国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于函數(shù)型主成分分析的過程批次響應序貫建模

2023-08-06 07:08:08劉洋洋劉飛
化工自動化及儀表 2023年4期

劉洋洋 劉飛

摘 要 針對間歇生化過程操作條件的批次響應建模問題,結(jié)合試驗設計方法,提出一種基于函數(shù)型主成分分析的序貫建模策略。首先,使用B樣條基函數(shù)平滑法將離散的批次響應序列轉(zhuǎn)化為連續(xù)的響應函數(shù)曲線;然后,運用函數(shù)型主成分分析得到響應函數(shù)的均值曲線、主成分函數(shù)和主成分得分;最后,構(gòu)建主成分得分與操作條件之間的Kriging模型,用于預測試驗區(qū)域內(nèi)任意操作條件所對應的主成分得分,從而建立批次響應關(guān)于操作條件的模型。為了提高模型預測精度,依據(jù)改進的收斂條件,采用序貫設計迭代更新模型。通過生化反應網(wǎng)絡試驗仿真,驗證了該建模策略的有效性,且仿真結(jié)果表明該建模策略具有較好的數(shù)據(jù)可視化和模型解釋能力。

關(guān)鍵詞 函數(shù)型主成分分析 序貫設計 批次響應 試驗設計 Kriging模型 生化類間歇過程

中圖分類號 TP274.2? ?文獻標識碼 A? ?文章編號 1000-3932(2023)04-0439-08

實際工業(yè)生產(chǎn)中,大量生化類間歇過程的機理不清楚或工藝過于復雜,使得機理建模難度大且優(yōu)化求解困難,因而開發(fā)數(shù)據(jù)驅(qū)動模型成為可行的替代方案[1]。結(jié)合試驗設計(Design of Experiments,DoE)的響應曲面法(Response Surface Methodology,RSM)是一種兼具建模與優(yōu)化的數(shù)據(jù)驅(qū)動方法[2],其在生化分析和藥物研究方面被廣泛應用[3]。RSM只能夠建立生產(chǎn)中某一時刻響應與操作條件之間的數(shù)據(jù)驅(qū)動模型,通常是終端時刻。但構(gòu)建整個批次響應關(guān)于操作條件的模型則更為重要,并且隨著自動化實驗平臺的普及,短期內(nèi)并行試驗能夠快速獲取批次數(shù)據(jù),這進一步促進了學者們對批次響應建模的研究。

文獻[4]對RSM進行推廣,提出了動態(tài)響應曲面法(Dynamic Response Surface Methodology,DRSM),通過在響應面模型的系數(shù)中引入與時間相關(guān)的移位勒讓德多項式(Shifted Legendre Polynomials,SLP),將RSM中僅描述某一時刻的模型系數(shù)轉(zhuǎn)化為可以表示整個批次的時變系數(shù);WANG Z和DONG Y等針對估計高階SLP微小偏差造成的模型局部振蕩問題分別提出相應的改進策略[5,6],并拓展了DRSM的應用范圍[7]。文獻[8]使用改進DRSM建立吡啶酮環(huán)化反應模型;文獻[9]提出基于半?yún)?shù)模型的批次響應建模流程,應用于甲酯化學選擇性水解反應分析。此外,還可以考慮高斯過程[10]、機器學習[11,12]等方法來分析批次響應建模問題。

以上方法把批次響應看作生產(chǎn)過程的離散數(shù)據(jù)序列。筆者將把批次響應視作一個整體,表示為連續(xù)的響應函數(shù)曲線,即函數(shù)型數(shù)據(jù)[13]。函數(shù)型主成分分析(Functional Principal Component Analysis,F(xiàn)PCA)是研究函數(shù)型數(shù)據(jù)的主要方法。FIDALEO M采用面心立方復合設計構(gòu)造試驗,利用FPCA建立攪拌球磨機批次響應與操作條件之間的函數(shù)模型,確定了操作條件的設計空間[14]。其中,F(xiàn)PCA作用于批次響應得到均值曲線、主成分函數(shù)和主成分得分。FIDALEO M使用RSM構(gòu)建主成分得分關(guān)于操作條件的二階多項式預測模型。但當批次響應的非線性較強且試驗區(qū)域較為復雜時,就需要采用精度更高、靈活性更強的建模方法;另一方面,如果根據(jù)一次試驗設計所得模型未達到預期精度,還需考慮如何進一步提高模型精度。

因此,筆者采用精度更高的Kriging模型預測主成分得分,并結(jié)合極大均方誤差準則的序貫設計[15],在當前模型預測精度較低區(qū)域進行新的試驗,以提高所建模型精度。使用改進的曲線擬合度量指標與均方誤差共同組成序貫設計收斂條件。通過FPCA序貫建立生化反應網(wǎng)絡產(chǎn)物濃度模型的試驗仿真,驗證了所提方法的有效性。

1 基于Kriging模型的FPCA建模

1.1 函數(shù)型主成分分析

1.2 預測主成分得分

2 FPCA序貫建模算法

3 生化反應網(wǎng)絡建模示例

對一個含10種物質(zhì)的模擬反應網(wǎng)絡進行FPCA序貫建模。該反應網(wǎng)絡具有8個獨立反應,反應1、4為可逆反應,動力學方程和參數(shù)見文獻[6],物質(zhì)間的關(guān)系如圖2所示,其中,數(shù)字代表反應,圓圈代表物質(zhì),藍色表示反應物,灰色表示中間體,橙色表示副產(chǎn)物,綠色表示目標產(chǎn)物。

綜上,結(jié)合DoE方法,通過FPCA序貫建模算法實現(xiàn)了對生化反應網(wǎng)絡試驗區(qū)域內(nèi)任意操作條件下產(chǎn)物批次濃度的預測,驗證了所提建模策略的有效性。

4 結(jié)束語

筆者結(jié)合DoE,提出了一種基于FPCA序貫建立過程批次響應模型的方法。通過對生化反應網(wǎng)絡物質(zhì)濃度建模的試驗仿真,驗證了該方法的有效性。所建模型具有較好的數(shù)據(jù)可視化和解釋能力,能夠非常準確地預測試驗區(qū)域內(nèi)未知操作條件的批次響應,可用于生化過程的在線監(jiān)測、控制和優(yōu)化。

本課題中考慮的操作條件是不隨時間變化的,筆者后續(xù)將推廣所提方法,使其可以建立隨時間變化的操作條件的過程批次響應模型。

參 考 文 獻

[1]? ?GEORGAKIS C.Design of dynamic experiments:A da-ta-driven methodology for the optimization of time-varying processes[J].Industrial & Engineering Che-mistry Research,2013,52(35):12369-12382.

[2]? ?BAS D, BOYACL I H. Modeling and optimization Ⅰ:Usability of response surface methodology[J].Journal of Food Engineering,2007,78(3):836-845.

[3]? HANRAHAN G,LU K.Application of factorial and response surface methodology in modern experimental design and optimization[J].Critical Reviews in Ana-lytical Chemistry,2006,36(3-4):141-151.

[4] KLEBANOV N,GEORGAKIS C.Dynamic response surface models:A data-driven approach for the analysis of time-varying process outputs[J].Industrial & Engi-neering Chemistry Research,2016,55(14):4022-4034.

[5]? ?WANG Z,GEORGAKIS C.New dynamic response sur-face methodology for modeling nonlinear processes over semi-infinite time horizons[J].Industrial & Engi-neering Chemistry Research,2017,56(38):10770-10782.

[6]? ?DONG Y,GEORGAKIS C,MUSTAKIS J,et al.Constr-ained version of the dynamic response surface metho-dology for modeling pharmaceutical reactions[J].In-dustrial & Engineering Chemistry Research,2019,58(30):13611-13621.

[7]? DONG Y,GEORGAKIS C,SANTOS-MARQUES J,et al.Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis[J].Frontiers of Chemical Science and Engineering,2022,16(2):221-236.

[8]? ?JURICA J A,MCMULLEN J P.Automation Technolo-gies to Enable Data-Rich Experimentation:Beyond Design of Experiments for Process Modeling in Late-Stage Process Development[J].Organic Process Research & Development,2021,25(2):282-291.

[9]? ?WANG K,HAN L,MUSTAKIS J,et al.Kinetic and da-ta-driven reaction analysis for pharmaceutical process development[J].Industrial & Engineering Chemistry Research,2019,59(6):2409-2421.

[10]? ?TANG Q,LAU Y B,HU S,et al.Response surface methodology using Gaussian processes:Towards optimizing the trans-stilbene epoxidation over Co2+-NaX catalysts[J].Chemical Engineering Journal,2010,156(2):423-431.

[11]? DOMAGALSKI N R,MACK B C,TABORA J E.Analysis of design of experiments with dynamic res-ponses[J].Organic Process Research & Development,2015,19(11):1667-1682.

[12]? ?WILSON Z T,SAHINIDIS N V.The ALAMO approa-ch to machine learning[J].Computers & Chemical Engineering,2017,106:785-795.

[13]? ?RAMSAY J O.When the data are functions[J].Psych-ometrika,1982,47(4):379-396.

[14]? ?FIDALEO M.Functional data analysis and design of experiments as efficient tools to determine the dynamical design space of food and biotechnological batch processes[J].Food and Bioprocess Technology,2020,13(6):1035-1047.

[15]? ?CROMBECQ K,LAERMANS E,DHAENE T.Effici-ent space-filling and non-collapsing sequential design strategies for simulation-based modeling[J].European Journal of Operational Research,2011,214(3):683-696.

[16]? ?RAMSAY J O,SILVERMAN B W.Functional Data Analysis[M].2nd ed.New York:Springer New York,2005.

[17]? ?BETZ W,PAPAIOANNOU I,STRAUB D.Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion[J].Computer Methods in Applied Mechanics and Engineering,2014,271:109-129.

[18]? ?RAMSAY J O,DALZELL C J.Some tools for functio-nal data analysis[J].Journal of the Royal Statistical Society:Series B (Methodological),1991,53(3):539-561.

[19]? ?SACKS J,WELCH W J,MITCHELL T J,et al.Design and analysis of computer experiments[J].Statistical Science,1989,4(4):409-423.

[20]? ?MONTGOMERY D C.Design and analysis of experi-ments[M].9th ed.Arizona:John Wiley & Sons,2017.

(收稿日期:2022-10-21,修回日期:2023-01-10)

Sequential Modeling of Process Batch Response Based on

Functional Principal Component Analysis

LIU Yang-yang, LIU Fei

(MOE Key Laboratory of Advanced Control for Light Industry Processes, Jiangnan University)

Abstract? ?Combined with the method of experiment design, a sequential modeling strategy based on functional principal component analysis(FPCA) was proposed for the batch response modeling of operation conditions in biochemical processes. Firstly, having B-spline basis function smoothing method adopted to transform discrete batch response sequence into a continuous response function curve; then, having FPCA employed to analyze and obtain response functions mean curve, principal component function and principal component score; finally, having Kriging model between the principal component score and operating conditions constructed to predict the principal component score corresponding to any operating conditions in the experiment region so as to establish the model of batch response on operating conditions. For purpose of improving prediction accuracy of the model, having sequential design used to update the model according to the improved convergence condition was implemented, including having effectiveness of the proposed modeling strategy verified by biochemical reaction network experiment simulation. The simulation results show that, the proposed modeling strategy has better data visualization and model interpretation ability.

Key words? ?functional principal component analysis, sequential design, batch response, experiment design, Kriging model, biochemical batch process

余庆县| 南漳县| 台江县| 太白县| 颍上县| 西乡县| 绥棱县| 巩义市| 蓬安县| 孟村| 靖州| 虹口区| 蕉岭县| 灌阳县| 弥渡县| 五家渠市| 阿荣旗| 阳曲县| 高邑县| 弥勒县| 广水市| 宁化县| 调兵山市| 杭锦旗| 开阳县| 定襄县| 英德市| 浮山县| 永顺县| 碌曲县| 永新县| 儋州市| 保德县| 丹阳市| 深圳市| 赫章县| 鲜城| 安新县| 右玉县| 牙克石市| 阳城县|