劉建菊 肖寧 吳云雨 蔡躍 潘存紅 時(shí)薇 陳梓春 朱書豪 李育紅 余玲 王志平 劉廣青 周長(zhǎng)?!↑S年生 張小祥 季紅娟 李愛宏
摘要:基因編輯是一種能對(duì)特定基因進(jìn)行修飾的基因工程技術(shù),能快速對(duì)靶點(diǎn)基因編輯,是高效捕獲目的基因、快速研究目標(biāo)基因功能的重要手段,在基因功能研究和作物育種等方面有著重要意義和廣闊的應(yīng)用前景?;蚓庉嬂锰禺惖腄NA結(jié)合元件和切割元件開展編輯工作,然而該技術(shù)最需注意的是特異性和脫靶率問題,不同時(shí)期的基因編輯技術(shù)也針對(duì)上述2個(gè)問題進(jìn)行改良,目前應(yīng)用最為廣泛的是CRISPR/Cas9,Cas12a 由于其特異性高且脫靶率大大降低也受到越來越多的關(guān)注。本文對(duì)基因編輯的技術(shù)發(fā)展及特點(diǎn)、CRISPR/Cas9和Cas12a的技術(shù)優(yōu)勢(shì)進(jìn)行介紹,并對(duì)這2種技術(shù)在水稻產(chǎn)量、抗性及品質(zhì)中的研究進(jìn)展進(jìn)行綜述,同時(shí)對(duì)拓展CRISPR/Cas基因編輯技術(shù)在水稻中的應(yīng)用提出展望,為基因功能鑒定及遺傳改良提供參考。
關(guān)鍵詞:基因編輯;Cas9;Cas12a;水稻;性狀改良
中圖分類號(hào):S511.01文獻(xiàn)標(biāo)志碼:A文章編號(hào):1002-1302(2023)11-0001-09
基因編輯(gene editing)是一種能對(duì)特定基因進(jìn)行修飾的基因工程技術(shù)[1-2],該技術(shù)利用工程核酸酶切割目標(biāo)基因組產(chǎn)生DNA雙鏈斷裂(DSB),進(jìn)而激活細(xì)胞內(nèi)源性DNA修復(fù)機(jī)制從而產(chǎn)生包括插入、缺失及基因片段替換等新的基因突變類型[3-5]。
1996年出現(xiàn)的鋅指核酸酶(ZFN)為基因編輯技術(shù)的發(fā)展奠定了基礎(chǔ)[6-7],利用該技術(shù)首次于2002年果蠅染色體上實(shí)現(xiàn)基因定點(diǎn)突變[8]。隨后轉(zhuǎn)錄激活樣效應(yīng)因子核酸酶(TALENs)[9]及由RNA介導(dǎo)的Cas9蛋白相關(guān)的成簇規(guī)則間隔短回文重復(fù)序列(CRISPR)相繼被發(fā)現(xiàn)[10-11],特別是CRISPR/Cas9于2013年開始應(yīng)用于植物基因組編輯,被Science列入2013年十大科學(xué)進(jìn)展[10]。此外,用于切割雙鏈DNA的CRISPR/Cas12a(Cpf1)[12-13]及在crRNA指導(dǎo)下切割ssRNA的CRISPR/Cas13(C2c2)[14]于2015年和2016年相繼被發(fā)現(xiàn)(圖1)。
基因編輯利用特異的DNA結(jié)合元件和切割元件開展編輯工作,然而該技術(shù)最需注意的是特異性和脫靶率問題,基因編輯技術(shù)的更迭對(duì)這2個(gè)方面的改善也各不相同(表1)。ZFNs是第一個(gè)應(yīng)用于基因定點(diǎn)編輯的技術(shù),然而其ZFN 剪切DNA 形成同源二聚體的同時(shí),可能會(huì)產(chǎn)生異源二聚體引起脫靶且難以實(shí)現(xiàn)多靶點(diǎn)編輯等問題,嚴(yán)重阻礙了其應(yīng)用[15-16];TALENs技術(shù)是1個(gè)TALE基序識(shí)別1個(gè)堿基對(duì),因此多個(gè)串聯(lián)的TALE基序與其識(shí)別的堿基對(duì)呈一一對(duì)應(yīng)關(guān)系,大大提高了編輯特異性并降低脫靶率,但其編輯效率較低,且難以進(jìn)行多基因編輯[17-20];CRISPR/Cas9技術(shù)在sgRNA的指導(dǎo)下與靶點(diǎn)結(jié)合,并利用HNH和RuvC對(duì)外源DNA進(jìn)行切割,其編輯效率大大提高,且可以對(duì)多基因同時(shí)編輯,然而其缺點(diǎn)是靶向目標(biāo) DNA 序列容易出現(xiàn)錯(cuò)配,存在脫靶率高、編輯特異性低等缺陷[4,16,21-22];Cas12a可以在crRNA引導(dǎo)下識(shí)別PAM,識(shí)別到正確序列才會(huì)形成封閉的R環(huán),因此編輯準(zhǔn)確性相對(duì)Cas9有了較大提高,其脫靶率也有所降低[12-13,23]。
CRISPR/Cas9及Cas12a是目前基因編輯技術(shù)中應(yīng)用最為廣泛的2種技術(shù),在水稻產(chǎn)量、品質(zhì)、生物脅迫及非生物脅迫性狀關(guān)鍵基因的分子遺傳功能解析和目標(biāo)性狀的精準(zhǔn)改良上已成熟應(yīng)用(表2)。
2CRISPR/Cas在水稻中的研究進(jìn)展
2.1產(chǎn)量性狀
水稻產(chǎn)量由單株穗數(shù)、每穗粒數(shù)、粒型及粒重等多個(gè)性狀綜合組成[112-113]。目前已有29個(gè)產(chǎn)量相關(guān)基因被編輯,其中4個(gè)基因?qū)Ξa(chǎn)量起正調(diào)控作用,其他25個(gè)基因均作為負(fù)調(diào)控因子發(fā)揮作用。Li等對(duì)每穗粒數(shù)Gn1a、粒型DEP1、粒重GS3及理想株型基因IPA1定點(diǎn)突變,gn1a、dep1和gs3的T2突變體出現(xiàn)穗粒數(shù)增加、粒型變大,成功提高了產(chǎn)量[37]。其他研究分別對(duì)Gn1a&DEP1、GS3&DEP1、GS3、GS2/GRF4及SPL16/qGW8等開展基因編輯,在穗粒數(shù)、粒型、粒重等性狀上調(diào)控產(chǎn)量,改善農(nóng)藝性狀同時(shí)提高產(chǎn)量[39,42,44,47-48]。開展多基因同時(shí)編輯也可快速調(diào)控產(chǎn)量,Xu等同時(shí)對(duì)負(fù)調(diào)控粒重、粒型基因GS3、GW2、GW5及TGW6進(jìn)行編輯,快速改良突變體粒重及產(chǎn)量[41]。Zhou等同時(shí)編輯GS3、Gn1a及GW2,相關(guān)突變體出現(xiàn)籽粒變大、穗粒數(shù)增多從而提高水稻產(chǎn)量[38]。Zeng等同時(shí)編輯PIN5b、GS3和MYB30,突變體兼顧了高產(chǎn)和耐冷性[43]。非產(chǎn)量調(diào)控基因突變也會(huì)提高產(chǎn)量,Miao等獲得ABA受體突變體pyl1/4/6,通過增加31%籽粒數(shù)量從而提高產(chǎn)量[57],除此之外,對(duì)FWL4、SD1(OsGA20ox2)及PYL9進(jìn)行定點(diǎn)突變也可不同程度提高產(chǎn)量[49,51-52,58]。然而產(chǎn)量正調(diào)控基因如RGA1、SWEET11被編輯后會(huì)分別引起植株極端矮化及灌漿功能受損,從而減產(chǎn)[42,50]。
CRISPR/Cas12a在水稻產(chǎn)量調(diào)控中應(yīng)用也日漸增多,Malzahn等對(duì)粒長(zhǎng)基因DEP1和葉片卷曲度基因ROC5進(jìn)行敲除提高產(chǎn)量。對(duì)水稻PDS、DEP 和ROC5基因所有靶點(diǎn)進(jìn)行突變,能同時(shí)改良農(nóng)藝性狀及抗性[45,54],而將葉綠素a加氧酶基因CAO1靶向敲入水稻中,突變體的產(chǎn)量及品質(zhì)降低[32,53],Zheng等同時(shí)利用Cas9和Cas12a對(duì)細(xì)胞分裂素家族基因OsCKX1-11進(jìn)行編輯,獲得了農(nóng)藝性狀及產(chǎn)量均有提升的單基因及多基因突變體,Cas9的編輯效率為26.9%~90.0%,有8個(gè)基因的編輯效率高于50.0%,而Cas12a的編輯效率為368%~100%且9個(gè)基因的編輯效率高于60%,Cas12a的多基因編輯效率高于Cas9(91.7%>545%)[40]。上述研究表明,對(duì)負(fù)調(diào)控基因進(jìn)行定點(diǎn)突變后可快速獲得目標(biāo)性狀改善的編輯系,然而有些基因突變后會(huì)對(duì)其他性狀產(chǎn)生不利影響,因此多重基因編輯技術(shù)的應(yīng)用為多個(gè)性狀同時(shí)改良提供了方案和可行性,在開展基因編輯時(shí)Cas12a的編輯效率及穩(wěn)定性均高于Cas9。
2.2品質(zhì)性狀
稻米品質(zhì)是水稻商業(yè)價(jià)值的核心賣點(diǎn),受到多個(gè)基因綜合調(diào)控,已有大量基因被證實(shí)直接或間接調(diào)控稻米品質(zhì),可用于定向改良直鏈淀粉含量、蛋白、香味等性狀。目前有13個(gè)品質(zhì)基因被編輯,其中4個(gè)基因(ISA、ITPK、GL3.2和BEL)正調(diào)控稻米品質(zhì),其他基因負(fù)調(diào)控稻米品質(zhì)。Wx基因的基因編輯位置差異對(duì)稻米品質(zhì)影響不同,對(duì)Wx基因功能位點(diǎn)進(jìn)行突變,可以將直鏈淀粉含量降至與糯稻相似,在不影響產(chǎn)量前提下改良稻米品質(zhì)[59-61];對(duì) Wxb基因啟動(dòng)子轉(zhuǎn)錄因子結(jié)合位點(diǎn)進(jìn)行突變,獲得新的Wx等位基因并獲得直鏈淀粉含量不同程度降低的突變體,改良了稻米品質(zhì)[62]。fad2突變體的油酸濃度提高,gs9突變體的粒型、堊白及外觀等品質(zhì)顯著改善,or突變體籽粒β-胡蘿卜素含量顯著提高,isa突變體總淀粉含量下調(diào),ZmPsy和SSU-crtI突變體水稻的籽粒類胡蘿卜素含量提高,badh2突變體籽粒產(chǎn)生香味,均可改良稻米品質(zhì)[66-67,69-70,72,114]。多基因同時(shí)突變可綜合提升水稻性狀,如app6/10雙突變體的直鏈淀粉、蛋白及谷蛋白含量均下調(diào)[65];細(xì)胞色素P450家族基因(Os03g0603100、Os03g0568400和GL3.2)和香味基因BADH2同時(shí)突變后改良稻米香味并提高產(chǎn)量[71];PDS和BELs同時(shí)突變穩(wěn)定提高水稻產(chǎn)量和品質(zhì)[73]。對(duì)正調(diào)控基因進(jìn)行突變,有助于理解基因在稻米品質(zhì)改良中的作用,敲除Wxb第一內(nèi)含子、SBEIIb進(jìn)行精準(zhǔn)敲除,突變體直鏈淀粉含量上調(diào),且引起營(yíng)養(yǎng)特性改變[63-64]。Jiang等突變ITPK1-6,降低籽粒植酸含量然而卻提高無機(jī)磷含量,不利于水稻生長(zhǎng)繁殖,證實(shí)該基因?qū)λ菊IL(zhǎng)發(fā)育的重要性[68]。對(duì)負(fù)調(diào)控稻米品質(zhì)基因的敲除加速了優(yōu)質(zhì)水稻品種選育的進(jìn)程,與其他產(chǎn)量性狀相關(guān)基因同時(shí)編輯,有望在保證產(chǎn)量的同時(shí)提高品質(zhì)。
2.3生物脅迫
水稻生長(zhǎng)過程對(duì)生物脅迫的抗性也可利用基因編輯方法改良,對(duì)抗性相關(guān)基因MPK1、MPK2、MPK5和MPK6的敲除能夠提高抗病性[85-86]。ERF922、SEC3A、ALB1、RSY1 和Pi21敲除后,突變體對(duì)稻瘟病的抗性提高,同時(shí)農(nóng)藝性狀也得到改良[74-78]。SWEET13和SWEET14敲除后突變體對(duì)白葉枯病菌的抗性提高,且SWEET14突變體無產(chǎn)量損失[79,81]。對(duì)SWEET11/8N3/Xa13編碼區(qū)及啟動(dòng)子區(qū)定點(diǎn)突變,也能提高水稻對(duì)白葉枯病的抗性[80,82]。Liang等對(duì)稻曲病相關(guān)基因USTA和UvSLT2進(jìn)行編輯,顯著提高了水稻對(duì)稻曲病抗性[84]。利用Cas12a低水平同源性核酸酶MAD7對(duì)水稻基因EPSPS、NRAMP、PDS、Xa13及ALS等進(jìn)行多重基因敲除,同步提升了突變體的品質(zhì)、除草劑及白葉枯病抗性[83]。Wang等利用Cas12a對(duì)受體樣激酶(OsRLK)相關(guān)基因(OsRLK-798、OsRLK-799、OsRLK-802和OsRLK-803)及CYP81A家族基因(OsBEL-230、OsBEL-240、OsBEL-250和OsBEL-260)開展多重基因編輯,獲得了陽性植株,相關(guān)突變體調(diào)控了水稻的抗逆性[105]。
對(duì)水稻負(fù)調(diào)控抗性基因進(jìn)行敲除或替換可快速改善目標(biāo)性狀,提升水稻抗性,然而有些編輯以損失產(chǎn)量為代價(jià)[109],而有些編輯在不損害甚至優(yōu)化農(nóng)藝性狀前提下同步改善水稻品質(zhì)[77-78,81,90,95],因此在進(jìn)行水稻抗性改良時(shí)需要考慮基因?qū)λ镜木C合影響,從而制定相應(yīng)編輯策略。
2.4非生物脅迫
水稻生長(zhǎng)發(fā)育過程中會(huì)受到多種非生物脅迫的影響,如干旱、低溫、鹽、除草劑等,相關(guān)基因的大量挖掘促進(jìn)了基因編輯在水稻非生物脅迫中的應(yīng)用,目前有24個(gè)相關(guān)基因被編輯,其中8個(gè)基因起正調(diào)控作用,即Ann3、OTS1、RAV2、SAPK2、BELs、MKK5、RLKs和SAP。在水稻抗旱性方面,PYL9、ERA1、PDS、半卷葉基因(SRL1和SRL2)和MIR535的基因突變會(huì)增強(qiáng)突變體的抗旱性[58,88-90,106]。而敲除SAPK2和SAP基因后,突變體對(duì)干旱脅迫和活性氧更敏感,農(nóng)藝性狀顯著下降[87,111]。在水稻響應(yīng)鹽脅迫方面,敲除水稻中的RR22、DST及PQT3基因,可顯著提高耐鹽性且不影響農(nóng)藝性狀[92,94-95],但對(duì)OTS1編碼區(qū)及RAV2啟動(dòng)子的GT-1元件突變后,其耐鹽性下降[91,93]。在水稻抗除草劑方面,通過將EPSPS、ALS突變基因敲入,或點(diǎn)突變野生型基因(ALS、FTIP1e)均能使水稻獲得除草劑抗性[96-103]。
除此之外,敲除Nramp5能降低Cd的積累且不影響產(chǎn)量[107-108];Ann3敲除后對(duì)低溫的耐受性降低[110];敲除MKK5后,突變體抗逆性降低[104];同時(shí)突變抽穗基因Hd2、Hd4和Hd5后突變體開花期及成熟期提前有助于逃避脅迫[109],然而農(nóng)藝性狀受到較大影響,因此在應(yīng)用時(shí)可進(jìn)行單基因編輯,從而消除對(duì)產(chǎn)量的損害。
3CRISPR/Cas的技術(shù)展望
基因編輯技術(shù)為生命科學(xué)帶來重大進(jìn)展,然而幾種技術(shù)的脫靶率及特異性問題仍需重點(diǎn)關(guān)注。研究人員優(yōu)化了相關(guān)技術(shù),開發(fā)了DB-PACE法從而降低基因編輯工具酶的脫靶效應(yīng),大大提高TALEN核酸酶的DNA結(jié)合能力和切割特異性[115];開發(fā)出提高Cas9基因編輯和堿基編輯特異性的選擇性核輸出抑制劑(SINE)[116];Sheng利用腙介導(dǎo)CRISPR/Cas12a系統(tǒng),通過互補(bǔ)堿基配對(duì)引起的鄰近效應(yīng)來加速整個(gè)激活鏈的形成,從而提高Cas12a 系統(tǒng)的特異性[117]。除此之外,CRISPR系統(tǒng)的sgRNA的優(yōu)化、PAM修飾、crRNA優(yōu)化及Cas蛋白突變體挖掘也會(huì)進(jìn)一步提高編輯范圍及特異性并降低脫靶率[12,46,104,118-120]。此外Cas12a蛋白表現(xiàn)出對(duì)低溫敏感的特征,目前Cas12a突變體是解決該問題的主要方式,而引起低溫敏感的分子機(jī)制尚不明確。上述問題的解決,將大大提高基因編輯水平,對(duì)目標(biāo)基因進(jìn)行定向編輯,產(chǎn)生無外源DNA插入的新品種,從而加快育種速度、縮短育種年限。
水稻產(chǎn)量、抗性和品質(zhì)相關(guān)基因的挖掘及分子機(jī)理解析,有助于更全面了解基因功能,目前基因編輯主要集中在編碼區(qū),有少量研究是編輯啟動(dòng)子的轉(zhuǎn)錄結(jié)合位點(diǎn)實(shí)現(xiàn)性狀調(diào)控的。已有研究表明,DNA結(jié)構(gòu)本身,如拓?fù)洚悩?gòu)結(jié)構(gòu)等也會(huì)影響基因表達(dá)水平[121],因此,未來也可能作為基因編輯靶點(diǎn),增加目標(biāo)性狀精準(zhǔn)改良的可能性。隨著人工智能的發(fā)展,Alphafold等技術(shù)對(duì)蛋白預(yù)測(cè)精準(zhǔn)度提高,越來越多的蛋白結(jié)構(gòu)被預(yù)測(cè),對(duì)目標(biāo)基因的模擬突變有助于挖掘關(guān)鍵堿基序列,可進(jìn)行靶向預(yù)測(cè),實(shí)現(xiàn)新的目標(biāo)性狀的改良已經(jīng)成為可能。相信隨著基因編輯技術(shù)的不斷完善、生物信息學(xué)和人工智能的不斷發(fā)展,水稻育種將會(huì)迅猛發(fā)展。
參考文獻(xiàn):
[1]Yin K,Gao C,Qiu J L. Progress and prospects in plant genome editing[J]. Nature Plants,2017,3(8):1-6.
[2]李君,張毅,陳坤玲,等. CRISPR/Cas 系統(tǒng):RNA 靶向的基因組定向編輯新技術(shù)[J]. 遺傳,2013,35(11):1265-1273.
[3]Kim H,Kim J S. A guide to genome engineering with programmable nucleases[J]. Nature Reviews Genetics,2014,15(5):321-334.
[4]Shan Q,Wang Y,Li J,et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology,2013,31(8):686-688.
[5]張白雪,孫其信,李海峰. 基因修飾技術(shù)研究進(jìn)展[J]. 生物工程學(xué)報(bào),2015,31(8):1162-1174.
[6]Urnov F D,Miller J C,Lee Y L,et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J]. Nature,2005,435(7042):646-651.
[7]Miller J C,Holmes M C,Wang J,et al. An improved zinc-finger nuclease architecture for highly specific genome editing[J]. Nature Biotechnology,2007,25(7):778-785.
[8]Bibikova M,Golic M,Golic K G,et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics,2002,161(3):1169-1175.
[9]Boch J,Scholze H,Schornack S,et al. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors[J]. Science,2009,326(5959):1509-1512.
[10]Jinek M,Chylinski K,F(xiàn)onfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science,2012,337(6096):816-821.
[11]Gasiunas G,Barrangou R,Horvath P,et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences,2012,109(39):E2579-E2586.
[12]Makarova K S,Koonin E V. Annotation and classification of CRISPR-Cas systems[J]. CRISPR:Methods and Protocols,2015,1311:47-75.
[13]Zetsche B,Gootenberg J S,Abudayyeh O O,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell,2015,163(3):759-771.
[14]Abudayyeh O O,Gootenberg J S,Konermann S,et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science,2016,353(6299):aaf5573.
[15]Ramirez C L,F(xiàn)oley J E,Wright D A,et al. Unexpected failure rates for modular assembly of engineered zinc fingers[J]. Nature Methods,2008,5(5):374-375.
[16]Gupta R M,Musunuru K. Expanding the genetic editing tool kit:ZFNs,TALENs,and CRISPR-Cas9 [J]. The Journal of Clinical Investigation,2014,124(10):4154-4161.
[17]Reyon D,Tsai S Q,Khayter C,et al. FLASH assembly of TALENs for high-throughput genome editing[J]. Nature Biotechnology,2012,30(5):460-465.
[18]Kim Y,Kweon J,Kim A,et al. A library of TAL effector nucleases spanning the human genome [J]. Nature Biotechnology,2013,31(3):251-258.
[19]Guilinger J P,Pattanayak V,Reyon D,et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity[J]. Nature Methods,2014,11(4):429-435.
[20]Smith C,Gore A,Yan W,et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs[J]. Cell Stem Cell,2014,15(1):12-13.
[21]Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
[22]Nekrasov V,Staskawicz B,Weigel D,et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nature Biotechnology,2013,31(8):691-693.
[23]Zeng Y,Hong Y,Azi F,et al. Advanced genome-editing technologies enable rapid and large-scale generation of genetic variants for strain engineering and synthetic biology[J]. Current Opinion in Microbiology,2022,69:102175.
[24]Yang G,Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells[J]. Cell Regeneration,2019,8(2):33-41.
[25]Osakabe K,Osakabe Y,Toki S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases[J]. Proceedings of the National Academy of Sciences,2010,107:12034-12039.
[26]Miller J C,Tan S,Qiao G,et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology,2011,29:143-150.
[27]趙欽軍,韓忠朝. 基因編輯技術(shù)的發(fā)展前景及倫理與監(jiān)管問題探討[J]. 科學(xué)與社會(huì),2016,6(3):1-11.
[28]Sood R,Carrington B,Bishop K,et al. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases:data from targeting of nine genes using CompoZr or CoDA ZFNs[J]. PloS One,2013,8(2):e57239.
[29]Arazoe T,Ogawa T,Miyoshi K,et al. Tailor‐made TALEN system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnology and Bioengineering,2015,112(7):1335-1342.
[30]Naeem M,Majeed S,Hoque M Z,et al. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing[J]. Cells,2020,9(7):1608.
[31]Hruscha A,Krawitz P,Rechenberg A,et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish [J]. Development,2013,140(24):4982-4987.
[32]Endo A,Masafumi M,Kaya H,et al. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida[J]. Scientific Reports,2016,6(1):38169.
[33]Miller J C,Patil D P,Xia D F,et al. Enhancing gene editing specificity by attenuating DNA cleavage kinetics[J]. Nature Biotechnology,2019,37(8):945-952.
[34]Wang X,Wang Y,Wu X,et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors[J]. Nature Biotechnology,2015,33(2):175-178.
[35]Khandagale K,Nadaf A. Genome editing for targeted improvement of plants[J]. Plant Biotechnology Reports,2016,10:327-343.
[36]Kim H K,Song M,Lee J,et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity [J]. Nature Methods,2017,14(2):153-159.
[37]Li M,Li X,Zhou Z,et al. Reassessment of the four yield-related genes Gn1a,DEP1,GS3,and IPA1 in rice using a CRISPR/Cas9 system [J]. Frontiers in Plant Science,2016,7:377.
[38]Zhou J,Xin X,He Y,et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties[J]. Plant Cell Reports,2019,38:475-485.
[39]Huang L,Zhang R,Huang G,et al. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system [J]. The Crop Journal,2018,6:475-481.
[40]Zheng X,Zhang S,Liang Y,et al. Loss-function mutants of OsCKX gene family based on CRISPR-Cas systems revealed their diversified roles in rice[J]. The Plant Genome,2023,e20283.
[41]Xu R,Yang Y,Qin R,et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. Journal of Genetics and Genomics,2016,43(8):529-532.
[42]Cui Y,Jiang N,Xu Z,et al. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice[J]. BMC Plant Biology,2020,20:1-13.
[43]Zeng Y,Wen J,Zhao W,et al. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b,GS3,and OsMYB30 with the CRISPR-Cas9 system[J]. Front Plant Science,2020,10:1663.
[44]Huang J,Gao L,Luo S,et al. The genetic editing of GS3 via CRISPR/Cas9 accelerates the breeding of three-line hybrid rice with superior yield and grain quality [J]. Molecular Breeding,2022,42(4):22.
[45]Tang X,Lowder,Zhang T,et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants[J]. Nature Plants,2017,3:17018.
[46]Malzahn A A,Tang X,Lee K,et al. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice,maize,and Arabidopsis[J]. BMC Biology,2019,17(1):1-14.
[47]Wang W,Wang W,Pan Y,et al. A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield[J]. The Crop Journal,2022,10(4):1207-1212.
[48]Usman B,Nawaz G,Zhao N,et al. Programmed editing of rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins[J]. International Journal of Molecular Sciences,2020,22(1):249.
[49]Gao Q,Li G,Sun H,et al. Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice[J]. International Journal of Molecular Sciences,2020,21(3):809.
[50]Ma L,Zhang D,Miao Q,et al. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling[J]. Plant and Cell Physiology,2017,58(5):863-873.
[51]Hu X,Cui Y,Dong G,et al. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces [J]. Scientific Reports,2019,9:19096.
[52]Han Y,Teng K,Nawaz G,et al. Generation of semi-dwarf rice (Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations[J]. 3 Biotech,2019,9:387.
[53]Begemann M B,Gray B N,January E,et al. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases[J]. Scientific Reports,2017,7(1):11606.
[54]Mahfouz M M. Genome editing:the efficient tool CRISPR-Cpf1[J]. Nature Plants,2017,3(3):1-2.
[55]Yin X,Biswal A K,Dionora J,et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice[J]. Plant Cell Reports,2017,36:745-757.
[56]Yin X,Anand A,Quick P,et al. Editing a stomatal developmental gene in rice with CRISPR/Cpf1[J]. Plant Genome Editing with CRISPR Systems:Methods and Protocols,2019,257-268.
[57]Miao C,Xiao L,Hua K,et al. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proceedings of the National Academy of Sciences,2018,115:6058-6063.
[58]Usman B,Nawaz G,Zhao N,et al. Precise editing of the OsPYL9 gene by RNA-guided Cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa L.) by regulating circadian rhythm and abiotic stress responsive proteins[J]. International Journal of Molecular Sciences,2020,21:7854.
[59]Ma X,Zhang Q,Zhu Q,et al. A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant,2015,8(8):1274-1284.
[60]Zhang J,Zhang H,Botella J R,et al. Generation of new glutinous rice by CRISPR/Cas9‐targeted mutagenesis of the Waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology,2018,60(5):369-375.
[61]Fei Y Y,Jie Y,Wang F Q,et al. Production of two elite glutinous rice varieties by editing wx gene[J]. Rice Science,2019,26(2):118-124.
[62]Huang L,Li Q,Zhang C,et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system [J]. Plant Biotechnology Journal,2020,18:2164 -2166.
[63]Liu X,Ding Q,Wang W,et al. Targeted deletion of the first intron of the Wxb allele via CRISPR/Cas9 significantly increases grain amylose content in rice[J]. Rice,2022,15:1-12.
[64]Sun Y,Jiao G,Liu Z,et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science,2017,8:298.
[65]Wang S,Yang Y,Guo M,et al. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system[J]. The Crop Journal,2020,8:457-464.
[66]Abe K,Araki E,Suzuki Y,et al. Production of high oleic/low linoleic rice by genome editing[J]. Plant Physiology and Biochemistry,2018,131:58-62.
[67]Chao S F,Cai Y C,F(xiàn)eng B B,et al. Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation[J]. Rice Science,2019,26:77-87.
[68]Jiang M,Liu Y,Liu Y,et al. Mutation of inositol 1,3,4-trisphosphate 5/6-kinase6 impairs plant growth and phytic acid synthesis in rice [J]. Plants,2019,8(5):114.
[69]Endo A,Saika H,Takemura M,et al. A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing[J]. Rice,2019,12(1):1-5.
[70]Ashokkumar S,Jaganathan D,Ramanathan V,et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing[J]. PloS One,2020,15(8):e0237018.
[71]Usman B,Nawaz G,Zhao N,et al. Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of Cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations[J]. Plants,2020,9:788.
[72]Zhao D S,Li Q F,Zhang C Q,et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communication,2018,9:1240.
[73]Xu R F,Qin R Y,Li H,et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system[J]. Plant Biotechnology Journal,2017,15(6):713-717.
[74]Wang F,Wang C,Liu P,et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PloS One,2016,11:1-18.
[75]Ma J,Chen J,Wang M,et al. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice[J]. Journal of Experimental Botany,2017,69:1051-1064.
[76]Foster A J,Martin-Urdiroz M,Yan X,et al. CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus[J]. Scientific Reports,2018,8:14355.
[77]Li S,Shen L,Hu P,et al. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing [J]. Journal of Integrative Plant Biology,2019,61:1201-1205.
[78]Nawaz G,Usman B,Peng H,et al. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line[J]. Genes,2020,11(7):735.
[79]Zhou J,Peng Z,Long J,et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. The Plant Journal,2015,82(4):632-643.
[80]Kim Y A,Moon H,Park C J. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae[J]. Rice,2019,12:67.
[81]Zeng X,Luo Y,Vu N T Q,et al. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty[J]. BMC Plant Biology,2020,20(1):1-11.
[82]Li C,Li W,Zhou Z,et al. A new rice breeding method:CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice [J]. Plant Biotechnology Journal,2020,18:313-315.
[83]Lin Q,Zhu Z,Liu G,et al. Genome editing in plants with MAD7 nuclease[J]. Journal of Genetics and Genomics,2021,48(6):444-451.
[84]Liang Y,Han Y,Wang C,et al. Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system [J]. Frontiers in Plant Science,2018,9:699.
[85]Xie K,Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system[J]. Molecular Plant,2013,6:1975-1983.
[86]Minkenberg B,Xie K,Yang Y. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes[J]. The Plant Journal,2017,89:636-648
[87]Lou D,Wang H,Liang G,et al. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice[J]. Frontiers in Plant Science,2017,8:993.
[88]Ogata T,Ishizaki T,F(xiàn)ujita M,et al. CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice[J]. PLoS One,2020,15(12):e0243376.
[89]Banakar R,Schubert M,Collingwood M,et al. Comparison of CRISPR-Cas9/Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice phytoene desaturase (OsPDS) gene[J]. Rice,2020,13(1):1-7.
[90]Liao S,Qin X,Luo L,et al. CRISPR/Cas9-induced mutagenesis of semi-rolled Leaf1,2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.) [J]. Agronomy,2019,9(11):728.
[91]Duan Y B,Li J,Qin R Y,et al. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis[J]. Plant Molecular Biology,2016,90:49-62.
[92]Zhang A,Liu Y,Wang F,et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene[J]. Molecular Breeding,2019,39:1-10.
[93]Zhang C,Srivastava A K,Sadanandom A. Targeted mutagenesis of the SUMO protease,Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance[J]. BioRxiv,2019:555706.
[94]Santosh Kumar V V,Verma R K,Yadav S K,et al. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010[J]. Physiology and Molecular Biology of Plants,2020,26:1099-1110.
[95]Alfatih A,Wu J,Jan S U,et al. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field[J]. Plant,Cell & Environment,2020,43(11):2743-2754.
[96]Li J,Meng X,Zong Y,et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 [J]. Nature Plants,2016,2(10):1-6.
[97]Shimatani Z,Kashojiya S,Takayama M,et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nature Biotechnology,2017,35:441-443.
[98]Sun Y,Zhang X,Wu C,et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Molecular Plant,2016,9(4):628-631.
[99]Kuang Y,Li S,Ren B,et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms [J]. Molecular Plant,2020,13(4):565-572.
[100]Wang F,Xu Y,Li W,et al. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing[J]. The Crop Journal,2021,9(2):305-312.
[101]Zhang R,Chen S,Meng X,et al. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing[J]. Science China Life Sciences,2021,64:1624-1633.
[102]Li S,Li J,Zhang J,et al. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice [J]. Journal of Experimental Botany,2018,69(20):4715-4721.
[103]Li S,Li J,He Y,et al. Precise gene replacement in rice by RNA transcript-templated homologous recombination [J]. Nature Biotechnology,2019,37(4):445-450.
[104]Zhang Q,Yin K,Liu G,et al. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites[J]. Science China Life Sciences,2020,63:1918-1927.
[105]Wang M,Mao Y,Lu Y,et al. Multiplex gene editing in rice using the CRISPR-Cpf1 system[J]. Molecular Plant,2017,10(7):1011-1013.
[106]Yue E,Cao H,Liu B. OsmiR535,a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa[J]. Plants,2020,9(10):1337.
[107]Tang L,Mao B,Li Y,et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports,2017,7(1):14438.
[108]Yang C H,Zhang Y,Huang C F. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. Journal of Integrative Agriculture,2019,18(3):688-697.
[109]Li X,Zhou W,Ren Y,et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing [J]. Journal of Genetics and Genomics,2017,44:175-178.
[110]Shen C,Que Z,Xia Y,et al. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice[J]. Journal of Plant Biology,2017,60:539-547.
[111]Park J R,Kim E G,Jang Y H,et al. Applications of CRISPR/Cas9 as new strategies for short breeding to drought gene in rice[J]. Frontiers in Plant Science,2022,13.
[112]Wang Y J,Li J Y. Molecular basis of plant architecture[J]. Annual Review of Plant Biology,2008,59:253 -279.
[113]Xing Y,Zhang Q. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology,2010,61:421-442.
[114]Dong O X,Yu S,Jain R,et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9[J]. Nature Communications,2020,11(1):1178.
[115]Hubbard B P,Badran A H,Zuris J A,et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity [J]. Nature Methods,2015,12(10):939-942.
[116]Cui Y R,Wang S J,Ma T,et al. KPT330 improves Cas9 precision genome-and base-editing by selectively regulating mRNA nuclear export[J]. Communications Biology,2022,5(1):237.
[117]Sheng A,Yang J,Tang L,et al. Hydrazone chemistry-mediated CRISPR/Cas12a system for bacterial analysis[J]. Nucleic Acids Research,2022,50(18):10562-10570.
[118]Lee K,Zhang Y,Kleinstiver B P,et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize [J]. Plant Biotechnology Journal,2019,17(2):362-372.
[119]Gao L,Cox D B,Yan W X,et al. Engineered Cpf1 variants with altered PAM specificities[J]. Nature Biotechnology,2017,35(8):789-792.
[120]王敬文,嚴(yán)芳,柳浪,等. 水稻 CRISPR/Cas12a 系統(tǒng)的優(yōu)化及其介導(dǎo)的腺嘌呤堿基編輯器的建立[J]. 生物技術(shù)通報(bào),2021,37(6):279.
[121]Oudelaar A M,Higgs D R. The relationship between genome structure and function[J]. Nature Reviews Genetics,2021,22:154-168.