李永貴 方麗莉 鐘晨雅 麻文效 陳明情
摘要: 針對(duì)聚丙烯(PP)熔噴非織造布抗菌性能不足的問題,本文以PP熔噴非織造布為靜電紡絲裝置的接受基布、CuO-NPs為抗菌材料,制備具有高效抗菌性能的聚丙烯/聚丙烯腈/納米氧化銅(PP/PAN/CuO-NPs)復(fù)合非織造布。研究了CuO-NPs質(zhì)量分?jǐn)?shù)與靜電紡絲時(shí)間對(duì)復(fù)合非織造布抗菌等性能的影響。結(jié)果表明:當(dāng)紡絲時(shí)間為1 h、CuO-NPs質(zhì)量分?jǐn)?shù)在0.3%~0.9%時(shí),復(fù)合非織造布對(duì)E.coli和S.aureus的抑菌率均>99.99%。紡絲時(shí)間為1 h,隨著CuO-NPs質(zhì)量分?jǐn)?shù)增大,復(fù)合非織造布纖維直徑增大、直徑分布均勻性降低、疏水性能下降。CuO-NPs質(zhì)量分?jǐn)?shù)不變,隨著紡絲時(shí)間增加,復(fù)合非織造布的過(guò)濾效率提升,透氣性卻下降。紡絲時(shí)間相同,復(fù)合非織造布的過(guò)濾效率隨著CuO-NPs質(zhì)量分?jǐn)?shù)增大而增大;CuO-NPs質(zhì)量分?jǐn)?shù)增大時(shí),復(fù)合非織造布的透氣性在較短紡絲時(shí)間(0.5~1 h)內(nèi)先下降后提升,在較長(zhǎng)紡絲時(shí)間(1.5~2.5 h)內(nèi)顯著下降。此外,CuO-NPs的加入不會(huì)改變PAN納米纖維膜的化學(xué)結(jié)構(gòu)。靜電紡納米纖維膜與PP基布的復(fù)合可以制備高效過(guò)濾和抑菌的醫(yī)用防疫紡織品。
關(guān)鍵詞: 納米氧化銅;靜電紡絲;聚丙烯熔噴非織造布;過(guò)濾性能;抗菌性能;疏水性能
中圖分類號(hào): TS174.8
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1001-7003(2023)03-0031-08
引用頁(yè)碼:
031105
DOI: 10.3969/j.issn.1001-7003.2023.03.005(篇序)
2019年年末以來(lái),COVID-19在全球范圍內(nèi)大肆傳播與變異,人類的健康受到嚴(yán)重威脅[1–2]。因此,具有高效低阻、抑菌的防疫防護(hù)紡織品的開發(fā)成為當(dāng)前研究重點(diǎn)[3]。聚丙烯(PP)熔噴非織造布是醫(yī)用防疫紡織品的常用原料,具有纖維直徑小、比表面積大、孔隙率高的特點(diǎn),主要依靠機(jī)械攔截作用阻隔細(xì)菌、粉塵等微細(xì)顆粒[4–6]。然而,傳統(tǒng)的PP熔噴非織造布抗菌性能較低,醫(yī)護(hù)人員在使用過(guò)程中容易受到病毒感染和微生物侵害,不僅功能單一,防護(hù)能力也有一定的局限性。因此,賦予PP熔噴非織造布高效的抗菌活性具有重要意義。
納米氧化銅(CuO-NPs)是一種廣譜殺生物劑,價(jià)格較低,具有很高的反應(yīng)活性,能夠有效抑制病毒、細(xì)菌、藻類物質(zhì)的生長(zhǎng)[7–9]。與納米銀顆粒[10–11](Ag-NPs)不同,Cu是生物體的必需元素之一,可被人體吸收,且吸收量在一定范圍內(nèi)是安全的[12–14]。相關(guān)研究指出,CuO-NPs的抗菌活性[15–16]是通過(guò)產(chǎn)生活性氧(ROS)來(lái)發(fā)揮的,這些ROS具有很強(qiáng)的氧化還原性,能夠穿透細(xì)胞外膜進(jìn)入細(xì)胞內(nèi)部,隨后對(duì)細(xì)胞結(jié)構(gòu)產(chǎn)生氧化性破壞,如破壞微生物蛋白質(zhì)、脂質(zhì)和核酸等,使微生物無(wú)法繼續(xù)進(jìn)行正常的生命活動(dòng)而死亡,達(dá)到抑菌效果[17–18]。銅系抗菌材料良好的生物相容性、耐熱性、抗菌性、安全性及低耐藥性,使它逐步取代銀系抗菌材料,展現(xiàn)出廣闊的應(yīng)用前景。
靜電紡納米纖維膜[19]是帶有大量靜電荷的超細(xì)纖維集合體,表面吸附能力強(qiáng)、孔徑小,孔隙率在80%以上,對(duì)PM2.5顆粒具有很高的過(guò)濾效果[20]。但其面密度高,強(qiáng)力較低,結(jié)構(gòu)松散,且產(chǎn)量較低缺乏一定的實(shí)用價(jià)值。查閱文獻(xiàn)可知,通過(guò)靜電紡絲法直接添加CuO-NPs制備聚合物復(fù)合納米纖維膜作為抗菌材料的研究還未被報(bào)道。因此,本文選取具有良好可紡性的聚丙烯腈(PAN)為原料,以CuO-NPs為抗菌材料,制備出帶有抗菌性能的CuO-NPs粉末制成靜電紡絲溶液,并將其與PP熔噴非織造布相結(jié)合,以此提升非織造布的抗菌性能,促進(jìn)其在抗菌織物、傷口止血、醫(yī)用敷料等方面的應(yīng)用。
1 實(shí) 驗(yàn)
1.1 試劑與儀器
CuO-NPs(VK-CuO1,黑色粉末,粒徑30 nm,比表面積約20~30 m2/g,純度≥99%,水份≤0.5%)(宣城晶銳新材料有限公司),PAN(Mw=50 000)(廣東滃江化學(xué)試劑有限公司),AR級(jí)N-N二甲基甲酰胺(DMF)(廣州市錦源化學(xué)有限公司),PP熔噴非織造布(自制),HJ-3恒溫磁力攪拌器(常州榮華儀器制造有限公司),TL-20M靜電紡絲機(jī)(深圳市通力微納科技有限公司),HC311電子天平秤(上海花潮實(shí)業(yè)有限公司)。
1.2 靜電紡絲溶液的制備
以DMF為溶劑,將一定量的PAN粉末添加至DMF溶液中,密封瓶口保存,防止溶液揮發(fā)。在室溫下經(jīng)磁力攪拌器攪拌24 h,待PAN完全溶解,制備成質(zhì)量分?jǐn)?shù)為15%的PAN紡絲溶液。消泡待用,溶液濃稠呈棕黃色。
稱取準(zhǔn)確量的CuO-NPs粉末,將其緩緩地加入PAN溶液中混合,在室溫條件下經(jīng)磁力攪拌器攪拌24 h,直至CuO-NPs均勻地分散在PAN溶液中,溶液呈濃稠狀黑棕色。
1.3 靜電紡納米氧化銅抗菌復(fù)合非織造布的制備
將上述紡絲溶液注入帶有金屬針頭的注射器中,注射器容量為20 mL。在針頭處連接18 kV高壓電源,調(diào)試噴射速率為0.5 mL/h。將基布平整地卷繞在滾筒上作為接收裝置,針頭和接收裝置之間的距離為18 cm,接收屏轉(zhuǎn)速為120 r/min,使噴射細(xì)流均勻地附在接收屏。最終獲得不同工藝參數(shù)的PP/PAN/CuO-NPs復(fù)合非織造布,靜電紡絲工藝參數(shù)設(shè)計(jì)如表1所示。
靜電紡絲法制備復(fù)合非織造布的流程示意如圖1所示。
1.4 樣品的性能及表征
復(fù)合非織造布的形貌分析用TM4000Plus型掃描電鏡(SEM)(日本日立公司),并用SEM測(cè)量樣品中纖維的直徑,每個(gè)樣品選取100根纖維,并用圖像繪制軟件(Origin)分析樣品的直徑分布;化合物結(jié)構(gòu)及官能團(tuán)分析采用ATR-i410型紅外光譜儀(賽默飛世爾科技公司),測(cè)試范圍為400~4 000 cm-1,掃描次數(shù)為32次;透氣性能分析用FRT-20型口罩濾材通氣阻力及壓力差測(cè)試儀(清河縣普泰儀器科技有限公司),參考YY 0469—2011《醫(yī)用外科口罩技術(shù)要求》,將氣源壓力調(diào)節(jié)至0.1~0.2 MPa,氣體質(zhì)量流量計(jì)數(shù)值為1 L/min;顆粒物過(guò)濾效率采用FE/R-2626型口罩濾材通氣阻力及壓力差測(cè)試儀(北京市勞動(dòng)保護(hù)科學(xué)研究所)進(jìn)行測(cè)試,過(guò)濾顆粒數(shù)值在25 000~35 000,將樣品平整附在兩個(gè)過(guò)濾效率測(cè)量端口之間,測(cè)試含鹽顆粒的過(guò)濾效率;疏水性能分析采用DSA25型接觸角測(cè)試儀(KRUSS公司),將試樣裁剪大小為1 cm×1 cm,粘貼在載玻片上,控制滴定系統(tǒng)產(chǎn)生適當(dāng)體積的液滴,通過(guò)樣品臺(tái)的升降,將液滴放置在樣品表面,最終讀取數(shù)據(jù),反映液滴與樣品之間接觸角的大小,分析CuO-NPs含量是否對(duì)PAN納米纖維膜的親疏水性能造成影響;抗菌性能分析參考GB/T 20944.3—2008《紡織品抗菌性能的評(píng)價(jià)(第3部分):振蕩法》,委托福建省纖維檢驗(yàn)中心進(jìn)行抗菌性能檢測(cè)。
2 結(jié)果與分析
2.1 復(fù)合非織造布的表面形貌分析
圖2顯示了靜電紡絲時(shí)間為1 h,CuO-NPs質(zhì)量分?jǐn)?shù)不同時(shí)復(fù)合PP熔噴非織造布的SEM圖。從圖2(a)可知,未添加CuO-NPs時(shí),復(fù)合非織造布的纖維表面光滑平整,纖體均一完整,無(wú)“串珠”形成;而圖2(b)~(f)中,CuO-NPs質(zhì)量分?jǐn)?shù)分別為0.1%、0.3%、0.5%、0.7%和0.9%,纖維表面出現(xiàn)了白亮的聚合物團(tuán)聚體,且CuO-NPs質(zhì)量分?jǐn)?shù)越大,團(tuán)聚現(xiàn)象越嚴(yán)重,團(tuán)聚體體積也越大,纖維分布均勻性變差,出現(xiàn)了部分纖維彎曲。這是因?yàn)镃uO-NPs的加入,使紡絲液的電導(dǎo)率發(fā)生了一定的變化。再觀察圖2(c)~(f),當(dāng)CuO-NPs質(zhì)量分?jǐn)?shù)為0.3%,雖有團(tuán)聚,但纖維較為均勻分地分布,纖維彎曲現(xiàn)象也不嚴(yán)重;當(dāng)CuO-NPs質(zhì)量分?jǐn)?shù)為0.5%,纖維彎曲明顯;當(dāng)CuO-NPs質(zhì)量分?jǐn)?shù)高于0.5%,纖維粗細(xì)不勻,且纖維間出現(xiàn)黏結(jié),纖維直徑明顯增大,團(tuán)聚現(xiàn)象嚴(yán)重,且納米纖維膜表面有明顯的“串珠”形成。通過(guò)對(duì)比SEM圖可知,CuO-NPs質(zhì)量分?jǐn)?shù)較大時(shí)“串珠”的出現(xiàn)對(duì)纖維形貌影響較顯著。
2.2 復(fù)合非織造布的直徑分布分析
圖3為靜電紡絲時(shí)間為1 h,不同CuO-NPs質(zhì)量分?jǐn)?shù)下復(fù)合非織造布的直徑分布圖。由圖3(a)可以看出,未添加CuO-NPs的PAN納米纖維膜的纖維直徑較細(xì),直徑在區(qū)間250~400 nm分布均勻,其中直徑在區(qū)間250~300 nm、300~350 nm、350~400 nm所占比例分別為26%、37%、23%。由圖3(b)(c)可見,當(dāng)CuO-NPs質(zhì)量分?jǐn)?shù)從0.1%增加至0.3%,直徑在400 nm以上的纖維比例從9%增加至23%,纖維直徑增大,但總體來(lái)說(shuō),直徑分布較為均一。當(dāng)CuO-NPs的質(zhì)量分?jǐn)?shù)持續(xù)從0.5%增大到0.9%,如圖3(d)~(f)所示,直徑大于400 nm的纖維占比分別為54%、78%、88%,纖維直徑隨著CuO-NPs質(zhì)量分?jǐn)?shù)的增大而逐漸增大。分析認(rèn)為,這是因?yàn)榧徑z溶液中CuO-NPs質(zhì)量分?jǐn)?shù)增大,導(dǎo)致在靜電紡絲過(guò)程中,紡絲液的分裂劈化速率增大;或是因?yàn)镃uO-NPs的加入,增加了PAN紡絲溶液的濃度,在靜電紡絲過(guò)程中,紡絲液的黏應(yīng)力起主導(dǎo)作用[21]。因此,纖維直徑隨著CuO-NPs質(zhì)量分?jǐn)?shù)增大而增大,該結(jié)論與上述SEM圖展示的結(jié)果相一致。
2.3 復(fù)合非織造布的過(guò)濾性能分析
不同CuO-NPs質(zhì)量分?jǐn)?shù)下復(fù)合非織造布的過(guò)濾效率與紡絲時(shí)間的關(guān)系如圖4所示。由測(cè)試可知,基布對(duì)含鹽顆粒的過(guò)濾效率為98.76%。由圖4可見,在CuO-NPs質(zhì)量分?jǐn)?shù)不變的情況下,靜電紡絲時(shí)間對(duì)復(fù)合非織造布過(guò)濾效率的影
響顯著。隨著紡絲時(shí)間的延長(zhǎng),基布上沉積的納米纖維量越多,纖維膜厚度越大,復(fù)合非織造布孔徑越小,透氣性變差,從而過(guò)濾效率提高。紡絲時(shí)間從0.5 h增加至1.5 h,復(fù)合非織造布的過(guò)濾效率達(dá)到99.997%。隨后,紡絲時(shí)間持續(xù)增加至3.0 h,過(guò)濾效率數(shù)值不再發(fā)生變化,這是因?yàn)榧徑z時(shí)間過(guò)長(zhǎng),
基布已經(jīng)完全被靜電紡纖維覆蓋,此時(shí),過(guò)濾效率取決于納米纖維層,而納米纖維膜的過(guò)濾體系此刻已經(jīng)處于穩(wěn)定的過(guò)濾過(guò)程[21–23]。當(dāng)紡絲時(shí)間為1 h時(shí),未添加CuO-NPs的復(fù)合非織造布過(guò)濾效率為99.646%;而CuO-NPs質(zhì)量分?jǐn)?shù)在0.1%時(shí),其過(guò)濾效率為99.835%;隨著CuO-NPs質(zhì)量分?jǐn)?shù)增大到0.9%,過(guò)濾效率達(dá)99.954%,增幅為0.31%,說(shuō)明CuO-NPs的加入會(huì)使復(fù)合非織造布的過(guò)濾效率增大。
圖5為不同紡絲時(shí)間下復(fù)合非織造布的壓降與CuO-NPs質(zhì)量分?jǐn)?shù)的關(guān)系。復(fù)合非織造布的壓降與纖維直徑、面密度等因素密切相關(guān),面密度越大,壓降越大,透氣性越差[22]。從圖5可知,CuO-NPs質(zhì)量分?jǐn)?shù)相同時(shí),隨著靜電紡絲時(shí)間的延長(zhǎng),復(fù)合非織造布的壓降增加,尤其是紡絲時(shí)間大1 h,壓降增大顯著。這是由于靜電紡纖維的厚度主要由紡絲時(shí)間控制,紡絲時(shí)間越長(zhǎng),纖維膜越厚,當(dāng)紡絲時(shí)間延長(zhǎng),基布逐漸被納米纖維膜覆蓋,面密度增大,故壓降增大,通氣阻力增加,其透氣性也越差。如圖5中(a)曲線或(b)曲線,當(dāng)紡絲時(shí)間為0.5 h或1 h,CuO-NPs質(zhì)量分?jǐn)?shù)增大,復(fù)合非織造布的壓降均
小于250 Pa,呈現(xiàn)先減小后增大的趨勢(shì),但波動(dòng)范圍較小。這是因?yàn)樵诩徑z時(shí)間較短的情況下,少量CuO-NPs的加入使纖維直徑變大,壓降增大,若CuO-NPs的添加量超過(guò)一定量,纖維之間出現(xiàn)黏結(jié)和“串珠”,且團(tuán)聚現(xiàn)象加劇,對(duì)復(fù)合非織造布的壓降產(chǎn)生一定影響,透氣性下降,壓降增大。如圖5中(c)~(e)曲線,當(dāng)紡絲時(shí)間大于1 h,CuO-NPs質(zhì)量分?jǐn)?shù)對(duì)復(fù)合非織造布?jí)航档挠绊懞苄?,此時(shí)影響非織造布?jí)航荡笮〉闹饕獮榧徑z時(shí)間。
由此可見,靜電紡納米纖維層對(duì)復(fù)合非織造布過(guò)濾效率的改善起了很大作用。綜合考慮有效防護(hù)性和舒適性,當(dāng)紡絲時(shí)間為1 h、CuO-NPs質(zhì)量分?jǐn)?shù)為0.3%時(shí),過(guò)濾效率與阻力的比值(QF)最大約為0.53,此時(shí),復(fù)合非織造布的過(guò)濾性能品質(zhì)最佳。
2.4 復(fù)合非織造布的化學(xué)結(jié)構(gòu)分析
靜電紡絲時(shí)間為1 h,不同CuO-NPs質(zhì)量分?jǐn)?shù)下復(fù)合非織造布的ATR-FTIR圖如圖6所示。從圖6可以觀察到,純PAN納米纖維膜與不同CuO-NPs質(zhì)量分?jǐn)?shù)的PAN/CuO-NPs納米纖維膜都有相似的紅外光譜,從整段波型來(lái)看幾乎沒有區(qū)別。由圖6中(b)~(f)曲線可以得知,加入CuO-NPs后,纖維膜在2 933.2 cm-1和1 450 cm-1處出現(xiàn)的特征峰是屬于亞甲基(—CH2—)的伸縮振動(dòng)峰;在2 244.5 cm-1處出現(xiàn)的尖銳強(qiáng)峰屬于氰基(—C≡N)的伸縮振動(dòng)峰;在1 730.5 cm-1處出現(xiàn)的強(qiáng)峰是第二單體丙烯酸甲酯中的羰基(CO)的伸縮振動(dòng)峰;在1 665.5 cm-1處的中強(qiáng)峰是DMF紡絲溶劑中的酰胺鍵所含的紅外特征峰,即CO雙鍵的伸縮振動(dòng)峰;1 070 cm-1處的紅外吸收峰是SO雙鍵的對(duì)稱伸縮振動(dòng)和C—C單鍵的骨架振動(dòng)共同作用的結(jié)果[24]。添加了CuO-NPs的納米纖維膜并未顯示出其他不同的紅外吸收譜帶,由此可見,CuO-NPs的加入并未改變PAN本身的化學(xué)結(jié)構(gòu)[21]。
2.5 復(fù)合非織造布的疏水性能分析
圖7反映了靜電紡絲時(shí)間為1 h,CuO-NPs質(zhì)量分?jǐn)?shù)對(duì)復(fù)合非織造布接觸角(CA)數(shù)值的影響。CA的大小是反映固體材料防水拒濕的重要依據(jù),它是指液體和固體材料表面二者之間的的夾角,可以直觀地反映物體表面的親疏水性能。通常情況下,當(dāng)CA>90°,固體表面為疏水性,即液體不容易潤(rùn)濕固體,可以在固體表面滑動(dòng);CA<90°,則固體表面為親水性,CA越小,固體的潤(rùn)濕性越好。由圖7可以看出,基布的CA最大,為134.3°,該數(shù)值充分說(shuō)明PP熔噴非織造布的表面疏水性極好,可以有效防止水分滲透,大幅度降低細(xì)菌與病毒的傳播。在基布上復(fù)合一層PAN納米纖維膜,CA降至113.5°。這是由于PAN的表面水解,使疏水性氰基基團(tuán)(—C≡N)轉(zhuǎn)變成親水性羧基(—COOH)及其鹽類,但水解只發(fā)生在纖維表面,纖維內(nèi)部的結(jié)構(gòu)并未發(fā)生改變,水解強(qiáng)度小,故復(fù)合PAN納米纖維膜后織物的疏水性與基布相比較,CA降低,疏水性略有變差,但仍具有很好的疏水性能。由圖7中數(shù)值還可得知,CuO-NPs的加入會(huì)略微降低纖維膜的CA,質(zhì)量分?jǐn)?shù)增大,CA減小。但PAN紡絲液中所含的CuO-NPs質(zhì)量分?jǐn)?shù)較小,PP/PAN/CuO-NPs復(fù)合非織造布的CA在105°上下波動(dòng)。因此,質(zhì)量分?jǐn)?shù)對(duì)CA影響的影響程度較小。
2.6 復(fù)合非織造布的抗菌性能分析
圖8為靜電紡絲時(shí)間1 h,不同CuO-NPs質(zhì)量分?jǐn)?shù)下復(fù)合非織造布的革蘭氏陰性大腸桿菌(E.coli)抗菌性能測(cè)試。表2為6種樣品對(duì)E.coli的抑菌率。結(jié)合圖8和表2可知,在與帶有E.coli的培養(yǎng)皿接觸24 h后,未添加CuO-NPs的復(fù)合非織造布對(duì)E.coli抗菌效果差,抑菌率僅為45.57%。加入0.1%的CuO-NPs,抑菌率顯著提高至87.95%。當(dāng)CuO-NPs質(zhì)量分?jǐn)?shù)繼續(xù)增大至0.3%,培養(yǎng)皿中幾乎看不到E.coli菌落群,復(fù)合非織造布對(duì)E.coli的抑菌率大于99.99%。當(dāng)CuO-NPs質(zhì)量分?jǐn)?shù)超過(guò)0.3%,PP/PAN/CuO-NPs復(fù)合非織造布對(duì)E.coli的抑菌率均大于99.99%。
圖9為靜電紡絲時(shí)間1 h,不同CuO-NPs質(zhì)量分?jǐn)?shù)下復(fù)合非織造布的革蘭氏陽(yáng)性金黃色葡萄球菌(S.aureus)抗菌性能測(cè)試,表2為6種樣品對(duì)S.aureus的抑菌率。觀察圖9和表2數(shù)據(jù)可以發(fā)現(xiàn),CuO-NPs的加入使復(fù)合非織造布對(duì)S.aureus的抑菌率從39.4%迅速增加到83.29%。當(dāng)CuO-NPs的質(zhì)量分?jǐn)?shù)≥0.3%時(shí),培養(yǎng)皿中的S.aureus菌落數(shù)量顯著減少,抑菌率均大于99.99%,說(shuō)明加入的CuO-NPs使PP/PAN/CuO-NPs復(fù)合非織造布具有優(yōu)異的抗菌活性。
綜上所述,不同CuO-NPs質(zhì)量分?jǐn)?shù)下PP/PAN/CuO-NPs復(fù)合非織造布對(duì)E.coli和S.aureus都表現(xiàn)出優(yōu)異的抗菌活性,其中E.coli對(duì)加入的CuO-NPs的敏感性要高于S.aureus對(duì)CuO-NPs的敏感性。在抑菌率相同的情況下,CuO-NPs的質(zhì)量分?jǐn)?shù)越小越好。因此,在紡絲時(shí)間1 h的條件下,CuO-NPs的質(zhì)量分?jǐn)?shù)為0.3%,PP/PAN/CuO-NPs復(fù)合非織造布具有優(yōu)異的抑菌活性,對(duì)E.coli和S.aureus的抑菌率均大于99.99%。
3 結(jié) 論
利用靜電紡絲技術(shù),在PP熔噴非織造布上復(fù)合納米纖維膜,成功制備PP/PAN/CuO-NPs復(fù)合非織造布,并研究了CuO-NPs質(zhì)量分?jǐn)?shù)對(duì)復(fù)合非織造布抗菌性能的影響。同時(shí),測(cè)試并分析復(fù)合非織造布的表面形貌、纖維直徑分布、化學(xué)結(jié)構(gòu)、過(guò)濾性能和表面疏水性能。
1) CuO-NPs的加入使PAN納米纖維膜的表面出現(xiàn)團(tuán)聚,隨著CuO-NPs質(zhì)量分?jǐn)?shù)增大,復(fù)合非織造布的纖維直徑變大,直徑分布均勻性變差,團(tuán)聚現(xiàn)象加劇,形成“串珠”。紡絲時(shí)間為1 h,CuO-NPs質(zhì)量分?jǐn)?shù)為0.3%,纖維膜表面形貌較好。但CuO-NPs的加入不會(huì)改變PAN納米纖維膜的化學(xué)結(jié)構(gòu)。
2) 在CuO-NPs質(zhì)量分?jǐn)?shù)不變的情況下,紡絲時(shí)間越長(zhǎng),復(fù)合非織造布的過(guò)濾效率越高,壓降越大。在紡絲時(shí)間相同的情況下,CuO-NPs質(zhì)量分?jǐn)?shù)越大,復(fù)合非織造布的過(guò)濾效率越高。在0.5~1 h紡絲時(shí)間內(nèi),隨著CuO-NPs質(zhì)量分?jǐn)?shù)的增大,壓降先增大后降低;在1.5~2.5 h紡絲時(shí)間內(nèi),隨著CuO-NPs質(zhì)量分?jǐn)?shù)的增大,壓降略微增大。當(dāng)紡絲時(shí)間為1 h,CuO-NPs質(zhì)量分?jǐn)?shù)為0.3%時(shí),復(fù)合非織造布的過(guò)濾性能品質(zhì)最佳。
3) 復(fù)合PAN納米纖維膜會(huì)使織物的疏水性變差。紡絲時(shí)間相同,CuO-NPs質(zhì)量分?jǐn)?shù)對(duì)復(fù)合非織造布疏水性的影響程度較小。
4) 紡絲時(shí)間為1 h、CuO-NPs質(zhì)量分?jǐn)?shù)在0.3%~0.9%時(shí),PP/PAN/CuO-NPs復(fù)合非織造布對(duì)E.coli和S.aureus表現(xiàn)出優(yōu)異的抗菌性能,抑菌率均大于99.99%。
參考文獻(xiàn):
[1]張星, 劉金鑫, 張海峰, 等. 防護(hù)口罩用非織造濾料的制備技術(shù)與研究現(xiàn)狀[J]. 紡織學(xué)報(bào), 2020, 41(3): 168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174.
[2]KIM H J, SHTANKO N I, LIM Y J, et al. Electron beam-induced graft polymerization of acrylic acid on polypropylene nonwoven fabries(Ⅱ)[J]. Textile Coloration and Finishing, 2003, 15(3): 28-34.
[3]MA Y L, WANG X M, LIU W, et al. Effects of annealing process on crystallization and low temperature resistance properties of PP-R composites[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2018, 33(4): 855-862.
[4]方麗莉, 李永貴, 麻文效. 聚丙烯熔噴無(wú)紡布的發(fā)展現(xiàn)狀與應(yīng)用[J]. 紡織科技進(jìn)展, 2021(3): 1-5.
FANG Lili, LI Yonggui, MA Wenxiao. Development and application of melt-blown polypropylene non-woven fabrics[J]. Progress in Textile Science & Technology, 2021(3): 1-5.
[5]劉超. 駐極處理對(duì)熔噴空氣過(guò)濾材料過(guò)濾性能的影響[J]. 產(chǎn)業(yè)用紡織品, 2013, 31(5): 34-37.
LIU Chao. The influence on filtration efficiency of melt-blown air filter material after electrets treatment[J]. Technical Textiles, 2013, 31(5): 34-37.
[6]來(lái)宇超, 孫輝, 朱斐超, 等. 銀/還原氧化石墨烯負(fù)載聚丙烯熔噴非織造材料的制備及抗菌抗靜電性能[J]. 高分子材料科學(xué)與工程, 2020, 36(5): 56-63.
LAI Yuchao, SUN Hui, ZHU Feichao, et al. Antibacterial and antistatic properties and preparation of silver/reduced grapheme oxide-coated polypropylene melt-blown nonwovens[J]. Polymer Materials Science & Engineering, 2020, 36(5): 56-63.
[7]吳浩萍. 靜電紡絲制備納米銅/聚合物復(fù)合纖維及抗菌活性研究[D]. 廣州: 暨南大學(xué), 2020.
WU Haoping. Electrospinning Nano-copper/polymer Composite Fibers and Antibacterial Activity[D]. Guangzhou: Jinan University, 2020.
[8]盛平厚, 丁筠, 韓朝陽(yáng), 等. PBT/納米銅粉抗菌復(fù)合材料制備及其紡絲應(yīng)用[J]. 工程塑料應(yīng)用, 2020, 48(10): 35-38.
SHENG Pinghou, DING Yun, HAN Zhaoyang, et al. Preparation of PBT/nano-copper powder antibacterial composites and its application in melt spinnning[J]. Engineering Plastics Application, 2020, 48(10): 35-38.
[9]BORKOW G, GABBAY J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections[J]. Current Chemical Biology, 2009, 3(3): 272-278.
[10]WESLEY A J. History of the medical use of silver[J]. Surgical Infections, 2009, 10(3): 289-292.
[11]周樂, 王斌琦, 聶毅. 人工抗菌纖維的研究現(xiàn)狀和發(fā)展趨勢(shì)[J]. 化工學(xué)報(bào), 2020, 71(10): 4395-4408.
ZHOU Le, WANG Binqi, NIE Yi. Research status and development trend of artificial antibacterial fibers[J]. CIESC Journal, 2020, 71(10): 4395-4408.
[12]MIKOLAY A, HUGGETT S, TIKANA L, et al. Survival of bacteria on metallic copper surfaces in a hospital trial[J]. Applied Microbiology and Biotechnology, 2010, 87(5): 1875-1879.
[13]AZAM A, AHMED A S, OVES M, et al. Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains[J]. International Journal of Nanomedicine, 2012(7): 3527-3535.
[14]秦益民. Cupron銅基抗菌纖維的性能和應(yīng)用[J]. 紡織學(xué)報(bào), 2009, 30(12): 134-136.
QIN Yimin. Properties and applications of Cupron copper containing antimicrobial fibers[J]. Journal of Textile Research, 2009, 30(12): 134-136.
[15]APPLEROT G, LELLOUCHE J, LIPOVSKY A, et al. Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress[J]. Small, 2012, 8(21): 3326-3337.
[16]SHENDE S, INGLE A P, GADE A, et al. Green synthesis of copper nanoparticles by citrus medica Linn (Idilimbu) juice and its antimicrobial activity[J]. World Journal of Microbiology & Biotechnology, 2015, 31(6): 865-873.
[17]TRAN N, MIR A, MALLIK D, et al. Bactericidal effect of iron oxide nanoparticles on staphylococcus aureus[J]. International Journal of Nanomedicine, 2010(5): 277-283.
[18]WANG S G, LAWSON R, RAY P P, et al. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria[J]. Toxicology and Industrial Health, 2011, 27(6): 547-554.
[19]LOVERA D, BILBAO C, SCHREIER P, et al. Charge storage of electrospun fiber mats of poly (phenylene ether)/polystyrene blends[J]. Polymer Engineering and Science, 2009, 49(12): 2430-2439.
[20]LEUNG W W F, HUNG C H, YUEN P T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate[J]. Separation and Purification Technology, 2009, 71(1): 30-37.
[21]許瞳. 新型負(fù)載納米銅復(fù)合纖維的制備及其催化二苯醚合成反應(yīng)的研究[D]. 呼和浩特: 內(nèi)蒙古工業(yè)大學(xué), 2014.
XU Tong. Preparation of Novel Nanocopper-load Composite Nanofibers and their Application in Catalyzing the Reaction of Diphenyl ether Synthesis[D]. Huhhot: Inner Mongolia University of Technology, 2014.
[22]劉雷艮, 沈忠安, 洪劍寒. 靜電紡高效防塵復(fù)合濾料的制備及其性能[J]. 紡織學(xué)報(bào), 2015, 36(7): 12-16.
LIU Leigen, SHEN Zhongan, HONG Jianhan. Preparation and properties of electrospun composite material for high-efficiency ash filtration[J]. Journal of Textile Research, 2015, 36(7): 12-16.
[23]張麗, 蒙冉菊, 高慧英, 等. 靜電紡納米纖維空氣過(guò)濾材料研究進(jìn)展[J]. 紡織科技進(jìn)展, 2016(6): 18-22.
ZHANG Li, MENG Ranju, GAO Huiying, et al. Research development of electrospun nanofiber air filter material[J]. Progress in Textile Science & Technology, 2016 (6): 18-22.
[24]張克勤. 紅外光譜法對(duì)聚丙烯腈共聚物的結(jié)構(gòu)表征[J]. 光譜實(shí)驗(yàn)室, 2012, 29(6): 3297-3299.
ZHANG Keqin. Structure characteristic of polyacrylonitrile copolymer by IR spectrometry[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(6): 3297-3299.
Preparation and property of electrospining nanocopper oxide antibacterial composite nonwovens
LI Yonggui1,2, FANG Lili2, ZHONG Chenya1b, MA Wenxiao2, CHEN Mingqing3
(1a.Fujian Key Laboratory of Novel Functional Textile Fibers and Materials; b.Clothing and Design Faculty, Minjiang University,F(xiàn)uzhou 350108, China; 2.College of Textile and Light Industry, Inner Mongolia University of Technology,Hohhot 010080, China; 3.Fujian Guanhong Industrial Co., Ltd., Quanzhou 362235, China)
Abstract:
The spread and variation of COVID-19 in the world have seriously threatened human health. Therefore, the current focus of research is to develop medical and antiepidemic textiles with high filtering efficiency and bacteriostasis, and low filtering resistance. Polypropylene (PP) melt-blown nonwovens are commonly used as raw materials for medical anti-epidemic textiles. PP melt-blown nonwovens, as the core filter layer of medical textiles, were difficult to buy during the outbreak of the epidemic. However, the traditional PP melt-blown nonwovens have low antibacterial performance, and medical staff are vulnerable to virus infection and microbial damage in the process of use for their single function and certain limitations in protective ability. Therefore, in the post-pandemic era, PP melt-blown nonwovens should not only be able to meet the rigid demand of the market, but also evolve to be high-end and functional in the face of mutating COVID-19 and the possibility of a return at any time. The research combines the PP melt-blown nonwoven with the electrospinning nanofiber membrane to prepare compound nonwoven fabrics with high antibacterial activity.
In order to improve the antibacterial property of PP melt-blown nonwovens, composite nanofiber membranes were synthesized on PP melt-blown nonwovens by electrospinning technology. Firstly, the PP melt-blown nonwoven was used as receiving substrate of electrospinning equipment and nano copper oxide (CuO-NPS) was used as anti-bacterial material to prepare the PP/PAN/CuO-NPS composite nonwovens with high antibacte-rial performance. On the basis of that, effects of the CuO-NPS mass fraction and electrospinning time on the surface morphology, fiber diameter distribution, chemical constitution, filtration performance, hydrophobicity and antibacterial property of composite nonwovens were studied. The results show that the bacteriostasis rates of composite nonwovens to gram-negative E.coli and gram-positive S.aureus are both greater than 99.99% in the range of CuO-NPS mass fraction of 0.3%-0.9%, and the spinning time is 1 h. When the spinning time is 1 h, as the mass fraction of CuO-NPS increases, the fiber diameter of the composite nonwoven increases, and its distribution uniformity of diameter and hydrophobic property both decrease. Under the condition of constant mass fraction of CuO-NPS, the filtration efficiency of composite nonwovens improves with the extension of the spinning time, but the permeability decreases. With the same spinning time, the filtration efficiency of composite nonwovens increases with the increase in CuO-NPS mass fraction. In addition, in-corporating CuO-NPs into PAN nanofiber membrane does not change the chemical structure of the membrane.
We select polyacrylonitrile (PAN) with good spinning performance as the raw material and CuO-NPs as the antibacterial material to prepare CuO-NPs powder with antibacterial properties to prepare electrostatic spinning solution. The composites of PP melt-blown nonwovens and electrospun PAN/CuO-NPs nanofibrous membrane have been obtained, which not only improves the filtration performance of PP melt-blown nonwovens, but also endows them with efficient antibacterial property. This paper provides a reference for further studies on the production and application of PP melt-blown nonwovens.
Key words:
nanocopper oxide; electrospining; polypropylene melt-blown nonwoven; filtration performance; antibacterial performance; hydrophobicity
收稿日期:
2022-06-11;
修回日期:
2023-02-01
基金項(xiàng)目:
福建省科技計(jì)劃工業(yè)引導(dǎo)性(重點(diǎn))項(xiàng)目(2021H0037)
作者簡(jiǎn)介:
李永貴(1972),男,教授,主要從事功能紡織材料的研究。