和生長(zhǎng)因子釋放速率的功能,使縫合線變成一種更具生物活性和電子功能的生物組件。朱瑜等[16]開(kāi)發(fā)了一種微線徑、高強(qiáng)度的琥珀蠶絲,該蠶絲產(chǎn)自特殊的琥珀蠶,生物相容性和細(xì)胞毒性與桑蠶絲類似,但強(qiáng)度遠(yuǎn)優(yōu)于桑蠶絲纖維,斷裂強(qiáng)度高達(dá)8.92 cN/dtex,無(wú)需經(jīng)過(guò)編織或加捻等工藝,直接在表面包覆涂層即可制備滿足11-0#規(guī)格縫合線標(biāo)準(zhǔn)的單絲型縫合線,可應(yīng)用于整容手術(shù)中細(xì)小傷口的精細(xì)縫合。通過(guò)以上分析可以發(fā)現(xiàn),蠶絲縫合線在外科手術(shù)中應(yīng)用較為廣泛,但單絲強(qiáng)力低、生物降解性差、易引起感染等缺點(diǎn)在一定程度上限制了蠶絲縫合線的應(yīng)用。這也為未來(lái)的研發(fā)人員提供了一些參考思路,可以探索能夠?qū)崿F(xiàn)廣譜殺菌、緩釋藥物的新型涂層,也可以從蠶絲纖維本身出發(fā),改善纖維性能并賦予其抗菌等特殊功能,均可有效提升蠶絲縫合線的性能,拓展其應(yīng)用范圍。
2 膠原基縫合線
膠原蛋白是由三條肽鏈組成的螺旋形纖維狀蛋白質(zhì)[18],是哺乳動(dòng)物皮膚、軟骨及韌帶等組織中的主要成分,占總蛋白質(zhì)的25%~30%。動(dòng)物細(xì)胞外基質(zhì)中存在多達(dá)20種不同類型的膠原,其中Ⅰ型膠原蛋白含量最為豐富,相關(guān)研究也較多,但膠原蛋白特有的三股螺旋結(jié)構(gòu)無(wú)法通過(guò)人工模擬獲得,因此實(shí)際應(yīng)用中的膠原仍然以天然提取為主,如魚(yú)皮膠原、水母膠原、牛筋腱膠原等,具有低免疫原性[19]、強(qiáng)親水性、生物可降解性等優(yōu)良的生物學(xué)特性,是一種理想的生物醫(yī)用材料[20]。
作為一種常見(jiàn)的醫(yī)用縫合材料,膠原蛋白縫合線在基礎(chǔ)研究和臨床應(yīng)用方面都取得了較大成績(jī)。付漢斌等[21]對(duì)比了規(guī)格為2-0#的膠原縫合線與4-0#編織蠶絲縫合線在口腔種植修復(fù)手術(shù)中的臨床效果,膠原縫合線比編織絲縫合線能夠更有效地促進(jìn)傷口愈合,提高傷口愈合等級(jí),且傷口恢復(fù)后光滑平整,切口平整率達(dá)到了85.11%。膠原縫合線被吸收后,細(xì)菌無(wú)處附著,傷口感染風(fēng)險(xiǎn)降低,組織炎癥減少。楊浮瓊[22]與王秉霞等[23]探究發(fā)現(xiàn),膠原縫合線直徑小,疼痛反應(yīng)輕,在婦產(chǎn)科手術(shù)中可以明顯降低手術(shù)感染率和脂肪液化率,縫合處不易形成硬結(jié)與瘢痕。陳勝武[24]探究發(fā)現(xiàn),在骨科手術(shù)中,膠原縫合線的單股非編織結(jié)構(gòu)不易感染細(xì)菌,避免了普通蠶絲縫合線帶來(lái)的傷口易感染、易化膿、易產(chǎn)生瘢痕的問(wèn)題。由此可見(jiàn),膠原縫合線因其良好的生物相容性、可降解性、不易感染等特性,在五官科、婦科、骨科等手術(shù)中廣泛應(yīng)用。
但與其他縫合線相比,膠原縫合線的拉伸強(qiáng)度及打結(jié)強(qiáng)度不高,研究中多采用乙二醇[25]、京尼平[26]、乙二醛[27]、碳二亞胺[28]等對(duì)其進(jìn)行化學(xué)交聯(lián)。Dasgupta等[27]通過(guò)微流控?cái)D壓濕法紡絲法制備了膠原蛋白微纖維,并與乙二醛進(jìn)行交聯(lián),交聯(lián)后的纖維細(xì)胞相容性好,炎癥反應(yīng)低,力學(xué)性能優(yōu)異,極限拉伸強(qiáng)度可達(dá)到300 MPa,楊氏模量超過(guò)3 GPa,可作為縫合線在外科手術(shù)中使用。Rethinam等[25]從含鉻皮革廢料中
分離出膠原蛋白,并與乙二醇交聯(lián)制備了一種可吸收膠原縫合線(AS),這種縫合線抗拉強(qiáng)度為(43.16±1.03) MPa,斷裂伸長(zhǎng)率為40.17%±0.88%,質(zhì)地柔軟,打結(jié)穩(wěn)定,無(wú)細(xì)胞毒性。經(jīng)交聯(lián)處理后的膠原縫合線機(jī)械性能有所提升,基本滿足手術(shù)縫合的要求,但與蠶絲縫合線等相比仍較差,在未來(lái)研究中可以繼續(xù)探索合適的交聯(lián)劑,進(jìn)一步改善其機(jī)械性能。
另一方面,膠原縫合線在人體內(nèi)受到體液浸泡和酶的作用后會(huì)逐漸水解為人體所必需的氨基酸而被吸收[29],但降解速率較快,難以與傷口愈合的速率同步,存在傷口尚未愈合而縫合線已被降解吸收的問(wèn)題[30]。因此,在膠原縫合線的應(yīng)用開(kāi)發(fā)中,縫合線的降解速率如何能做到有效、及時(shí)地調(diào)控也是值得深入探究的關(guān)鍵科學(xué)問(wèn)題。目前,研究人員大多通過(guò)將膠原與其他材料共混、接枝交聯(lián)生物活性材料及負(fù)載涂層等方法進(jìn)一步改善上述缺陷。王佃亮等[30]將膠原蛋白與殼聚糖相結(jié)合,制備了具有三層結(jié)構(gòu)的新型縫合線,由內(nèi)向外分別是殼聚糖纖維芯、膠原層及羧甲基殼聚糖層,殼聚糖芯層與膠原層之間通過(guò)質(zhì)量分?jǐn)?shù)為0.25%的戊二醛進(jìn)行交聯(lián)。該縫合線植入人體后,由于其三種成分的空間分布差異,導(dǎo)致其降解的先后順序不同,因此可通過(guò)調(diào)整三者的比例從而調(diào)控縫合線整體降解速率,使其與傷口愈合速率同步。Younesi等[31]通過(guò)電化學(xué)沉積工藝制備了一種新型膠原縫合線。這種縫合線與肝素分子交聯(lián)后與生長(zhǎng)因子間的作用增強(qiáng),可延長(zhǎng)生長(zhǎng)
因子的緩釋時(shí)間至15 d以上,縫合線的物理機(jī)械性能也有所改善,極限抗拉強(qiáng)度顯著增加。由上述分析可知,作為一種可吸收醫(yī)用縫合材料,膠原蛋白縫合線可以起到有效縫合傷口并促進(jìn)愈合、減少疤痕的作用,但其抗拉強(qiáng)度較差、打結(jié)強(qiáng)度低,且降解吸收速率難以控制。近年來(lái),膠原縫合線的市場(chǎng)競(jìng)爭(zhēng)力逐漸減弱,相關(guān)的改性研究較少,發(fā)展受到一定的限制。如果能在今后的研究中發(fā)掘新型綠色交聯(lián)劑改善其機(jī)械性能,或進(jìn)行化學(xué)修飾實(shí)現(xiàn)降解可控,膠原縫合線在臨床中的應(yīng)用將會(huì)得到進(jìn)一步的推廣。
3 甲殼素基縫合線
甲殼素(甲殼質(zhì))及其衍生物殼聚糖在自然界中的分布極為廣泛,是僅次于纖維素的第二大生物聚合物,主要存在于節(jié)肢動(dòng)物外殼、昆蟲(chóng)表皮及藻類等植物的細(xì)胞膜中[32]。甲殼素化學(xué)名稱為β-(1,4)-2-乙酰氨基-2-脫氧-D-葡萄糖,是由乙酰氨基葡萄糖結(jié)構(gòu)單元以β-1,4糖苷鍵構(gòu)成的直鏈聚多糖,甲殼素脫去乙酰基后的產(chǎn)物即為殼聚糖[33],甲殼素與殼聚糖的化學(xué)結(jié)構(gòu)式如圖1所示。殼聚糖中的—NH3+可以與細(xì)菌表面的負(fù)電荷發(fā)生電中和反應(yīng),破壞其細(xì)胞壁與細(xì)胞膜的完整性,抑制細(xì)菌的生長(zhǎng)與繁殖,使其快速死亡,從而具備廣譜、高效抗菌的功能。
甲殼素與殼聚糖都是良好的生物醫(yī)用材料,可制成縫合線、水凝膠[34]、黏合劑等材料加以應(yīng)用。與其他縫合線相比,由甲殼素、殼聚糖制成的甲殼素基縫合線具有眾多獨(dú)特的優(yōu)點(diǎn):1) 降解速率中等,滿足傷口愈合全過(guò)程對(duì)縫合線強(qiáng)度的要求;2) 止血止痛,可以黏附血液中的血小板,誘導(dǎo)血液凝固[35];3) 消炎抗菌,降低傷口感染風(fēng)險(xiǎn),加快傷口愈合[36]。Avila等[37]比較了殼聚糖縫合線與聚卡普隆類合成縫合線在兔腹腔鏡和盲腸手術(shù)中的應(yīng)用情況,并觀察了25 d內(nèi)傷口的恢復(fù)情況。兩種手術(shù)縫合線均能夠有效防止傷口外翻或內(nèi)臟脫落等嚴(yán)重并發(fā)癥,使用殼聚糖縫合線的兔子腹部傷口無(wú)明顯纖維蛋白,組織纖維化程度低,發(fā)生創(chuàng)面肉芽增生現(xiàn)象的概率較低。Huaixan等[38]比較了殼聚糖縫合線與羊腸線對(duì)于綿羊子宮傷口愈合情況的影響。研究發(fā)現(xiàn),羊腸線降解速率較快,容易引起較嚴(yán)重的組織反應(yīng),實(shí)驗(yàn)動(dòng)物傷口黏連現(xiàn)象發(fā)生率高達(dá)70%。殼聚糖縫合線組的實(shí)驗(yàn)動(dòng)物均未出現(xiàn)傷口黏連現(xiàn)象,縫合處Ⅰ型膠原蛋白含量顯著增加,結(jié)締組織形成速度加快,相比而言,殼聚糖縫合線更能夠有效促進(jìn)組織修復(fù)。
甲殼素的生物惰性使得縫合線植入人體后不易引起并發(fā)癥或組織反應(yīng),但縫合線的機(jī)械強(qiáng)度較差,因此目前研究的重點(diǎn)在于通過(guò)共混、化學(xué)修飾或開(kāi)發(fā)新的紡絲工藝來(lái)提升縫合線的性能。Zhang等[39]將甲殼素(CT)與氧化石墨烯(GO)共混,以環(huán)氧氯丙烷為交聯(lián)劑,制備了一種新型GO-CT單絲型外科縫合線。GO的加入可以增強(qiáng)縫合線的機(jī)械性能,GO-CT縫合線的斷裂強(qiáng)度可達(dá)到(2.01±0.33) cN/dtex,打結(jié)強(qiáng)度可達(dá)到(1.07±0.12) cN/dtex,均高于純甲殼素縫合線。Shao等[40]以一種多功能?;ザ阴<讱に兀―AC)為原料,制備了可吸收外科縫合線。這種縫合線滿足常規(guī)縫合的強(qiáng)度要求,同時(shí)具有一定的柔韌性和伸長(zhǎng)率。該縫合線打結(jié)穩(wěn)定性良好,在人體內(nèi)14 d后其斷裂強(qiáng)度仍能保持在原始值的63%左右,同時(shí)具備良好穩(wěn)定的物理和生化功能。Wu等[41]將甲殼素與纖維素納米晶體(BCNCs)共混制備再生甲殼素縫合線,通過(guò)調(diào)整BCNCs的添加量可調(diào)控縫合線的降解速率。甲殼素也可與纖維素、聚乳酸、海藻酸鈣等高分子材料混合,制備可植入型醫(yī)療復(fù)合材料。此外,甲殼素現(xiàn)有的提取工藝較為復(fù)雜,溶解條件較為苛刻,如能探索出綠色環(huán)保、簡(jiǎn)便高效的提取方法,也更有助于甲殼素基產(chǎn)品的研發(fā)與應(yīng)用。
殼聚糖作為甲殼素的脫乙?;a(chǎn)物,具有優(yōu)秀的抗菌性,無(wú)需添加其他抗菌劑即可賦予縫合線良好的抗菌功能。殼聚糖縫合線的機(jī)械性能略優(yōu)于甲殼素縫合線,但仍低于臨床常用的蠶絲縫合線等。因此,目前殼聚糖縫合線的研究方向以充分發(fā)揮抗菌功能、提升機(jī)械性能為主。Zhu等[42]將五倍子單寧(GTs)與殼聚糖共混,通過(guò)濕法紡絲制備了CS/GTs復(fù)合纖維,斷裂強(qiáng)度為(0.75±0.55) cN/dtex,比純CS纖維提高了43.4%。此外,GTs的加入使得復(fù)合纖維對(duì)金黃色葡萄球菌的抵抗率提高至99.7%,抗菌性能顯著提升。Deng等[43]制備了一種殼聚糖/角蛋白/PEG/PCL復(fù)合可吸收縫合線,并用雙氯芬酸鉀(DP)對(duì)其進(jìn)行藥物洗脫處理,這種縫合線熱穩(wěn)定性好,力學(xué)性能優(yōu)良,且無(wú)細(xì)胞毒性,是縫合肌肉、肌腱等軟組織的理想縫合線。Da Sliva M C等[44]通過(guò)濕法紡絲制備了負(fù)載了n-乙酰-d-氨基葡萄糖(GlcNAc)的殼聚糖纖維,CS/GlcNAc纖維的斷裂強(qiáng)度為(2.00±0.79) cN/dtex,打結(jié)斷裂強(qiáng)度為(1.05±0.27) cN/dtex,符合6-0#規(guī)格縫合線標(biāo)準(zhǔn)。Vega-cazarez等[45]將聚乙烯醇(PVA)與殼聚糖混合制備復(fù)合纖維,當(dāng)PVA添加量為45%時(shí),復(fù)合纖維斷裂強(qiáng)度高達(dá)(3.67±0.78) cN/dtex。在當(dāng)前研究中,殼聚糖作為涂層材料涂覆于其他縫合線表面以發(fā)揮其抗菌功能的情況較多,殼聚糖縫合線應(yīng)用相對(duì)較少。因此,如何提升殼聚糖縫合線機(jī)械性能,拓展其應(yīng)用的方法仍需進(jìn)一步探索。
與其他縫合線相比,甲殼素基縫合線具有獨(dú)特的止血止痛、抗菌消炎等生理功能,不需進(jìn)行額外的涂層、接枝處理。表2對(duì)甲殼素基縫合線的性能進(jìn)行了比較,表明目前可實(shí)際應(yīng)用的甲殼素基縫合線基本都具有抗菌功能,但機(jī)械性能與蠶絲縫合線等相比略差,且脫去乙?;蟮臍ぞ厶强p合線拉伸斷裂強(qiáng)度普遍優(yōu)于甲殼素縫合線。由此可見(jiàn),改善物理機(jī)械性能、擴(kuò)大應(yīng)用范圍將是甲殼素及殼聚糖縫合線今后研究發(fā)展的主要方向。
4 結(jié) 語(yǔ)
隨著外科手術(shù)覆蓋范圍的增大、難度的提高,對(duì)縫合材料的性能要求更為嚴(yán)格,這在一定程度上促進(jìn)了縫合線的快速研究與應(yīng)用發(fā)展。蠶絲基、膠原基及甲殼素基等天然高聚物基縫合線具有良好的生物相容性、低免疫原性、可生物降解性等優(yōu)點(diǎn),在外科縫合線市場(chǎng)上占據(jù)主要地位。通過(guò)綜述分析三類手術(shù)縫合線的研究結(jié)果發(fā)現(xiàn):1) 蠶絲基縫合線機(jī)械性能較好,適用范圍廣泛,但存在單絲強(qiáng)力低、生物降解性差、易引起感染等缺點(diǎn),國(guó)內(nèi)外研究大多側(cè)重于涂層改性方法的完善,有關(guān)改善纖維本身性能的研究較少,仍需進(jìn)一步深入探究。2) 膠原基縫合線可在人體內(nèi)降解吸收,并具有一定的促愈功能,適用于精細(xì)部位的縫合,但受限于機(jī)械性能較差、降解速率難以控制等缺陷,相關(guān)研究較少,發(fā)展受到一定的限制。3) 甲殼素基縫合線具有獨(dú)特的止血止痛、抗菌消炎的功能,但機(jī)械性能差、提取及溶解工序較為繁瑣,成為今后研究的重點(diǎn)方向。針對(duì)天然聚合物基縫合線的上述問(wèn)題,今后可基于發(fā)展先進(jìn)制造技術(shù)、開(kāi)發(fā)新型縫合材料、實(shí)現(xiàn)縫合線的多功能化等方面開(kāi)展深入系統(tǒng)的研究。
參考文獻(xiàn):
[1]BYRNE M, ALY A. The surgical suture[J]. Aesthetic Surgery Journal, 2019, 39(S2): 67-72.
[2]張蕾. 從羊腸線到智能縫合線: 看醫(yī)用縫合材料發(fā)展史[J]. 新材料產(chǎn)業(yè), 2016(9): 69-70.
ZHANG Lei. From gut to smart sutures: History of medical suture materials[J]. Advanced Materials Industry, 2016(9): 69-70.
[3]劉輔庭. 蠶絲用作生物材料的展望[J]. 現(xiàn)代絲綢科學(xué)與技術(shù), 2016, 31(3): 119-120.
LIU Futing. Prospects of silk biomaterials[J]. Modern Silk Science & Technology, 2016, 31(3): 119-120.
[4]KUMAR R S, SUNDARESAN S, 宮慶雙. 手術(shù)縫合線[J]. 國(guó)際紡織導(dǎo)報(bào), 2014, 42(11): 46-48.
KUMAR R S, SUNDARESAN S, GONG Qingshuang. Surgical sutures[J]. Melliand China, 2014, 42(11): 46-48.
[5]TAYSI A E, ERCAL P, SISMANOGLU S. Comparison between tensile characteristics of various suture materials with two suture techniques: An in vitro study[J]. Clinical Oral Investigations, 2021, 25(11): 6393-6401.
[6]TOGO S, KUBOTA T, TAKAHASHI T, et al. Usefulness of absorbable sutures in preventing surgical site infection in hepatectomy[J]. Journal of Gastrointestinal Surgery, 2008, 12(6): 1041-1046.
[7]LI H B, WANG Z X, ROBLEDO-LARA J A, et al. Antimicrobial surgical sutures: Fabrication and application of infection prevention and wound healing[J]. Fibers and Polymers, 2021, 22(9): 2355-2367.
[8]CHEN X J, HOU D D, WANG L, et al. Antibacterial surgical silk sutures using a high-performance slow-release carrier coating system[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22394-22403.
[9]PETHILE S, CHEN X J, HOU D D, et al. Effect of changing coating process parameters in the preparation of antimicrobial-coated silk sutures: An in vitro study[J]. Fibers and Polymers, 2014, 15(8): 1589-1595.
[10]WU Q T, HE C H, WANG X C, et al. Sustainable antibacterial surgical suture using a facile scalable silk-fibroin-based berberine loading system[J]. ACS Biomaterials Science & Engineering, 2021, 7(6): 2845-2857.
[11]SHUBHA P, GOWDA M L, NAMRATHA K, et al. Ex-situ fabrication of ZnO nanoparticles coated silk fiber for surgical applications[J]. Materials Chemistry and Physics, 2019, 231: 21-26.
[12]CAO F, ZENG B, ZHU Y L, et al. Porous ZnO modified silk sutures with dual light defined antibacterial, healing promotion and controlled self-degradation capabilities[J]. Biomaterials Science, 2020, 8(1): 250-255.
[13]SYUKRI D M, NWABOR O F, SINGH S, et al. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections[J]. Journal of Microbiological Methods, 2020, 174: 105955.
[14]BAYGAR T, SARAC N, UGUR A, et al. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles[J]. Bioorganic Chemistry, 2019, 86: 254-258.
[15]LIU M W, ZHANG Y J, LIU K Y, et al. Biomimicking antibacterial opto-electro sensing sutures made of regenerated silk protein[J]. Advanced Materials, 2021, 33(1): 2004733.
[16]朱瑜. 琥珀蠶絲整容外科縫合線的研究與開(kāi)發(fā)[D]. 上海: 東華大學(xué), 2020.
ZHU Yu. The Research and Development of Muga Silk Cosmetic Surgical Suture[D]. Shanghai: Donghua University, 2020.
[17]侯丹丹. 編織型抗菌真絲縫合線的制備工藝對(duì)其結(jié)構(gòu)與性能的影響[D]. 上海: 東華大學(xué), 2015.
HOU Dandan. Effect of Preparation Processes on the Structure and Properties of Antibacterial Braided Silk Suture[D]. Shanghai: Donghua University, 2015.
[18]張浩瑋, 胡竟一, 王嵐. 膠原蛋白在整形美容中的研究進(jìn)展[J]. 科技視界, 2019(2): 152-154.
ZHANG Haowei, HU Jingyi, WANG Lan. Research progress of collagen in cosmetic surgery[J]. Science & Technology Vision, 2019(2): 152-154.
[19]LYNN A K, YANNAS I V, BONFIELD W. Antigenicity and immunogenicity of collagen[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 71(2): 343-354.
[20]鄧浩, 黨政, 尹青春, 等. 膠原蛋白的研究進(jìn)展[J]. 廣州化工, 2019, 47(18): 27-30.
DENG Hao, DANG Zheng, YIN Qingchun, et al. Research progress on collagen[J]. Guangzhou Chemical Industry, 2019, 47(18): 27-30.
[21]付漢斌, 張旭, 戴方毅, 等. 可吸收膠原蛋白線在口腔種植修復(fù)術(shù)切口無(wú)張力縫合中的應(yīng)用價(jià)值[J]. 中國(guó)美容醫(yī)學(xué), 2020, 29(1): 97-100.
FU Hanbin, ZHANG Xu, DAI Fangyi, et al. Application value of absorbable collagen thread in tension-free suture of oral implant prosthetic incision[J]. Chinese Journal of Aesthetic Medicine, 2020, 29(1): 97-100.
[22]楊浮瓊. 醫(yī)用生物性可吸收降解縫合線在婦產(chǎn)科手術(shù)中的應(yīng)用體會(huì)[J]. 當(dāng)代醫(yī)學(xué), 2013, 19(9): 106-107.
YANG Fuqiong. Application of medical biodegradable sutures in obstetrics and gynecology surgery[J]. Contemporary Medicine, 2013, 19(9): 106-107.
[23]王秉霞, 王玉萍, 劉穎. 可吸收膠原蛋白縫合線在會(huì)陰側(cè)切皮內(nèi)縫合術(shù)中的應(yīng)用[J]. 中國(guó)實(shí)用醫(yī)藥, 2014, 9(2): 73-74.
WANG Bingxia, WANG Yuping, LIU Ying. Application of absorbable collagen sutures in perineal lateral excision and intradermal suture[J]. China Practical Medicine, 2014, 9(2): 73-74.
[24]陳勝武. 可吸收膠原蛋白縫合線在骨科手術(shù)縫合中的應(yīng)用效果觀察[J]. 中國(guó)現(xiàn)代藥物應(yīng)用, 2016, 10(15): 275-276.
CHENG Shengwu. Observation on the application effect of absorbable collagen suture in orthopedic surgery[J]. Chinese Journal of Modern Drug Application, 2016, 10(15): 275-276.
[25]RETHINAM S, PARVATHALESWARA S T, NANDHAGOBAL G, et al. Preparation of absorbable surgical suture: Novel approach in biomedical application[J]. Journal of Drug Delivery Science and Technology, 2018, 47: 454-460.
[26]YOUNESI M, DONMEZ B O, ISLAM A, et al. Heparinized collagen sutures for sustained delivery of PDGF-BB: Delivery profile and effects on tendon-derived cells in-Vitro[J]. Acta Biomaterialia, 2016, 41: 100-109.
[27]DASGUPTA A, SORI N, PETROVA S, et al. Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development[J]. Acta Biomaterialia, 2021, 128: 186-200.
[28]GAO S, YUAN Z G, GUO W M, et al. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci[J]. Materials Science & Engineering: C, 2017, 71: 891-900.
[29]MATHEW-STEINER S S, ROY S, SEN C K. Collagen in wound healing[J]. Bioengineering, 2021, 8(5): 63-77.
[30]王佃亮, 王瑞玲. 新型可控降解外科縫合線的研制[J]. 生物技術(shù)通訊, 2013, 24(5): 702-704.
WANG Dianliang, WANG Ruiling. Development of a novel controllable degradable surgical suture[J]. Letters in Biotechnology, 2013, 24(5): 702-704.
[31]YOUNESI M, KNAPIK D M, CUMSKY J, et al. Effects of PDGF-BB delivery from heparinized collagen sutures on the healing of lacerated chicken flexor tendon in vivo[J]. Acta Biomaterialia, 2017, 63: 200-209.
[32]IBER B T, KASAN N A, TORSABO D, et al. A review of various sources of chitin and chitosan in nature[J]. Journal of Renewable Materials, 2022, 10(4): 1097-1123.
[33]陳西廣. 甲殼素/殼聚糖結(jié)構(gòu)形態(tài)與生物材料功效學(xué)研究[J]. 中國(guó)海洋大學(xué)學(xué)報(bào), 2020, 50(9): 126-140.
CHEN Xiguang. Progress in the study of chitin/chitosan structure morphology and biomaterial efficacy[J]. Periodical of Ocean University of China, 2020, 50(9): 126-140.
[34]HE X, LIU R Y, LIU H Q, et al. Facile preparation of tunicate-inspired chitosan hydrogel adhesive with self-healing and antibacterial properties[J]. Polymers, 2021, 13(24): 4322.
[35]李培源. 甲殼素的止血與貴金屬離子吸附還原的研究[D]. 福州: 福建師范大學(xué), 2019.
LI Peiyuan. Study on the Hemostasis of Chitin and the Adsorption and Reduction of Noble Metal Ions by Chitin[D]. Fuzhou: Fujian Normal University, 2019.
[36]KOU S J, PETERS L, MUCALO M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms[J]. Carbohydrate Polymers, 2022, 282: 119132.
[37]AVILA S H, FERREIRA K D, DA SILVA R V, et al. Comparison between poliglecaprone and chitosan absorbable sutures in laparorrhaphy and cecorrhaphy in rabbits[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019, 107(6): 2102-2108.
[38]HUAIXAN L N, ARRUDA S S B, LEONARDO A S, et al. Macroscopic, histochemical, and immunohistochemical comparison of hysterorrhaphy using catgut and chitosan suture wires[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104(1): 50-57.
[39]ZHANG W, YIN B, XIN Y, et al. Preparation, mechanical properties, and biocompatibility of graphene oxide-reinforced chitin monofilament absorbable surgical sutures[J]. Marine Drugs, 2019, 17(4): 210-223.
[40]SHAO K, HAN B Q, GAO J N, et al. Fabrication and feasibility study of an absorbable diacetyl chitin surgical suture for wound healing[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104(1): 116-125.
[41]WU H L, WILLIAMS G R, WU J Z, et al. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials[J]. Carbohydrate Polymers, 2018, 180: 304-313.
[42]ZHU X Y, HOU X L, MA B M, et al. Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties[J]. Carbohydrate Polymers, 2019, 226(6): 115311.
[43]DENG X X, GOULD M, ALI M A. Fabrication and characterisation of melt-extruded chitosan/keratin/PCL/PEG drug-eluting sutures designed for wound healing[J]. Materials Science & Engineering: C, 2020, 120: 111696.
[44]DA SILVA M C, DA SILVA H N, CRUZ R D A L, et al. N-Acetyl-D-Glucosamine-loaded chitosan filaments biodegradable and biocompatible for use as absorbable surgical suture materials[J]. Materials, 2019, 12(11): 1807-1824.
[45]VEGA-CAZAREZ C A, LOPEZ-CERVANTES J, SANCHEZ-MACHADO D I, et al. Preparation and properties of chitosan-PVA fibers produced by wet spinning[J]. Journal of Polymers and the Environment, 2018, 26(3): 946-958.
Research status of natural polymer-based surgical sutures
YANG Xin1, ZHANG Xin1, PAN Zhijuan1,2
(1.College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China;2.National Engineering Laboratory for Modern Silk, Suzhou 215123, China)
Abstract:
The surgical suture, a kind of medical material used to suture wound and connective tissue in surgery, is also the most common implantable material. Medical-surgical sutures are abundant in raw materials, including natural materials, synthetic materials and metal materials. Among them, natural polymer-based surgical sutures occupy a dominant position in the market due to their excellent biocompatibility, low immunogenicity and other characteristics. However, there are still some problems, such as poor mechanical properties and difficulty in regulating the degradation rate. In order to improve the property of natural polymer-based sutures and promote the development and application of new sutures, we summarize the research status of silk-based sutures, collagen-based sutures and chitin-based sutures. We compare their merit and demerit in practical application and analyze their existing performance defects and improvement direction, so as to provide a reference for the development of natural polymer-based surgical sutures.
Silk-based sutures have a long history of application in the field of sutures because of their excellent hygroscopic properties, operability and knotting stability. However, the disadvantages of monofilament sutures such as poor biodegradability and susceptibility to infection limit the application of silk sutures. Therefore, medical silk sutures generally require antibacterial treatment. The common method is to load antibacterial coatings on the surface of the sutures and new coatings capable of broad-spectrum bactericidal and drug slow-release functions are still being explored. Most of the studies domestically and overseas focus on the improvement of coating modification methods, while there are few studies on the improvement of fiber properties. Based on silk fibers, researchers can improve the performance of the fiber and endow it with special functions such as antibacterial function in future studies, which can effectively improve the performance of silk sutures and expand their application ranges.
As an absorbable medical suture material, the collagen-based suture can effectively suture wounds, promote healing and reduce scars. However, compared with other sutures, collagen-based sutures exhibit lower tensile strength and knot strength. In addition, the degradation rate of collagen-based sutures is fast, which makes it difficult to keep pace with the rate of wound healing, resulting in the problem that the sutures have been degraded and absorbed before the wound is healed. In recent years, there are few studies on the modification of collagen-based sutures, which gradually weakens their market competitiveness and restricts their development. If new green crosslinking agents can be developed to improve the mechanical properties of collagen-based sutures, or the sutures can be chemically modified to achieve controllable degradation, the clinical application of collagen-based sutures will be further promoted.
Chitin-based sutures, including chitin sutures and chitosan sutures, have unique physiological functions such as hemostasis, pain relief, and antibacterial and anti-inflammatory functions, without additional coating or grafting treatment. Due to the biological inertness of chitin, sutures are less likely to cause complications or tissue reactions after implantation, but the mechanical strength of sutures is poor. Therefore, current research focuses on improving the performance of sutures by blending, chemical modification or developing new spinning processes. The mechanical properties of chitosan sutures are slightly better than those of chitin sutures, but are still lower than those of common silk sutures. Therefore, the current research direction of chitosan sutures is mainly to make the most of antibacterial function and improve mechanical properties. The existing extraction process of chitin is relatively complex, and the dissolution conditions are relatively harsh. If a green, simple and efficient extraction method can be explored, it will be more conducive to the research and application of chitin-based products. Improving the physical and mechanical properties and expanding the application range will be the main direction of the research and development of chitin-based sutures in the future.
Nowadays, in the era of rapid development of science and technology, new natural materials are constantly developed and used, and the types of natural polymer-based sutures are gradually expanded. With the increasing coverage and difficulty of surgical procedures, the performance of suture materials is becoming increasingly strict in surgery, which promotes the rapid research and application of sutures to a certain extent. In view of the above-mentioned characteristics and problems of natural polymer-based sutures, researchers can develop advanced manufacturing technology, develop new suture materials and realize multi-functional sutures to carry out in-depth and systematic research in future study.
Key words:
natural high polymer; surgical sutures; silk; collagen; chitin; chitosan
收稿日期:
2022-04-22;
修回日期:
2023-01-17
基金項(xiàng)目:
作者簡(jiǎn)介:
楊鑫(1998),女,碩士研究生,研究方向?yàn)樾滦图徔棽牧?。通信作者:潘志娟,教授,zhjpan@suda.edu.cn。