国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

CO2地質(zhì)封存中儲層巖石潤濕性測量研究進展

2023-07-27 02:10
上海理工大學學報 2023年3期
關鍵詞:潤濕潤濕性親水

王 欣, 李少華, 劉 瑜, 張 毅, 蔣蘭蘭, 宋永臣

(大連理工大學能源與動力學院,大連116024)

摘要: 多孔介質(zhì)的潤濕性是 CO2 地質(zhì)封存過程中的重要參數(shù)?;跐櫇裥詼y量方法和光學成像技? 術綜述了 CO2 封存條件下不同尺度的多孔介質(zhì)潤濕性測量技術,并分析了相關潤濕現(xiàn)象。目前,巖石潤濕性的測量主要分為: 實驗室尺度的表面潤濕性測定、孔隙尺度的內(nèi)部壁面接觸角測定, 以及宏觀尺度的巖心整體潤濕性評價??紫督Y構、礦物組成成分和表面粗糙度是孔隙尺度接觸角? 的關鍵影響因素, 它們會影響多孔介質(zhì)的混合潤濕特性并造成潤濕滯后現(xiàn)象。根據(jù)不同局部驅(qū)替? 事件(如排水、滲吸)的接觸角分布建立了孔隙尺度與連續(xù)尺度的巖石潤濕性關系。最新研究發(fā)? 現(xiàn), 隨著驅(qū)替的發(fā)展,巖石潤濕性在排水和滲吸過程中發(fā)生了顯著改變,但不同尺度的巖石潤濕? 性的關系及潤濕轉(zhuǎn)變機理仍需要進一步研究。

關鍵詞:? 潤濕性;CO2? 地質(zhì)封存 ;孔隙尺度 ;潤濕轉(zhuǎn)變 ;成像技術

中圖分類號:? X 701???????????? 文獻標志碼:?? A

A review of wettability measurement of the reservoir rock in CO2 geological storage

WANG Xin, LI Shaohua, LIU Yu, ZHANG Yi, JIANG Lanlan, SONG Yongchen

(School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract: The wettability of porous media is an important parameter in the process of CO2 geological storage. Based on the wettability measurements and optical imaging techniques, the wettability measurement techniques of porous media at different scales under CO2 storage conditions were reviewed, and the related wettability phenomena were analyzed. At present, the rock wettability measurements are mainly described from the measurement of surface wettability at the laboratory scale, the contact angle at the porous inner surface, and the overall wettability evaluation of core samples at the macro scale. It was shown that the pore structure, mineral composition, and surface roughness were critical factors for the pore-scale contact angle, affecting the mixed wetting characteristics of porous media and causing the wetting hysteresis phenomenon. The relationship between pore-scale and continuum-scale rock wettability was established based on the contact angle distribution in different local displacement events (such as drainage and imbibition). A recent study found that the rock wettability changed significantly during the drainage and imbibition process with the development of the displacement process. However, the correlation between the wettability of rocks at different scales and the mechanism of wettability alternation still need to be further studied.

Keywords:? wettability ; CO2?? geological storage; pore-scale; wettability alternation; imaging technique

CO2地質(zhì)封存指通過技術手段將 CO2注入深部鹽水層、枯竭油氣藏、不可開采的煤層等儲層中進行長久封存,是實現(xiàn)溫室氣體減排的有力措施之一[1]。巖石潤濕性是評估儲層封存能力和安全性的重要指標[2],它是指一種流體黏附到固體表面的能力[3],直接影響 CO2?鹽水?巖石多相系統(tǒng)中殘余相的飽和度[4]、流體形態(tài)分布[5]、界面面積、相對滲透率[6]及毛細管壓力[7-8]等滲流參數(shù)。潤濕性是影響儲層物理性質(zhì)的關鍵因素[9],儲層流體特性(如溫度、壓力、相態(tài))和組成(如礦物成分和相互作用)會直接影響巖石的潤濕性[10-13]。巖石潤濕性按均勻程度可以分為均勻潤濕和混合潤濕體系。均勻潤濕體系的接觸角分布通常較為集中[14],然而,大部分儲層都不是均勻潤濕體系。實際儲層存在復雜的孔隙結構,非均質(zhì)性強[15],大多為混合潤濕體系,通常表現(xiàn)出不同的流體流動特性[16]。 Akai 等[17]發(fā)現(xiàn),在混合潤濕體系下,水的有效滲透率與實驗結果更相似。 Zou 等[18]認為混合潤濕體系會增加流體連通性和團簇運動,降低系統(tǒng)有效滲透率。因此,準確描述多孔介質(zhì)的潤濕性,有利于探明流體的流動特性和 CO2的封存機制。

目前,已有文獻總結了 CO2?流體?巖石體系的潤濕性特征[19-20],尤其是巖石表面潤濕性,并分析了巖石潤濕性的影響因素以及潤濕性在流體運移過程中的作用[21-22]。本文針對 CO2封存條件下多孔介質(zhì)潤濕性的最新測量技術,綜述了多孔介質(zhì)在不同尺度下的潤濕性測量方法,主要包括:實驗室尺度的多孔介質(zhì)表面潤濕性測定、孔隙尺度多孔介質(zhì)局部壁面接觸角測定,以及宏觀尺度巖心樣品的整體潤濕性評價。同時,本文指出了測量過程中潤濕性表現(xiàn)出的新現(xiàn)象,如潤濕滯后、混合潤濕現(xiàn)象,以及不同驅(qū)替事件(即排水和滲吸)下的潤濕性變化。這將有助于設置不同的潤濕性條件,以獲得最佳的 CO2封存能力,進一步促進 CO2地質(zhì)封存的實施。

1 多孔介質(zhì)表面潤濕性

多孔介質(zhì)表面潤濕性一般用巖心表面和不同流體界面之間的接觸角來表征[23]。在 CO2?鹽水?巖石系統(tǒng)中(圖1),定義巖石接觸角在0~70°時為親水系統(tǒng),70~110°時為中性潤濕系統(tǒng),110~180°時為親 CO2系統(tǒng)[9]。由于三相相互作用,接觸角由 Young-Laplace 方程確定[24]。

式中:θ為接觸角; LF , SF , SL分別為 CO2?鹽水、 CO2?巖石和鹽水?巖石的界面張力。

1.1 接觸角表征

多孔介質(zhì)表面接觸角的測量方法如圖2所示,主要包括座滴法[25]、捕泡法[26]、Wilhelmy 平板法[27]、傾斜板法[28]和毛細管上升法[29]。

座滴法是測量表面接觸角的關鍵方法之一(圖2(a))[25],它可以直接運用于理想平滑表面的測量,但無法表征真實表面和粗糙表面的接觸角。捕泡法在充滿鹽水的實驗池中測量固?液界面處的氣泡接觸角(圖2(b))[26],該方法減少了座滴法由于鹽水擴散引起的誤差[30]。但是,不平整表面以及針管位置與氣泡中心線的不匹配都會降低捕泡法的精度。Wilhelmy 平板法(圖2(c))[27]可以測量液體和樣品之間的潤濕性[31],除了使用厚度均勻的矩形板外,也可以在三角形和不規(guī)則形狀的平板中計算接觸角[32]。傾斜板法主要用于測量動態(tài)接觸角(圖2(d))[28],其操作簡單,但接觸角的測量強烈依賴于板的傾斜、液滴的大小和形狀。毛細管上升法根據(jù)毛細效應可以有效地獲得毛細管的動態(tài)潤濕過程(圖2(e))[29],但缺乏實用性。

1.2 接觸角滯后

接觸角滯后(contact angle hysteresis, CAH)由表面粗糙度、表面變形、表面不均勻等因素引起,通常表現(xiàn)為前進接觸角( advancing contact angle, ACA)和后退接觸角(receding contact angle, RCA)之差[33]。近年來提出了一系列動態(tài)接觸角的測量方法[26, 34-37]。Lander 等[38]發(fā)現(xiàn), Wilhelmy 平板法是測量 CAH 的最佳方法,可以減少操作者的主觀性,其次是傾斜板法,而座滴法實施難度最大。當 CO2注入儲層后,排水過程中 CO2驅(qū)替水相時,水接觸角為后退接觸角;滲吸過程中水驅(qū)替 CO2時,水接觸角為前進接觸角[39]。排水過程的后退接觸角一般小于滲吸過程的前進接觸角[40]。巖石的非均質(zhì)性也會影響接觸角滯后, ACA 對非均質(zhì)表面中疏水的成分更敏感,而 RCA 對親水的成分更敏感[19]。目前,雖然有接觸角滯后的定性分析,但復雜的拓撲結構和非均質(zhì)性對接觸角滯后的影響仍需進行大量的研究。

多孔介質(zhì)表面接觸角可以表征巖石表面潤濕性和動態(tài)滯后過程,但表面粗糙度和巖石結構可能會影響測量精度。滲吸方法揭示了巖石內(nèi)部的孔隙連通特征[20],可以測量巖石的潤濕性[41-42],但受流體界面相互作用的影響較大。多孔介質(zhì)表面潤濕性只能衡量實驗室尺度的巖心表面特性[43]。未來應準確測量具有復雜結構的巖石潤濕性,完善多孔介質(zhì)的物性表征,為 CO2封存選址提供有力的理論支撐。

2 多孔介質(zhì)局部壁面接觸角

巖石的表面粗糙度、孔隙幾何形狀和化學成分直接影響流體分布,進而影響接觸角測量的準確性[44]。目前,對孔隙尺度下巖石的潤濕特征仍缺乏基本的認識[45],尚未完全了解流體注入后的壁面潤濕行為。 Li 等[46]發(fā)現(xiàn)平板表面測量的靜態(tài)接觸角小于孔隙內(nèi)接觸角,用表面接觸角來預測孔接觸角是不合適的。多孔介質(zhì)局部壁面的潤濕性測量至關重要,需要通過一些先進的技術(如微模型和 X 射線計算機斷層掃描)來實現(xiàn)。

2.1 微模型

微模型由兩塊薄玻璃板組成,玻璃板表面通過化學手段和幾何設計進行處理[47],模擬真實的巖石狀況(圖3(a))[48],該模型有助于觀察儲層中復雜的多相、多組分的相互作用[49]。高壓微模型可以用于研究 CO2?鹽水?巖石系統(tǒng)中的流體運動現(xiàn)象(圖3(b),3(c))[50-51],測量多孔介質(zhì)壁面與液面之間的接觸角[52-53],也可以獲得流體運動過程中的動態(tài)接觸角[54]、滲吸過程中的前進接觸角和排水過程中的后退接觸角,如圖3(d)所示[53]。除了常規(guī)的角度測量方法外,還可以用圖像擬合流體界面來測量微模型的接觸角[55]。在微模型中,可以直接測量靜態(tài)、動態(tài)和平衡接觸角,方法簡單,易于操作。但潤濕性主要通過測量微模型上的局部接觸角獲得,即使在高度光滑和均勻的微模型中,不同的位置會有不同的接觸角分布,因此,該方法測得的結果并不能代表整體的潤濕性。

目前已有學者研究了不同潤濕性對微模型中流動、驅(qū)替的影響[54-55]。與親水狀態(tài)相比,中性潤濕的微模型降低了 CO2?鹽水驅(qū)替前緣速度,促進了非潤濕相的孔隙填充,提高了驅(qū)替效率[56]。 Avenda?o 等[57]發(fā)現(xiàn)親水多孔介質(zhì)中的驅(qū)替前緣不均勻,殘余油飽和度較大。與通過控制幾何形狀來改變微模型的方法相比, Lee 等[58]通過改變親水性和親油性組分的比例來定量控制微模型的混合潤濕特性,減少了制造不同微模型的時間,實現(xiàn)了潤濕性的合理調(diào)控。然而,運用潤濕性量化流體驅(qū)替過程中滲流參數(shù)的研究仍不全面,未來還需研究微模型中不同潤濕性的內(nèi)部機理。

微模型的一個獨特優(yōu)勢是多孔介質(zhì)之間沒有接觸[59],研究者可以清楚地觀察潤濕性變化并描述其動態(tài)特性。然而,大多數(shù)微模型的改性是通過改變原油組分來模擬親油狀態(tài)[52, 60],親 CO2的 微模型研究較少。同時,均勻蝕刻的二維孔隙網(wǎng)絡不能代表真實的多孔介質(zhì)特性,制備具有真實三維多孔結構的微模型仍然是現(xiàn)有技術的難點。最近有研究提出采用不同刻蝕深度的2.5-D 微模型來模擬真實多孔介質(zhì)[61],如 Xu 等[62]利用2.5-D 微模型觀察到夾斷現(xiàn)象, Peng 等[63]發(fā)現(xiàn)了能表征多孔介質(zhì)三維特征的臨界刻蝕深度標準,從而有助于從二維尺度研究真實多孔介質(zhì)的滲吸動力學行為。2.5-D 微模型作為新發(fā)展的微流控技術,比2- D 微模型更容易觀察到復雜的孔隙動力學行為,但是,這種刻蝕技術目前在國內(nèi)應用不多,是未來微模型研究的難點和焦點。雖然3D 打印技術已經(jīng)出現(xiàn)[64],但高分辨率的打印技術還未完全成 熟,基于3D 打印的刻蝕技術還有待研究??紫冻叨认挛⒛P椭械亩嘞嗔鲃訖C制仍不明晰,因此,還需要大量的微模型實驗來驗證微模型技術在 CO2封存中的實際應用能力。

2.2 X 射線計算機斷層掃描

X射線計算機斷層掃描是一種無損成像技術,可以表征巖石樣品的三維孔隙結構,重建樣品的三維幾何形狀,獲得孔隙尺度下的樣品成像[65]。X 射線成像系統(tǒng)主要由 X 射線源、樣品及旋轉(zhuǎn)系統(tǒng)、X 射線檢測系統(tǒng)、計算機系統(tǒng)(硬件和軟件)組成。由射線源產(chǎn)生的 X 射線照射在被掃描的樣品上得到圖像信號,并利用圖像重建算法和三維圖像處理軟件進行儲層巖石樣品的內(nèi)部可視化分析[66]。

Andrew 等[67]首次提出孔隙尺度的局部接觸角的測量方法(圖4),將獲得的 CT 圖像進行圖像預處理和相位分割以測量局部接觸角,近年來該方法已大量應用于原位潤濕性的研究。在孔隙尺度研究中,二維接觸角定義為流體?流體和流體?固體界面之間的角度,而三維接觸角由平面向量的點積計算。準確確定平面是計算局部接觸角的關鍵,表1是孔隙尺度下平面的確定方法。

手動測量方法一般是隨機選取接觸線上的300個點進行接觸角測量,無法獲得足夠多的接觸角值,計算較慢,且主觀性較大。因此,AlRatrout 等[69]提出了自動測量方法描述局部接觸角,該方法與手動方法相比,在成像不良處的測量準確度更高,得到的接觸角分布范圍更大[74]。這種孔隙尺度的研究相比于多孔介質(zhì)表面潤濕性的測量更準確,也有助于進一步研究潤濕性的影響因素。 Xie 等[75]發(fā)現(xiàn),隨著鹽度增加,潤濕性向水濕性降低的方向轉(zhuǎn)變。對比低鹽度注水和高鹽度注水實驗,低鹽度注水期間潤濕性從弱親油向弱親水轉(zhuǎn)變,而高鹽度注水的潤濕性幾乎恒定[76]。在 CO2?鹽水?玻璃珠/石英砂系統(tǒng)中,潤濕性隨著離子強度的增加和 CO2從氣態(tài)向超臨界態(tài)的轉(zhuǎn)變而緩慢減弱[77]。Alhammadi等[70]認為與原油接觸的有機層會改變方解石的潤濕性。 Qin 等[78]發(fā)現(xiàn)超臨界 CO2注入會引起親油碳酸鹽的潤濕性反轉(zhuǎn)。大部分孔隙尺度局部接觸角是靜態(tài)接觸角,為了衡量動態(tài)潤濕性, Mascini 等[79]基于 Young-Laplace 方程提出了一種與驅(qū)替事件有關的后退接觸角的概念(圖5),發(fā)現(xiàn)動態(tài)接觸角的分布范圍比靜態(tài)接觸角小,這主要是由于靜態(tài)接觸角未考慮孔隙內(nèi)流體界面行為。因此,動態(tài)接觸角在驅(qū)替過程中更有助于描述實際動態(tài)過程,并可應用于孔隙尺度建模研究。 R*為某一時刻的曲率半徑, Rht 為發(fā)生驅(qū)替事件的曲率半徑,θ*為對應 R*的接觸角,θht 為對應于 Rht 的接觸角。

X 射線計算機斷層掃描可以表示儲層的真實特征,該技術提供了數(shù)十萬次測量,可以有效地減少測量誤差,已被用于識別地質(zhì)封存中流體的分布特性。這種三維成像技術不僅可以觀察孔隙的幾何特征,也可以觀察一些復雜的微觀現(xiàn)象,如驅(qū)替前緣的演化[80]、海恩斯跳躍[81]、毛細流動中的活塞式驅(qū)替和夾斷[82-83]及旁路流動等[64, 84]。然而,潤濕性引起的微觀現(xiàn)象的機理仍不清楚,有關孔隙尺度觀測和孔隙事件的分析較少,仍然需要開發(fā)一些更先進的方法來研究多孔介質(zhì)內(nèi)部的復雜特性,如使用同步加速器 X 射線斷層掃描提高實時成像能力[65]、運用環(huán)境掃描顯微鏡研究孔隙微觀特性等[85]。隨著各種成像技術的發(fā)展,未來應考慮綜合多種技術來獲得流動過程中更準確的原位表征,進而分析動態(tài)潤濕特性。孔隙尺度下的原位接觸角大多在油?鹽水?巖石系統(tǒng)下進行測量,含 CO2的多相體系的原位潤濕分析是未來的一大研究熱點。

2.3 孔隙尺度潤濕滯后現(xiàn)象

多孔介質(zhì)的表面雜質(zhì)、吸附作用和表面粗糙度會引起潤濕滯后現(xiàn)象的出現(xiàn)[67]。Jafari 等[53]證明了 RCA 比 ACA更有可重復性,發(fā)現(xiàn)在較低的壓力下動態(tài)滯后更明顯。然而, Lv 等[86]在中性潤濕的玻璃珠實驗中沒有發(fā)現(xiàn)明顯的潤濕滯后現(xiàn)象。 Khishvand 等[87]發(fā)現(xiàn)油?鹽水、氣?油和氣?鹽水的接觸角滯后幾乎相同(約10°)??紫冻叨认虏煌w系的潤濕滯后結果仍需更多的研究來證明。

表面粗糙度對潤濕性的研究至關重要,會導致儲層條件下排水和滲吸的接觸角分布存在較大偏差[86]。表面粗糙度的作用如圖6(a)所示,粗糙度會降低親水表面的接觸角,增加疏水表面的接觸角[22, 88]。Sari 等[89]發(fā)現(xiàn):接觸角隨著表面粗糙度的增加而減小,在低鹽度情況下接觸角減小得更少,表面粗糙度的作用較低。 AlRatrout 等[90]發(fā)現(xiàn):在潤濕性變化不大的親水條件下,界面曲率與粗糙度無關,非潤濕相被很好地捕獲,以阻止氣體運移,有利于 CO2地質(zhì)封存;而當體系中的潤濕性發(fā)生改變,接觸角和界面曲率會隨著粗糙度的增加而增加(圖6(b))。nz2為油?鹽水界面的法向向量, nz3為鹽水?巖石界面的法向向量,θi為該點的接觸角, i 為三相接觸線 M 上的某一點,κ為曲率。在儲層條件下, CO2與地層鹽水相互作用, CO2會發(fā)生溶解、沉淀和地質(zhì)特性轉(zhuǎn)變等復合作用。由于礦物溶解和表面粗糙度作用[13],礦物表面變得更親水,這會影響實驗測量和現(xiàn)場測試結果,因此,孔隙尺度潤濕滯后的分析結果對封存機制的確立至關重要。

2.4 混合潤濕性

混合潤濕性是指不同大小的孔隙其潤濕性不同,孔隙結構特性(如孔徑、形狀、體積和連通性)會使?jié)櫇裥愿訌碗s,孔隙中的親油和親水組分會對潤濕性造成不同影響[91]。在中性潤濕條件下,孔隙幾何形狀也會顯著影響潤濕性[92]。然而,也有相反的觀點認為孔隙結構對封存過程影響較小[14],孔隙結構和潤濕性機理還需進一步分析。 Chang 等[93]應用十八烷基三氯硅烷(OTS)制備混合潤濕體系,分析不穩(wěn)定驅(qū)替過程(圖7),獲得的微觀接觸角分布比其他文獻中的接觸角分布范圍大,這可能是由表面粗糙度和接觸線釘扎作用引起的。

為了分析孔隙尺度不同潤濕條件下的多相流動分布, Scanziani[94]比較了親水條件和混合潤濕條件下靜態(tài)和動態(tài)實驗的結果,發(fā)現(xiàn)相比于均質(zhì)潤濕體系,混合潤濕體系可以提高驅(qū)替效率[95]。與親水體系相比,混合潤濕的碳酸鹽有利于 CO2形成大且連通的神經(jīng)節(jié)(圖8(a))[96]。在混合潤濕的石灰?guī)r中,大孔隙中的鹽水驅(qū)油,油位于角落處;而在親水體系下,油存在于孔隙中心,鹽水則留在角落里(圖8(b))[97]。S 層為油層和鹽水層的夾層。 Gao 等[98]發(fā)現(xiàn)親水體系砂巖的平均接觸角小于混合潤濕體系,混合潤濕體系的相對滲透率低于親水體系(圖8(c))。Lin 等[99]發(fā)現(xiàn)混合潤濕砂巖具有較低的毛細管壓力,僅為親水系統(tǒng)的十分之一。相比于親水體系,孔隙填充事件更傾向于發(fā)生在混合潤濕體系中[100]。界面釘扎作用會導致接觸角滯后,進而抑制界面衰退,并阻止夾斷現(xiàn)象的出現(xiàn)[101]。在親水條件下,可以增強夾斷,提高非潤濕相的殘余飽和度,進而增強 CO2捕獲能力[102]。

潤濕性的空間分布會影響流體占有率和連通性, Armstrong 等[103]通過形態(tài)學方法構建混合潤濕體系,分析空間潤濕分布對相對滲透率的影響。隨著多孔介質(zhì)親水程度的增加,驅(qū)替過程的圖像變得更加緊湊[104]。然而,針對空間潤濕性分布的研究較少,多孔介質(zhì)表面實驗無法準確表征潤濕性的空間分布以及內(nèi)部孔隙空間復雜的相互作用。如何準確刻畫多孔介質(zhì)物理性質(zhì)并分析空間非均質(zhì)潤濕性的影響,也是未來研究中的一個重點方向。

3 巖心整體潤濕性

目前,已有研究將孔隙尺度潤濕性與巖心尺度特性聯(lián)系起來[18, 105]。Deglint 等[106]測得的微觀接觸角的分布范圍比宏觀接觸角大,微觀接觸角不能表征宏觀尺度的潤濕性。這種潤濕性在不同尺度上的不一致會導致流體驅(qū)替、流體飽和度、毛細管曲線等結果的誤差。 Rucker 等[107]也發(fā)現(xiàn)了孔隙尺度接觸角所測結果和巖心尺度實驗的結果有不同的潤濕性響應。巖心的整體潤濕性減少了因礦物成分變化產(chǎn)生的局部潤濕性不足,可以作為多孔介質(zhì)整體特性的評價指標。目前在石油工程中,可以通過毛細管壓力曲線間接推斷潤濕性,如排水和滲吸過程中的 Amott 指數(shù)[23]或 USBM 指數(shù)[108]均可以表征潤濕性。這兩種方法均可以測量巖心樣品的平均潤濕性[23],但它們不能解釋非均質(zhì)潤濕性,無法預測部分潤濕體系中的空間潤濕性分布。

3.1 核磁共振成像技術

核磁共振成像(NMR)是一種無損成像技術,可以提供孔隙結構和流體分布信息。多孔介質(zhì)表面可以顯著改變核磁共振弛豫時間,親水表面相對于親油表面會顯著降低弛豫時間[23],中性潤濕體系的弛豫時間取決于潤濕表面的數(shù)量和相互作用強度,因此,可根據(jù)弛豫時間測量多孔介質(zhì)的潤濕性。通常采用核磁共振的橫向弛豫時間 T2分布獲得潤濕性指標[109],主要的潤濕性描述如表2所示。表中: INMR為無量綱 NMR 潤濕指數(shù), S w為水飽和度, S o為油飽和度, Tw 為水主要弛豫時間, To 為油主要弛豫時間, C 為水?油表面弛豫比, Tbw為水體積弛豫時間, Tbo為油體積弛豫時間; T2m 為T2的平均值, Swi為不可還原水飽和度, S or 為殘余油飽和度; Iw 為水的潤濕性指數(shù), Io 為油的潤濕性指數(shù), V (r)dr 為半徑 r 和 r+dr 之間的孔隙體積分數(shù), W (r)dr 為半徑 r 和 r+dr 之間的孔隙表面積分數(shù);λIr為平均飽和度指數(shù)的比, nT2為 T2分布根據(jù) Ir-Sw 關系計算出的平均飽和指數(shù), nrPc 為 MICP(注汞毛細管壓力)曲線根據(jù) Ir-Sw 關系計算出的平均飽和指數(shù); Ir 為電阻率指數(shù); T2Bw, T2Bo , T2o;Swi , T2w;S or分別為散裝水、散裝油、不可還原水和剩余油的主導 T2峰的模態(tài)值。

Liang 等[114]采用擴散?橫向弛豫時間(D-T2)結合 Amott 實驗提供了更完整的致密砂巖潤濕性評估。用核磁共振可以研究非均質(zhì)潤濕性的3個主要形成機制:原始礦物組分的不同潤濕特性、極性化合物的吸附和有機物在原油中的沉積[115]。這些機制會導致多孔介質(zhì)的某些部分變成親油的,而另一些部分變成親水的。除了表面弛豫的作用,表面覆蓋率[116]、電阻率[112]都可以預測潤濕性。為了分析非均質(zhì)潤濕性, Wang 等[115]提出了由潤濕表面覆蓋率和局部潤濕性確定的表觀接觸角,還可以通過分析表面弛豫分布和孔徑分布(T2-α)來研究混合潤濕多孔介質(zhì)的潤濕性分布[117],老化前 T2-α分布呈線性分布,老化后表面弛豫率分布隨孔徑分布的變化而變化(圖9)。圖中,A 為孔隙長度。老化過程只改變了原油與孔表面接觸的大孔的潤濕性,小孔表面仍然是水濕的,因此,大孔中的表面弛豫率小于小孔中的表面弛豫率。

NMR 方法簡單、快速、成本低,可以在任何給定飽和度下測量潤濕性。因此,它可以監(jiān)測驅(qū)替過程的潤濕性變化,還可以應用于測井儀器中,有助于表征整個儲層的連續(xù)性潤濕狀況[118]。然而,NMR 技術通常在空間分辨率方面受到限制[64],圖像中流體分布會部分重疊,難以通過識別峰值來獲得準確的潤濕性。它也不像 X 射線計算機斷層掃描技術可以表征原位潤濕性,仍然需要技術迭代來提高其分辨率。

3.2 熱力學接觸角

幾何接觸角θg一般通過 X 射線計算機斷層掃描技術直接從孔隙空間中獲得[119],多用于孔隙尺度的原位接觸角表征,但也存在一些問題,如圖像分割、系統(tǒng)的接觸角滯后和界面釘扎都會影響孔隙尺度接觸角測量。為了解決這些問題, Blunt 等[120]基于驅(qū)替過程中的能量平衡,通過廣義 Young-Laplace 方程定義了熱力學接觸角,該方程計算了亥姆霍茲自由能的變化,考慮了不混溶流體驅(qū)替系統(tǒng)在固定體積和溫度下所做的功。

式中:θt 為熱力學接觸角;Δe為第一相驅(qū)替第二相時單位面積的表面自由能的變化;σ為兩相之間的界面張力;σ1s ,σ2s 分別為表面與第一相和第二相的界面張力。

文獻[120]對親水和混合潤濕砂巖開展水驅(qū)實驗,發(fā)現(xiàn)θt 在評估潤濕性時比θg更敏感。 Scanziani 等[101]發(fā)現(xiàn),隨著驅(qū)替過程的進行,熱力學接觸角逐漸增大,并高于注水結束后的平均幾何接觸角,會抑制孔隙填充現(xiàn)象。Foroughi 等[121]提出了一種基于表面能的接觸角算法,結合熱力學接觸角獲得了正確的孔隙填充順序,并模擬了流體分布。

雖然熱力學接觸角可以獲得與驅(qū)替有關的接觸角,但也存在局限性。首先,計算方法忽略黏性耗散,即假設所做的功都轉(zhuǎn)換為表面能,但這會影響排水過程的準確性。其次,該方法僅提供巖石樣品的單一角度,尚不清楚該方法能否給出潤濕性的空間分布以準確表征混合潤濕介質(zhì)的潤濕性[122]。為了解決上述問題, Akai 等[123]對復雜三維多孔介質(zhì)進行兩相直接數(shù)值模擬,發(fā)現(xiàn)熱力學方法能夠逐孔表征潤濕性的空間分布,描述巖心的整體潤濕性。然而,由于典型成像偽影和忽略耗散等問題[79],熱力學方法仍需要進一步通過實驗驗證。

3.3 拓撲分析

實際地質(zhì)封存中,大多數(shù)巖石特性在連續(xù)尺度下進行衡量。為了量化連續(xù)尺度的潤濕性, Sun 等[119]基于 Gauss-Bonnet 定理、流體形態(tài)分布和界面曲率等拓撲參數(shù)獲得了孔隙尺度平均接觸角為

式中:κab ,κas 分別為流體?流體和流體?固體界面的平均高斯曲率;θav為平均接觸角;Aab ,Aas 為對應的界面面積; L為接觸線的長度。

此時,通過拓撲參數(shù)可以獲得接觸角平均值,減少了粗糙表面由于圖像分辨率帶來的誤差。隨著積分幾何學的發(fā)展,根據(jù) Gauss-Bonnet 定理,假設流體?固體表面平均高斯曲率為0,從流體?流體界面的高斯曲率計算出平均接觸角的公式為[123]

式中: n為第1相和第2相接觸表面的三相接觸線的閉合回路數(shù);κG12為界面 S 12高斯曲率的積分值。

該方法提供了拓撲結構和潤濕性的簡單關系,適合評估孔隙空間的接觸角。 Sun 等[124]進一步提出了缺陷曲率,建立接觸角和流體拓撲結構的直接聯(lián)系(圖10(a),10(b)),定義宏觀接觸角為

式中:κd為缺陷曲率; Nc為固體表面上形成的閉合接觸線環(huán)的數(shù)量。

θm考慮了由于表面非均質(zhì)性和流體動力學引起的接觸角滯后的平均影響,同時,該方法不需要平衡條件。對于給定的流體團簇,較大的缺陷曲率決定了較大的接觸角。將拓撲性質(zhì)與熱力學接觸角相聯(lián)系,宏觀接觸角表征了多相系統(tǒng)的潤濕性[125]。另外,不需要三相接觸線就可以獲得空間分布的表觀接觸角θa ,減輕了接觸線的釘扎效應(圖10(c),10(d)),在低分辨率情況下可以得到更準確的結果,并可以獲得不同尺度潤濕性之間的相互關系。圖10中: Mce 為團簇和流體的表面; Mcs為團簇和固體的表面。

綜上,熱力學方法以及拓撲結構方法是表征整體潤濕性的2個關鍵方法,不僅可以描述幾何特征,還考慮了多孔介質(zhì)的空間分布。相比于孔隙局部接觸角,宏觀接觸角方法減小了由于圖像分辨率和成像不清產(chǎn)生的測量誤差,是目前新提出的有效的整體潤濕性評估方法。未來更應該關注熱力學方法和幾何方法的結合,包括耗散事件和拓撲變化,進一步優(yōu)化宏觀接觸角的計算過程。同時,可以結合不同尺度的潤濕性分析,如通過巖石表面潤濕性分析潤濕性影響因素和相關作用,以及運用孔隙尺度的成像技術來觀察局部潤濕現(xiàn)象,并采用整體潤濕性指標來評估巖石的非均質(zhì)特征和整體拓撲結構。

4 結 論

多孔介質(zhì)潤濕性對 CO2?流體?巖石體系滲流特性具有重要影響,本文綜述了目前 CO2地質(zhì)封存領域巖石潤濕性研究的最新進展,主要包括:實驗室尺度多孔介質(zhì)表面潤濕性測定、孔隙尺度多孔介質(zhì)局部壁面接觸角測定,以及宏觀尺度巖心樣品整體潤濕性評價。接觸角是多孔介質(zhì)表面潤濕性最常見的表征指標,但常規(guī)表面接觸角測量實驗忽略了巖石粗糙度和多孔介質(zhì)復雜的內(nèi)部結構,影響了潤濕性測量準確性。隨著光學成像技術的發(fā)展,微模型和 X 射線計算機斷層掃描可用于獲得孔隙尺度的巖石潤濕性。微模型制備簡單,可以獲得接觸角動態(tài)變化過程, X 射線計算機斷層掃描技術可以獲得三維真實巖心局部潤濕性及其遲滯特性。通過微觀接觸角測量技術分析了多孔介質(zhì)粗糙度和孔隙結構對孔隙尺度潤濕性的影響,尤其是一些重要的潤濕現(xiàn)象如接觸角滯后、混合潤濕。這種微觀現(xiàn)象對分析滲流特性和封存效率也極為重要。關于巖心整體潤濕性表征,基于 NMR 技術的潤濕指數(shù)可以評估巖心整體潤濕性,但容易受到內(nèi)部磁場的影響。熱力學接觸角可以表征與驅(qū)替過程相關的巖心整體潤濕性,拓撲學方法也可以有效地獲得連續(xù)尺度潤濕特性。巖心整體潤濕性表征方法極具新穎性,但還缺乏系統(tǒng)的研究。

目前,雖然已進行了大量的實驗室潤濕性測量,然而很少有將多種尺度聯(lián)系起來以分析內(nèi)部機理的實驗研究。巖心表面的潤濕性測量常用于定量表征并分析潤濕性的影響因素,孔隙壁面的局部接觸角測量可以有效地分析空間非均質(zhì)特征,宏觀尺度的整體潤濕性評估是衡量真實多孔介質(zhì)結構和物性的最新方法。未來需進一步研究不同尺度下巖石潤濕性的內(nèi)在聯(lián)系,如用孔隙尺度方法觀察孔隙空間的內(nèi)部現(xiàn)象,結合宏觀的整體評價,探明不同儲層條件下潤濕性的演變規(guī)律和轉(zhuǎn)變機理,進一步解析巖石潤濕性對封存儲量和效率的影響。

參考文獻:

[1]蔡博峰 , 李琦 , 張賢.中國二氧化碳捕集利用與封存(CCUS)年度報告(2021)——中國 CCUS 路徑研究[R].武漢:生態(tài)環(huán)境部環(huán)境規(guī)劃院, 中國科學院武漢巖土力學研究所, 2021.

[2] ALI M, SAHITO M F, JHA N K, et al. Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage[J]. Journal of Colloid and Interface Science, 2020, 559:304–312.

[3] BOBEK J E, MATTAX C C, DENEKAS M O. Reser- voir rock wettability —its significance and evaluation[J]. Transactions of the AIME, 1958, 213(1):155–160.

[4] TENG Y, JIANG L L, LIU Y, et al. MRI study on CO2 capillary trap and drainage behavior in sandstone cores under geological storage temperature and pressure[J]. International Journal of Heat and Mass Transfer, 2018, 119:678–687.

[5] TOKUNAGA T K, WAN J. Capillary pressure and mineral wettability influences on reservoir CO2 capacity[J]. Reviews in Mineralogy and Geochemistry, 2013, 77(1):481–503.

[6] GHARBI O, BLUNT M J. The impact of wettability and connectivity on relative permeability in carbonates: a pore network modeling analysis[J]. Water Resources Research, 2012, 48(12): W12513.

[7] TENG Y, WANG P F, JIANG L L, et al. An experimental study of density-driven convection of fluid pairs with viscosity contrast in porous media[J]. International Journal of Heat and Mass Transfer, 2020, 152:119514.

[8] TENG Y, WANG P F, XIE H P, et al. Capillary trapping characteristics of CO2 sequestration in fractured carbonate rock and sandstone using MRI[J]. Journal of Natural Gas Science and Engineering, 2022, 108:104809.

[9] IGLAUER S, PENTLAND C H, BUSCH A. CO2 wettability of sealand reservoir rocks and the implications for carbon geo-sequestration[J]. Water Resources Research, 2015, 51(1):729–774.

[10] ABBASZADEH M, SHARIATIPOUR S, IFELEBUEGU A. The influence of temperature on wettability alteration during CO2 storage in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2020, 99:103101.

[11] IGLAUER S, SALAMAH A, SARMADIVALEH M, et al. Contamination of silica surfaces: impact on water-CO2- quartz and? glass contact? angle measurements[J]. International Journal of Greenhouse Gas Control, 2014, 22:325–328.

[12] SARAJI S, GOUAL L, PIRI M, et al. Wettability of supercritical? carbon? dioxide/water/quartz? systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions[J]. Langmuir, 2013, 29(23):6856–6866.

[13] ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geosequestration[J]. Journal ofCO2 Utilization, 2018, 28:408–418.

[14] ZHAO X C, BLUNT M J, YAO J. Pore-scale modeling: effects of wettability on waterflood oil recovery[J]. Journal of Petroleum Science and Engineering, 2010, 71(3/4):169–178.

[15] KOVSCEK A R, WONG H, RADKE C J. A pore-level scenario for the development of mixed wettability in oil reservoirs[J]. AIChE Journal, 1993, 39(6):1072–1085.

[16] JAHANBAKHSH A, SHAHROKHI O, MAROTO- VALER M M. Understanding the role of wettability distribution on pore-filling and displacement patterns in a homogeneous structure via quasi 3D pore-scale modelling[J]. Scientific Reports, 2021, 11(1):17847.

[17] AKAI T, ALHAMMADI A M, BLUNT M J, et al. Modeling oil recovery in mixed-wet rocks: pore-scale comparison between experiment and simulation[J].Transport in Porous Media, 2019, 127(2):393–414.

[18] ZOU S M, ARMSTRONG R T, ARNS J Y, et al.Experimental and theoretical evidence for increased ganglion dynamics during fractional flow in mixed-wet porous media[J]. Water Resources Research, 2018, 54(5):3277–3289.

[19] DRELICH J W, BOINOVICH L, CHIBOWSKI E, et al. Contact angles: history of over 200 years of open questions[J]. Surface Innovations, 2020, 8(1/2):3–27.

[20] SHARIFIGALIUK H, MAHMOOD S M, REZAEE R, et al. Conventional methods for wettability determination of shales: a comprehensive review of challenges, lessons learned, and way forward[J]. Marine and Petroleum Geology, 2021, 133:105288.

[21] YEKEEN N, PADMANABHAN E, ABDULELAH H, et al. CO2/brine interfacial tension and rock wettability at reservoir conditions: a critical review of previous studies and case study of black shale from Malaysian formation[J]. Journal of Petroleum? Science? and Engineering, 2021, 196:107673.

[22] STEVAR M S P, B?HM C, NOTARKI K T, et al. Wettability of calcite under carbon storage conditions[J]. International Journal of Greenhouse Gas Control, 2019, 84:180–189.

[23] ANDERSON W. Wettability literature survey-part 2: wettability measurement[J]. Journal of Petroleum Technology, 1986, 38(11):1246–1262.

[24] KWOK D Y, NEUMANN A W. Contact angle measurement? and? contact? angle? interpretation[J]. Advances in Colloid and Interface Science, 1999, 81(3):167–249.

[25] HUHTAM?KI T, TIAN X L, KORHONEN J T, et al. Surface-wetting characterization using? contact-angle measurements[J]. Nature? Protocols, 2018, 13(7):1521–1538.

[26] XUE J, SHI P, ZHU L, et al. A modified captive bubble method for determining advancing and receding contact angles[J]. Applied Surface Science, 2014, 296:133–139.

[27] HUBBE M A, GARDNER D J, SHEN W. Contact angles and wettability of cellulosic surfaces: a review of pro- posed mechanisms and test strategies[J]. BioResources , 2015, 10(4):8657–8749.

[28] AL-ANSSARI S, ARIF M, WANG S B, et al. Wettabilityof nano-treated calcite/CO2/brine systems: implication for enhanced CO2 storage potential[J]. International Journal of Greenhouse Gas Control, 2017, 66:97–105.

[29] HEBBAR R S, ISLOOR A M, ISMAIL A F. Contact angle measurements[M]//HILAL N, ISMAIL A F, MATSUURA T, et al. Membrane Characterization. Amsterdam: Elsevier, 2017:219–255.

[30] HASHEMI L, GLERUM W, FARAJZADEH R, et al. Contact angle measurement for hydrogen/brine/sandstone system using captive-bubble method relevant for underground hydrogen storage[J]. Advances in Water Resources, 2021, 154:103964.

[31] RAM? E. The interpretation of dynamic contact angles measured by the Wilhelmy plate method[J]. Journal of Colloid and Interface Science, 1997, 185(1):245–251.

[32] PARK J,? PASAOGULLARI? U, BONVILLE? L. Wettability measurements of irregular shapes with Wilhelmy plate method[J]. Applied Surface Science, 2018, 427:273–280.

[33] ERAL H B, T MANNETJE D J C M, OH J M. Contact angle hysteresis: a review of fundamentals and applications[J]. Colloid and Polymer Science, 2013, 291(2):247–260.

[34] SHANG J Y, FLURY M, HARSH J B, et al. Comparison of different methods to measure contact angles of soil colloids[J]. Journal of Colloid and Interface Science, 2008, 328(2):299–307.

[35] DICKSON J L, GUPTA G, HOROZOV T S, et al. Wetting phenomena at the CO2/water/glass interface[J]. Langmuir, 2006, 22(5):2161–2170.

[36] MENNELLA A, MORROW N R. Point-by-point method of determining contact angles from dynamic Wilhelmy plate data for oil/brine/solid systems[J]. Journal of Colloid and Interface Science, 1995, 172(1):48–55.

[37] RUIZ-CABELLO F J M, RODR?GUEZ-VALVERDE M A, CABRERIZO-V?LCHEZ M. A new method for evaluating the most stable contact angle using tilting plate experiments[J]. Soft Matter, 2011, 7(21):10457–10461.

[38] LANDER L M, SIEWIERSKI L M, BRITTAIN W J, etal. A systematic comparison of contact angle methods[J]. Langmuir, 1993, 9(8):2237–2239.

[39] ZHANG L J, KIM Y, JUNG H, et al. Effects of salinity- induced chemical reactions on biotite wettability changes under? geologic? CO2? sequestration? conditions[J]. Environmental Science & Technology Letters, 2016, 3(3):92–97.

[40] WANG S B, TOKUNAGA T K. Capillary pressure- saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon? sequestration? in? carbonate? reservoirs[J]. Environmental Science & Technology, 2015, 49(12):7208–7217.

[41] ABD A S, ELHAFYAN E, SIDDIQUI A R, et al. A review of the phenomenon of counter-current spontaneous imbibition: analysis and data interpretation[J]. Journal of Petroleum Science and Engineering, 2019, 180:456–470.

[42] LI C X, SINGH H, CAI J C. Spontaneous imbibition in shale: a review of recent advances[J]. Capillarity, 2019, 2(2):17–32.

[43] DONALDSON E C, ALAM? W. Wettability[M].Amsterdam: Elsevier, 2013.

[44] ALHAMMADI A M, ALRATROUT A, BIJELJIC B, et al. Pore-scale? imaging? and? characterization? of hydrocarbon reservoir rock wettability at subsurface conditions using X-ray microtomography[J]. Journal of Visualized Experiments, 2018(140):57915.

[45] COLE D R, CHIALVO A A, ROTHER G, et al. Supercritical fluid behavior at nanoscale interfaces: implications? for? CO2? sequestration? in? geologic formations[J]. Philosophical Magazine, 2010, 90(17/18):2339–2363.

[46] LI X X, FAN X F, BRANDANI S. Difference in pore contact angle and the contact angle measured on a flat surface and in an open space[J]. Chemical Engineering Science, 2014, 117:137–145.

[47] SHE Y, AOKI H, WANG W C, et al. Spontaneous deformation of oil clusters induced by dual surfactants for oil recovery: dynamic study from Hele-Shaw cell to wettability-altered micromodel[J]. Energy & Fuels, 2022, 36(11):5762–5774.

[48] LU H W, HUANG F, JIANG P X, et al. Exsolution effects in CO2 huff-n-puff enhanced oil recovery: water- oil-CO2 three phase flow visualization and measurements by micro-PIV in micromodel[J]. International Journal of Greenhouse Gas Control, 2021, 111:103445.

[49] SONG W, DE HAAS T W, FADAEI H, et al. Chip-off- the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels[J]. Lab on A Chip, 2014, 14(22):4382–4390.

[50] CHEN Y, LI Y F, VALOCCHI A J, et al. Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions[J]. Journal of Contaminant Hydrology, 2018, 212:14–27.

[51] CAO S C, DAI S, JUNG J. Supercritical CO2 and brine displacement? in? geological? carbon? sequestration: micromodel and pore network simulation studies[J]. International Journal of Greenhouse Gas Control, 2016, 44:104–114.

[52] SAADAT M, YANG J Y, DUDEK M, et al. Microfluidic investigation of enhanced oil recovery: the effect of aqueous floods and network wettability[J]. Journal ofPetroleum Science and Engineering, 2021, 203:108647.

[53] JAFARI M, JUNG J. Direct measurement of static anddynamic contact angles using a random micromodel considering geological CO2 sequestration[J]. Sustainability, 2017, 9(12):2352.

[54] CASTRO E R, TARN M D, GINTEROV? P, et al. Determination of dynamic? contact angles? within microfluidic devices[J]. Microfluidics and Nanofluidics, 2018, 22:1–11.

[55] VAN ROOIJEN W, HASHEMI L, BOON M, et al. Microfluidics-based analysis of dynamic contact angles relevant for underground hydrogen storage[J]. Advances in Water Resources, 2022, 164:104221.

[56] HU R, WAN J M, KIM Y, et al. Wettability effects on supercritical CO2–brine immiscible displacement during drainage: pore-scale observation and 3D simulation[J]. International Journal of Greenhouse Gas Control, 2017, 60:129–139.

[57] AVENDA?O J, LIMA N, QUEVEDO A, et al. Effect of surface wettability on immiscible displacement in a microfluidic porous media[J]. Energies, 2019, 12(4):664.

[58] LEE H, LEE S G, DOYLE P S. Photopatterned oil- reservoir micromodels with tailored wetting properties[J]. Lab on A Chip, 2015, 15(14):3047–3055.

[59] KIM Y, WAN J M, KNEAFSEY T J, et al. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale? studies in? micromodels[J]. Environmental Science & Technology, 2012, 46(7):4228–4235.

[60] SAADAT M, TSAI P A, HO T H, et al. Development of a microfluidic method to study enhanced oil recovery by low salinity water flooding[J]. ACS Omega, 2020, 5(28):17521–17530.

[61] YANG W P, BROWNLOW J W, WALKER D L, et al. Effect of surfactant - assisted wettability alteration on immiscible displacement: a microfluidic study[J]. Water Resources Research, 2021, 57(8): e2020WR029522.

[62] XU K, LIANG T B, ZHU P, et al. A 2.5-D glass micromodel for investigation of multi-phase flow in porous media[J]. Lab on A Chip, 2017, 17(4):640–646.

[63] PENG X L, WANG X Z, ZHANG Y Z, et al. Experimental? study? of? strong? imbibition? in microcapillaries representing pore/throat characteristics of tight rocks[J]. Fuel, 2023, 342:127775.

[64] ANBARI A, CHIEN H T, DATTA S S, et al. Microfluidic model porous media: fabrication and applications[J]. Small, 2018, 14(18):1703575.

[65] GAN M G, ZHANG L W, MIAO X X, et al. Application of computed tomography (CT) in geologic CO2 utilization and storage research: a critical review[J]. Journal of Natural Gas Science and Engineering, 2020, 83:103591.

[66] SHEPPARD A, LATHAM S, MIDDLETON J, et al. Techniques in helical scanning, dynamic imaging and image segmentation for improved quantitative analysis with X-ray micro-CT[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2014, 324:49–56.

[67] ANDREW M, BIJELJIC B, BLUNT M J. Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography[J]. Advances in Water Resources, 2014, 68:24–31.

[68] KLISE K A, MORIARTY D, YOON H, et al. Automated contact angle estimation for three-dimensional X-ray microtomography data[J]. Advances in Water Resources, 2016, 95:152–160.

[69] ALRATROUT A, RAEINI A Q, BIJELJIC B, et al. Automatic measurement of contact angle in pore-space images[J]. Advances in Water Resources, 2017, 109:158–169.

[70] ALHAMMADI A M, ALRATROUT A, SINGH K, et al. In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions[J]. Scientific Reports, 2017, 7(1):10753.

[71] SCANZIANI A, SINGH K, BLUNT M J, et al. Automatic method for estimation of in situ effective contact angle from X-ray microtomography images of two-phase flow in porous media[J]. Journal of Colloid and Interface Science, 2017, 496:51–59.

[72] IBEKWE A, POKRAJAC D, TANINO Y. Automated extraction of in situ contact angles from micro-computed tomography images of porous media[J]. Computers & Geosciences, 2020, 137:104425.

[73] YANG J H, ZHOU Y F. An automatic in situ contact angle determination based on level set method[J]. Water Resources Research, 2020, 56(7): e2020WR027107.

[74] ZANKOOR A, KHISHVAND M, MOHAMED A, et al. In-situ capillary pressure and wettability in natural porous media: multi-scale experimentation? and automated characterization using X-ray images[J]. Journal of Colloid and Interface Science, 2021, 603:356–369.

[75] XIE Y, KHISHVAND M, PIRI M. Impact of connate brine chemistry on in situ wettability and oil recovery: pore-scale experimental investigation[J]. Energy & Fuels, 2020, 34(4):4031–4045.

[76] KHISHVAND? M,? ALIZADEH? A? H,? ORAKI KOHSHOUR I, et al. In situ characterization of wettability alteration and displacement mechanisms governing recovery enhancement due to low-salinity waterflooding[J]. Water Resources Research, 2017, 53(5):4427–4443.

[77] LV P F, LIU Y, WANG Z, et al. In situ local contact angle measurement in a CO2-brine-sand system usingmicrofocused X-ray CT[J]. Langmuir, 2017, 33(14):3358–3366.

[78] QIN Z Q, ARSHADI M, PIRI M. Near-miscible supercritical CO2 injection in oil-wet carbonate: a pore- scale experimental investigation of wettability state and three-phase flow behavior[J]. Advances in Water Resources, 2021, 158:104057.

[79] MASCINI A, CNUDDE V, BULTREYS T. Event-based contact angle measurements inside porous media using time-resolved micro-computed tomography[J]. Journal of Colloid and Interface Science, 2020, 572:354–363.

[80] CIEPLAK M, ROBBINS M O. Dynamical transition in quasistatic fluid invasion in porous media[J]. Physical Review Letters, 1988, 60(20):2042–2045.

[81] BERG S, OTT H, KLAPP S A, et al. Real-time 3D imaging of Haines jumps in porous media flow[J].Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(10):3755–3759.

[82] VALVATNE P H, BLUNT M J. Predictive pore-scale modeling of two-phase flow in mixed wet media[J]. Water Resources Research, 2004, 40(7): W07406.

[83] BLUNT M J. Multiphase flow in permeable media: a pore-scale? perspective[M]. Cambridge: Cambridge University Press, 2017.

[84] CHATZIS I, MORROW N R, LIM H T. Magnitude and detailed structure of residual oil saturation[J]. Society of Petroleum Engineers Journal, 1983, 23(2):311–326.

[85] IVANOVA A, MITIUREV N, CHEREMISIN A, et al. Characterization of organic layer in oil carbonate reservoir rocks and its effect on microscale wetting properties[J]. Scientific Reports, 2019, 9(1):10667.

[86] LV P F, LIU Y, JIANG L L, et al. Pore -scale contact angle measurements of CO2-brine-glass beads system using micro-focused X-ray computed tomography[J]. Micro & Nano Letters, 2016, 11(9):524–527.

[87] KHISHVAND M, ALIZADEH A H, PIRI M. In-situ characterization? of? wettability? and? pore-scale displacements during two- and three-phase flow in natural porous media[J]. Advances in Water Resources, 2016, 97:279–298.

[88] DE GENNES P G, BROCHARD-WYART F, QU?R? D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves[M]. New York: Springer, 2004.

[89] SARI A, AL MASKARI N S, SAEEDI A, et al. Impact of surface roughness on wettability of oil-brine-calcite system at sub-pore scale[J]. Journal of Molecular Liquids, 2020, 299:112107.

[90] ALRATROUT A, BLUNT M J, BIJELJIC B. Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2018, 115(36):8901–8906.

[91] GAO Z Y, FAN Y P, HU Q H, et al. A review of shale wettability characterization using spontaneous imbibition experiments[J]. Marine and Petroleum Geology, 2019, 109:330–338.

[92] RABBANI H S, ZHAO B Z, JUANES R, et al. Pore geometry control of apparent wetting in porous media[J]. Scientific Reports, 2018, 8(1):15729.

[93] CHANG C, KNEAFSEY T J, WAN J M, et al. Impacts of mixed-wettability on brine drainage and supercritical CO2 storage efficiency in a 2.5-D heterogeneous micromodel[J]. Water Resources Research, 2020, 56(7): e2019WR026789.

[94] SCANZIANI A. Immiscible three-phase flow in porous media: dynamics and wettability effects at the pore scale[D]. London: Imperial College London, 2020.

[95] CHANG C, KNEAFSEY T J, TOKUNAGA T K, et al. Impacts of pore network-scale wettability heterogeneity on immiscible fluid displacement: a micromodel study[J]. Water Resources Research, 2021, 57(9): e2021WR030302.

[96] AL-MENHALI A S, MENKE H P, BLUNT M J, et al. Pore scale observations of trapped CO2 in mixed-wet carbonate rock: applications to storage in oil fields[J]. Environmental Science & Technology, 2016, 50(18):10282–10290.

[97] SINGH K, BIJELJIC B, BLUNT M J. Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock[J]. Water Resources Research, 2016, 52(3):1716–1728.

[98] GAO Y, RAEINI A Q, SELEM A M, et al. Pore-scale imaging with measurement of relative permeability and capillary pressure on the same reservoir sandstone sample under water-wet and mixed-wet conditions[J]. Advances in Water Resources, 2020, 146:103786.

[99] LIN Q Y, BIJELJIC B, BERG S, et al. Minimal surfaces in porous media: pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone[J]. Physical Review E, 2019, 99(6):063105.

[100] MASCINI A, BOONE M, VAN OFFENWERT S, et al. Fluid invasion dynamics in porous media with complex wettability and connectivity[J]. Geophysical Research Letters, 2021, 48(22): e2021GL095185.

[101] SCANZIANI A, LIN Q Y, ALHOSANI A, et al. Dynamics of fluid displacement in mixed-wet porous media[J]. Proceedings of the Royal? Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2240):20200040.

[102] KREVOR S, BLUNT M J, BENSON S M, et al. Capillary trapping for geologic carbon dioxide storage – from pore scale physics to field scale implications[J]. InternationalJournal of Greenhouse Gas Control, 2015, 40:221–237.

[103] ARMSTRONG R T, SUN C H, MOSTAGHIMI P, et al.Multiscale characterization of wettability in porous media[J]. Transport in Porous Media, 2021, 140(1):215–240.

[104] ZHAO B, MACMINN C W, JUANES R. Wettability control on multiphase flow in patterned microfluidics[J].Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(37):10251–10256.

[105] LIN Q Y, BIJELJIC B, PINI R, et al. Imaging and measurement of pore-scale interfacial curvature to determine capillary pressure simultaneously with relative permeability[J]. Water Resources Research, 2018, 54(9):7046–7060.

[106] DEGLINT H J, CLARKSON C R, GHANIZADEH A, et al. Comparison of micro- and macro-wettability measurements and evaluation of micro-scale imbibition rates for unconventional reservoirs: Implications for modeling multi-phase flow at the micro-scale[J]. Journal of Natural Gas Science and Engineering, 2019, 62:38–67.

[107] RUCKER M, BARTELS W B, BULTREYS T, et al. Workflow for upscaling wettability from the nanoscale to core scale[J]. Petrophysics, 2020, 61(2):189–205.

[108] DONALDSON E C, THOMAS R D, LORENZ P B. Wettability determination and its effect on recovery efficiency[J]. Society of Petroleum Engineers Journal, 1969, 9(1):13–20.

[109] FLEURY M, DEFLANDRE F. Quantitative evaluation of porous media wettability using NMR relaxometry[J]. Magnetic Resonance Imaging, 2003, 21(3/4):385–387.

[110] AL-MAHROOQI SH, GRATTONI C A, MUGGERIDGE A H, et al. Pore-scale modelling of NMR relaxation for the characterization of wettability[J]. Journal of Petroleum Science and Engineering, 2006, 52(1-4):172–186.

[111] LOOYESTIJN W. Wettability index determination from NMR logs[J]. Petrophysics, 2008, 49(2):130–145.

[112] FENG C, FENG J G, FENG Z Y, et al. Determination of reservoir wettability based on resistivity index prediction from core and log data[J]. Journal of Petroleum Science and Engineering, 2021, 205:108842.

[113] AL-GARADI K, EL-HUSSEINY A, ELSAYED M, et al. A rock core wettability? index using NMR? T2 measurements[J]. Journal of Petroleum Science and Engineering, 2022, 208:109386.

[114] LIANG C, XIAO L Z, ZHOU C C, et al. Two- dimensional nuclear magnetic resonance method for wettability determination of tight sand[J]. Magnetic Resonance Imaging, 2019, 56:144–150.

[115]?WANG J, XIAO L Z, LIAO G Z, et al. Theoretical investigation of heterogeneous wettability in porous media using NMR[J]. Scientific Reports, 2018, 8(1): 13450.

[116]?CHEN J, HIRASAKI G J, FLAUM M. NMR wettability indices: effect of OBM on wettability and NMR responses[J]. Journal of Petroleum Science and Engineering, 2006, 52(1/4): 161–171.

[117]?WANG J, XIAO L Z, LIAO G Z, et al. NMR characterizing mixed wettability under intermediate-wet condition[J]. Magnetic Resonance Imaging, 2019, 56:156–160.

[118]?LOOYESTIJN W, HOFMAN J. Wettability-index determination by nuclear magnetic resonance[J]. SPE Reservoir Evaluation & Engineering, 2006, 9(2):146–153.

[119]?SUN C H, MCCLURE J E, MOSTAGHIMI P, et al.Linking continuum-scale state of wetting to pore-scale contact angles in porous media[J]. Journal of Colloid and Interface Science, 2020, 561: 173–180.

[120]BLUNT M J, LIN Q Y, AKAI T, et al. A thermodynamically consistent characterization of wettability in porous media using high-resolution imaging[J]. Journal of Colloid and Interface Science,2019, 552: 59–65.

[121]FOROUGHI S, BIJELJIC B, LIN Q Y, et al. Pore-by-poremodeling, analysis, and prediction of two-phase flow inmixed-wet rocks[J]. Physical Review E, 2020, 102(2):023302.

[122]BLUNT M J, AKAI T, BIJELJIC B. Evaluation of methods using topology and integral geometry to assess wettability[J]. Journal of Colloid and Interface Science,2020, 576: 99–108.

[124]SUN C H, MCCLURE J E, MOSTAGHIMI P, et al. Probing effective wetting in subsurface systems[J].Geophysical Research Letters, 2020, 47(5):e2019GL086151.

[125]SUN C H, MCCLURE J E, MOSTAGHIMI P, et al.Characterization of wetting using topological principles[J]. Journal of Colloid and Interface Science,2020, 578: 106–115.

猜你喜歡
潤濕潤濕性親水
分子動力學模擬研究方解石表面潤濕性反轉(zhuǎn)機理
基于低場核磁共振表征的礦物孔隙潤濕規(guī)律
親水作用色譜法測定食品中5種糖
等離子體對老化義齒基托樹脂表面潤濕性和粘接性的影響
乙醇潤濕對2種全酸蝕粘接劑粘接性能的影響
預潤濕對管道潤濕性的影響
利用表面電勢表征砂巖儲層巖石表面潤濕性
銀川親水體育中心場館開發(fā)與利用研究
親水改性高嶺土/聚氨酯乳液的制備及性能表征
潤濕反轉(zhuǎn)劑的優(yōu)選及在氣體鉆井中的應用