鄧光輝,葉夢(mèng)娟,蔡 肖,馬夢(mèng)真,呂家慧,吳 靜,張曉倩,邢麗花,彭代銀, 3, 4,王妍妍*,俞年軍, 3, 4*
基于網(wǎng)絡(luò)藥理學(xué)、分子對(duì)接及實(shí)驗(yàn)驗(yàn)證探討霍山石斛治療非酒精性脂肪肝的作用機(jī)制
鄧光輝1, 2,葉夢(mèng)娟1, 2,蔡 肖1, 2,馬夢(mèng)真1, 2,呂家慧1, 2,吳 靜1, 2,張曉倩1, 2,邢麗花1, 2,彭代銀1, 2, 3, 4,王妍妍1, 2*,俞年軍1, 2, 3, 4*
1. 安徽中醫(yī)藥大學(xué),安徽 合肥 230012 2. 安徽省中醫(yī)藥科學(xué)院 中藥資源保護(hù)與開發(fā)研究所,安徽 合肥 230012 3. 省部共建安徽道地性中藥材品質(zhì)提升協(xié)同創(chuàng)新中心,安徽 合肥 230012 4. 中藥研究與開發(fā)安徽省重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230012
基于網(wǎng)絡(luò)藥理學(xué)、分子對(duì)接及體內(nèi)實(shí)驗(yàn)驗(yàn)證探討霍山石斛對(duì)非酒精性脂肪肝(non-alcoholic fatty liver disease,NAFLD)的療效及作用機(jī)制。利用文獻(xiàn)檢索霍山石斛活性成分,采用SwissTargetPrediction數(shù)據(jù)庫(kù)預(yù)測(cè)其潛在靶點(diǎn),采用DisGeNET和GeneCards數(shù)據(jù)庫(kù)篩選NAFLD靶點(diǎn),并將藥物靶點(diǎn)和疾病靶點(diǎn)取交集,構(gòu)建蛋白質(zhì)-蛋白質(zhì)相互作用網(wǎng)絡(luò),借助DAVID數(shù)據(jù)庫(kù)進(jìn)行基因本體功能和京都基因與基因組百科全書通路富集分析,構(gòu)建“活性成分-靶點(diǎn)-疾病-通路”網(wǎng)絡(luò),并采用AutoDock等軟件對(duì)關(guān)鍵活性成分和核心靶點(diǎn)進(jìn)行分子對(duì)接驗(yàn)證。采用高脂高糖飲食誘導(dǎo)NAFLD小鼠模型,設(shè)置對(duì)照組、模型組、吡格列酮(10 mg/kg)組和霍山石斛低、中、高劑量(200、400、600 mg/kg)組,連續(xù)給藥8周。檢測(cè)血清三酰甘油(triglyceride,TG)、總膽固醇(total cholesterol,TC)、低密度脂蛋白膽固醇(low density lipoprotein cholesterol,LDL-C)、高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C)、丙氨酸氨基轉(zhuǎn)移酶(alanine aminotransferase,ALT)及天冬氨酸氨基轉(zhuǎn)移酶(aspartate aminotransferase,AST)的含量;ELISA檢測(cè)肝臟中TC、TG、白細(xì)胞介素-6(interleukin-6,IL-6)、IL-1β及腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)水平;油紅O染色和蘇木素-伊紅(HE)染色檢測(cè)肝組織病理變化;Western blotting檢測(cè)肝組織中胰島素受體(insulin receptor,InsR)、磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase,PI3K)、蛋白激酶B(protein kinase B,Akt)、糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)蛋白表達(dá)?;羯绞泻Y選出石斛酚、鐵皮石斛素A、4,4′-dihydroxy-3,5-dimethoxydihydrostilbene、柚皮素等38個(gè)活性成分,與NAFLD共同靶點(diǎn)有155個(gè),作用于胰島素、AKT1、白蛋白、TNF、IL-6、血管內(nèi)皮生長(zhǎng)因子A、過氧化物酶體增殖物激活受體γ、IL-1β等19個(gè)核心靶點(diǎn),主要涉及癌癥途徑、PI3K/Akt通路、晚期糖基化終產(chǎn)物及其受體信號(hào)通路、缺氧誘導(dǎo)因子信號(hào)通路、TNF信號(hào)通路等,分子對(duì)接顯示前5位核心成分與前5位核心靶點(diǎn)具有較好的接合能力。動(dòng)物實(shí)驗(yàn)結(jié)果證實(shí)成功構(gòu)建小鼠NAFLD模型,與模型組比較,霍山石斛組小鼠體質(zhì)量、肝臟指數(shù)以及血清TG、TC、ALT、AST、LDL-C和肝臟TC、TG水平顯著降低(<0.05、0.01),血清HDL-C水平顯著升高(<0.01),改善肝臟脂肪蓄積和變性,肝臟InsR、PI3K、p-Akt/Akt蛋白表達(dá)水平顯著增加(<0.05、0.01),p-GSK-3β/GSK-3β蛋白表達(dá)顯著減少(<0.01)?;羯绞鷮?duì)NAFLD具有保護(hù)作用,其機(jī)制可能與激活PI3K/Akt通路、改善胰島素抵抗和減少炎癥反應(yīng)有關(guān)。
霍山石斛;非酒精性脂肪肝;網(wǎng)絡(luò)藥理學(xué);蘆?。皇?;柚皮素;InsR/PI3K/Akt/GSK-3β通路;胰島素抵抗;炎癥
非酒精性脂肪肝?。╪on-alcoholic fatty liver disease,NAFLD)是以三酰甘油(triglyceride,TG)為主的脂質(zhì)在肝細(xì)胞內(nèi)堆積的肝臟代謝性疾病,以肝臟脂肪變性為開始,可能發(fā)展成脂肪性肝炎[1]。全球NAFLD患病率為20%~30%,并隨著肥胖人群的增加而不斷上升[2]。目前,NAFLD尚無(wú)獲批的有效藥物,因此,迫切需要探索治療NAFLD的靶點(diǎn)和藥物[3]。
霍山石斛C. Z. Tang et S. J. Cheng是蘭科石斛屬多年生草本植物,作為一種傳統(tǒng)名貴中藥,在改善肝臟脂肪變性和炎癥方面具有巨大潛力,擁有重大的醫(yī)藥開發(fā)價(jià)值和應(yīng)用前景[4]?,F(xiàn)代藥理學(xué)研究發(fā)現(xiàn),霍山石斛具有保護(hù)肝臟、降血糖、調(diào)血脂、抗氧化等多種功能活性,對(duì)NAFLD具有防治作用[5-6]。表明霍山石斛治療NAFLD具有較好的前景,然而霍山石斛防治NAFLD的物質(zhì)基礎(chǔ)和作用機(jī)制仍不清楚,需深入研究。
網(wǎng)絡(luò)藥理學(xué)是利用生物網(wǎng)絡(luò)中藥物的藥理機(jī)制解釋藥物成分、靶點(diǎn)和疾病之間的關(guān)系,關(guān)注的是多個(gè)活性成分與各種不同基因或蛋白相互作用,這與中藥的“整體”研究思路相同[7]。因此,本研究利用網(wǎng)絡(luò)藥理學(xué)[8]及分子對(duì)接研究霍山石斛中活性成分治療NAFLD的作用機(jī)制,并通過體內(nèi)實(shí)驗(yàn)進(jìn)行初步驗(yàn)證,為探索霍山石斛治療NAFLD提供一定理論參考。
霍山石斛干條經(jīng)安徽中醫(yī)藥大學(xué)生藥系俞年軍教授鑒定為蘭科植物霍山石斛C. Z. Tang et S. J. Cheng的干燥莖,打粉過100目篩(粒徑D90,115~120 μm)備用。稱取適量霍山石斛細(xì)粉,加入一定量的蒸餾水,配成混懸液,含蘆丁(56.7±2.9)mg/kg、石斛酚(11.9±1.6)mg/kg、柚皮素(78.7±2.4)mg/kg[9]。
SPF級(jí)C57BL/6J雄性小鼠36只,體質(zhì)量18~22 g,5周齡,購(gòu)自杭州子源實(shí)驗(yàn)動(dòng)物科技有限公司,許可證號(hào)SCXK(浙)2019-0004。所有動(dòng)物均飼養(yǎng)在環(huán)境溫度20~25 ℃,相對(duì)濕度40%~70%,晝夜循環(huán)每日12 h交替照明,自由攝取食物,喂養(yǎng)60%脂肪供能高脂純化型飼料。動(dòng)物實(shí)驗(yàn)符合動(dòng)物實(shí)驗(yàn)倫理學(xué)要求,經(jīng)安徽中醫(yī)藥大學(xué)動(dòng)物倫理委員會(huì)審查后批準(zhǔn)(批準(zhǔn)號(hào)AHUCM-mouse-2022124)。
吡格列酮(批號(hào)H20110048)購(gòu)自江蘇德源藥業(yè)股份有限公司;果糖(批號(hào)D809612)購(gòu)自麥克林生化科技有限公司;小鼠白細(xì)胞介素-1β(interleukin-1β,IL-1β)ELISA試劑盒、小鼠腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)ELISA試劑盒、小鼠IL-6 ELISA試劑盒(批號(hào)分別為JYM0531Mo、JYM0218Mo、JYM0012Mo)購(gòu)自武漢基因美生物科技有限公司;組織膽固醇(total cholesterol,TC)酶法測(cè)定試劑盒、組織TG酶法測(cè)定試劑盒(批號(hào)分別為A111-1-1、A110-1-1)購(gòu)自南京建成生物工程研究所;RIPA裂解液、BCA蛋白濃度測(cè)定試劑盒、磷酸酶抑制劑、蛋白上樣緩沖液(批號(hào)分別為P0013B、P0012S、P1081、BL502B)購(gòu)自上海碧云天生物技術(shù)有限公司;超敏ECL發(fā)光檢測(cè)試劑(批號(hào)P10100)購(gòu)自新賽美生物科技有限公司;絲氨酸蛋白酶抑制劑(批號(hào)EA0006)購(gòu)自山東思科捷生物技術(shù)有限公司;胰島素受體(insulin receptor,InsR)抗體(批號(hào)204331AP)購(gòu)自美國(guó)Proteintech公司;磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase,PI3K)抗體、糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)兔多克隆抗體(批號(hào)分別為YN5487、YT2082)購(gòu)自Immunoway公司;蛋白激酶B(protein kinase B,Akt)兔多克隆抗體(批號(hào)380617)、β-肌動(dòng)蛋白(β-actin)兔單克隆抗體(批號(hào)380624)購(gòu)自成都正能生物有限公司;p-Akt、p-GSK-3β抗體(批號(hào)分別為CST4060T、CST5558T)購(gòu)自美國(guó)CST公司;60%脂肪供能高脂純化型飼料(批號(hào)XTHF60)購(gòu)自江蘇協(xié)同醫(yī)藥生物工程有限責(zé)任公司。
DW-25L262型低溫臺(tái)式離心機(jī)(合肥榮事達(dá)小家電有限公司);Chemray 240型全自動(dòng)生化儀(深圳雷杜生命科學(xué)股份有限公司);Multiskan Spectrum多功能酶標(biāo)儀(美國(guó)賽默飛公司);DYCZ-24KS型電泳儀、DYCZ-40K型轉(zhuǎn)膜儀(北京六一生物科技有限公司);AMERSHAM IMAGER 600型凝膠成像系統(tǒng)(美國(guó)GE公司);YIB-510FL型光學(xué)顯微鏡(蘇州越視精密儀器有限公司)。
在Web of science(https://www.webofscience. com)、中國(guó)知網(wǎng)(https://www.cnki.net)、PubMed(https://pubmed.ncbi.nlm.nih.gov)等數(shù)據(jù)庫(kù)中檢索“霍山石斛”和“”獲得霍山石斛化學(xué)成分。通過化源網(wǎng)(https://www. chemsrc.com)和PubChem(https://pubchem.ncbi.nlm. nih.gov)數(shù)據(jù)庫(kù)補(bǔ)充化合物的名稱及結(jié)構(gòu)信息。Chem Draw 20軟件繪制化合物的分子結(jié)構(gòu)式,保存為sdf結(jié)構(gòu)。在Swiss ADME(http://www.swissadme. ch)中導(dǎo)入化合物結(jié)構(gòu),通過藥動(dòng)學(xué)規(guī)則篩選。篩選標(biāo)準(zhǔn):(1)Lipinski、Ghose、Veber、Egan、Muegge中2種及以上的類藥性原則為“yes”,表明化合物具有良好的成藥性;(2)腸胃吸收結(jié)果為“high”,表明化合物具有良好的生物利用度。同時(shí)滿足上述2條標(biāo)準(zhǔn)的化合物為霍山石斛中有效的活性成分[10]。
將篩選的霍山石斛活性成分的結(jié)構(gòu)導(dǎo)入SwissTargetPrediction數(shù)據(jù)庫(kù),每個(gè)活性成分取“probability”值不小于0.01的潛在作用靶點(diǎn),匯總所有靶點(diǎn)信息,UniProt數(shù)據(jù)庫(kù)(https://www.uniprot. org)校正化學(xué)成分靶點(diǎn)基因名稱,使蛋白靶點(diǎn)信息標(biāo)準(zhǔn)化。
分別在GeneCards數(shù)據(jù)庫(kù)(https://www. genecards.org)和DisGeNET數(shù)據(jù)庫(kù)(https://www. disgenet.org)中,以關(guān)鍵詞“non-alcoholic fatty liver disease”收集NAFLD相關(guān)基因,去除重復(fù)基因后,結(jié)合UniProt數(shù)據(jù)庫(kù)將靶點(diǎn)名標(biāo)準(zhǔn)化,確定NAFLD的潛在作用靶點(diǎn)。使用Venny 2.1.0將霍山石斛活性成分靶點(diǎn)與NAFLD疾病相關(guān)靶點(diǎn)取交集。
將霍山石斛與NAFLD共同靶點(diǎn)導(dǎo)入STRING數(shù)據(jù)庫(kù)進(jìn)行分析,結(jié)果保存為*tsv格式文件并導(dǎo)入Cytoscape 3.7.2軟件中,運(yùn)用“Network Analyzer”的功能對(duì)PPI結(jié)果進(jìn)行網(wǎng)絡(luò)拓?fù)鋵W(xué)分析,構(gòu)建PPI網(wǎng)絡(luò),利用Cytoscape 3.7.2軟件中的插件CytoNCA進(jìn)行關(guān)鍵靶點(diǎn)的篩選[11]。
將“2.2”項(xiàng)下收集的霍山石斛與NAFLD的共同靶點(diǎn)導(dǎo)入Cytoscape 3.7.2構(gòu)建“藥物-靶點(diǎn)-疾病”網(wǎng)絡(luò)。
通過DAVID數(shù)據(jù)庫(kù)對(duì)得到的交集靶點(diǎn)進(jìn)行GO功能注釋和KEGG通路分析,利用微生信(http://www.Bioinformatics.com.cn/)對(duì)GO和KEGG通路富集結(jié)果進(jìn)行可視化分析[12]。
將霍山石斛活性成分、NAFLD、前20條KEGG通路及其涉及的靶點(diǎn)數(shù)據(jù)整合,導(dǎo)入Cytoscape 3.7.2軟件中構(gòu)建“活性成分-靶點(diǎn)-疾病-通路”網(wǎng)絡(luò)。
將“活性成分-靶點(diǎn)-疾病-通路”網(wǎng)絡(luò)中度值排名前5位的有效活性成分與PPI網(wǎng)絡(luò)中前5位的潛在靶點(diǎn)進(jìn)行分子對(duì)接。在PubChem數(shù)據(jù)庫(kù)中獲取霍山石斛活性成分的SDF文件,作為配體文件。蛋白質(zhì)受體文件從PDB數(shù)據(jù)庫(kù)(http://www.rcsb.org/)中獲取,通過AutoDock Tool軟件對(duì)蛋白受體進(jìn)行去水、加氫等操作。使用Autodock Vina進(jìn)行分子對(duì)接并計(jì)算結(jié)果,受體-配體的結(jié)合程度可以通過分子對(duì)接結(jié)果中的結(jié)合能水平來(lái)判斷。如果結(jié)合能小于?5 kJ/mol,說(shuō)明目標(biāo)物與化合物有一定的結(jié)合活性,結(jié)合能越低,對(duì)接效果越好,用PyMOL對(duì)結(jié)果進(jìn)行可視化[13]。
2.8.1 模型建立、分組與給藥 C57BL/6J雄性小鼠隨機(jī)分為對(duì)照組、模型組、吡格列酮(10 mg/kg)組和霍山石斛低、中、高劑量(200、400、600 mg/kg)組,每組6只。對(duì)照組喂養(yǎng)普通飼料,飲用普通飲用水,其余各組喂養(yǎng)高脂飼料,飲用10%果糖溶液,連續(xù)喂養(yǎng)12周,構(gòu)建小鼠NAFLD模型[14-15]。在喂養(yǎng)4周后開始給藥,1次/d,連續(xù)8周。
2.8.2 體質(zhì)量、肝指數(shù)測(cè)定 每周稱定小鼠質(zhì)量。實(shí)驗(yàn)結(jié)束后對(duì)每只動(dòng)物的肝臟組織進(jìn)行稱定,并計(jì)算肝臟指數(shù)。
2.8.3 血清和組織樣本收集 給藥8周后,所有小鼠禁食不禁水12 h,ip 10%水合氯醛麻醉,從腹主動(dòng)脈抽取全血,室溫靜置2 h,4 ℃、2000 r/min離心20 min收集血清,將血清樣品儲(chǔ)存在?80 ℃。取血后迅速收集肝臟組織,用冷凍生理鹽水沖洗,取各組小鼠相同部位少量肝組織,用4%的多聚甲醛溶液固定,用于后續(xù)形態(tài)學(xué)檢測(cè),剩余部分儲(chǔ)存在?80 ℃冰箱中。
2.8.4 血清中TC、TG、丙氨酸氨基轉(zhuǎn)移酶(alanine aminotransferase,ALT)、天冬氨酸氨基轉(zhuǎn)移酶(aspartate aminotransferase,AST)、低密度脂蛋白膽固醇(low density lipoprotein cholesterol,LDL-C)、高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C)及肝臟中TC、TG含量檢測(cè) 利用全自動(dòng)生化分析以檢測(cè)小鼠血清中TC、TG、ALT、AST、HDL-C、LDL-C的含量。取保存于?80 ℃冰箱中的肝臟組織,根據(jù)試劑盒說(shuō)明書檢測(cè)小鼠肝臟中TC、TG的含量。
2.8.5 肝組織病理學(xué)形態(tài)和油紅O染色觀察 將肝組織按常規(guī)石蠟包埋制備4 μm組織切片,按照蘇木素-伊紅(HE)、油紅O染色后,于顯微鏡下觀察并拍照。
2.8.6 肝臟炎癥因子測(cè)定 取保存于?80 ℃的肝臟,按照ELISA試劑盒說(shuō)明書檢測(cè)小鼠肝臟中的IL-6、IL-1β和TNF-α的含量。
2.8.7 Western blotting檢測(cè)InsR/PI3K/Akt/GSK-3β通路蛋白表達(dá) 取100 mg新鮮肝臟組織,液氮研磨后加入RIPA裂解液充分研磨,離心提取總蛋白后取上清,BCA法測(cè)定蛋白濃度。蛋白樣品經(jīng)十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳,轉(zhuǎn)至PVDF膜,封閉后加入一抗,4 ℃孵育過夜。放入二抗(1∶10 000),室溫孵育1 h,使用增強(qiáng)的化學(xué)發(fā)光試劑顯影,采用Image Lab進(jìn)行灰度分析。
通過數(shù)據(jù)庫(kù)收集霍山石斛的化學(xué)成分,發(fā)現(xiàn)38個(gè)活性成分符合要求,見表1。
38個(gè)霍山石斛活性成分靶點(diǎn)匯總后并去除重復(fù)靶點(diǎn)得到613個(gè)靶點(diǎn),在GeneCards數(shù)據(jù)庫(kù)和DisGeNET數(shù)據(jù)庫(kù)中收集NAFLD的潛在靶點(diǎn),去重后得到1041個(gè)靶點(diǎn)。將霍山石斛活性成分靶點(diǎn)與NAFLD靶點(diǎn)取交集,共得到155個(gè)共同靶點(diǎn),即為霍山石斛活性成分抗NAFLD的潛在靶點(diǎn)(圖1)。
表1 霍山石斛的活性成分
Table 1 Active components of D. huoshanense
序號(hào)成分相對(duì)分子質(zhì)量 DHP14,4′-dihydroxy-3,5-dimethoxy- dihydrostilbene274.31 DHP2山藥素III244.28 DHP33-hydroxy-4′,5-dimethoxybibenzyl258.13 DHP43,4-二羥基-5-甲氧基苯甲醛168.15 DHP54-羥基苯甲酸138.12 DHP6香草醛152.15 DHP7天麻素286.28 DHP8(+)-丁香樹脂酚418.40 DHP9柚皮素272.25 DHP10丁香酸198.17 DHP11氧化白藜蘆醇244.24 DHP122,3,4,7-四甲氧基菲298.30 DHP13對(duì)反式香豆酰酪胺283.32 DHP14二氫白藜蘆醇230.26 DHP15tristin260.28 DHP16毛蘭素318.40 DHP17鐵皮石斛素N436.15 DHP18(R)-3,4-dihydrox-5,4′,α-trimethoxy- bibenzyl304.34 DHP19chrisotoxene 314.34 DHP20dendrophenol274.31 DHP213,4′-二羥基-5,4′-二甲氧基聯(lián)芐244.28 DHP223,4-二羥基-5,4′-二甲氧基聯(lián)芐274.31 DHP23鐵皮石斛素T498.53 DHP244,7-dihydroxy-2,3,6-dimethoxy-9,10-dihydrophenanthrene302.33 DHP25chrysotobibenzyl332.40 DHP26鐵皮石斛素A304.34 DHP27石斛酚304.34 DHP28(7S,8S,8R)-4,4-dihydroxy-3,3,5,5-tetramethoxy-7,9-epoxylignan-9-ol-7-one434.44 DHP29黃芩苷446.40 DHP30橙皮苷302.28 DHP31石斛酮堿279.38 DHP32石斛堿263.38 DHP33棒節(jié)堿C281.35 DHP34反式石斛黃堿257.33 DHP35鐵皮石斛素D304.34 DHP36鐵皮石斛素B290.32 DHP37淫羊藿苷676.70 DHP38蘆丁610.50
圖1 藥物-疾病共同靶點(diǎn)Venn圖
將“3.2”項(xiàng)下的共同靶點(diǎn)導(dǎo)入STRING數(shù)據(jù)庫(kù)得到PPI網(wǎng)路,共涉及155個(gè)節(jié)點(diǎn)和2213條邊。采用Cytoscape軟件構(gòu)建PPI網(wǎng)絡(luò),度值越大,節(jié)點(diǎn)越大。運(yùn)用CytoNCA插件和“Network Analyzer”的功能進(jìn)行拓?fù)浞治?,?jì)算度中心性(degree centrality,DC)、中介中心性(betweenness centrality,BC)、緊密中心性(closeness centrality,CC)的平均值,分別是28.55、148.41和0.52,DC和BC大于2倍均值的靶點(diǎn)共有19個(gè),見圖2和表2。
Cytoscape構(gòu)建的“藥物-靶點(diǎn)-疾病”網(wǎng)路,藥物、活性成分和疾病均以節(jié)點(diǎn)表示,相互關(guān)系以邊表示,見圖3。
利用DAVID在線網(wǎng)站對(duì)交集靶點(diǎn)進(jìn)行生物富集分析,得到具有統(tǒng)計(jì)學(xué)意義(<0.05)的GO功能富集條目1708條,其中生物過程(biological process,BP)1444條、分子功能(molecularfunction,MF)163條、細(xì)胞組分(cellular component,CC)101條,排名前10的條目見圖4-A。
KEGG通路富集結(jié)果顯示,155個(gè)交集靶點(diǎn)共涉及到1191條通路,利用值排序繪制排名前20的KEGG通路氣泡圖,見圖4-B。富集結(jié)果顯示霍山石斛活性成分對(duì)NAFLD的防治主要分布在癌癥通路、PI3K/Akt通路、糖尿病并發(fā)癥晚期糖基化終產(chǎn)物及其受體(advanced glycation end products-receptor for advanced glycation end products,AGE-RAGE)信號(hào)通路、缺氧誘導(dǎo)因子-1(hypoxia inducible factor-1,HIF-1)信號(hào)通路、胰島素信號(hào)通路和TNF信號(hào)通路等,這些通路與脂質(zhì)合成、胰島素抵抗及炎癥反應(yīng)等存在密切關(guān)系。
圖2 霍山石斛活性成分抗NAFLD作用的PPI網(wǎng)絡(luò)(A) 和核心靶點(diǎn)(B)
表2 PPI網(wǎng)絡(luò)拓?fù)浞治鲫P(guān)鍵靶點(diǎn)
Table 2 Key targets of PPI network topology analysis
序號(hào)基因DCBCCC序號(hào)基因DCBCCC 1INS10318390.7511STAT3763480.65 2AKT110114460.7412CASP3764540.66 3ALB9615240.7313HSP90AA1757380.65 4TNF969350.7214HIF1A723440.64 5IL69511890.7215ESR1717310.64 6VEGFA896750.7016MTOR672670.63 7PPARG8515260.6917MMP9662930.62 8IL1β814940.6718PTGS2653950.63 9MAPK3796130.7019CAT594540.61 10EGFR786770.67
圖4 GO功能(A) 和KEGG通路(B) 富集分析
利用Cytoscape軟件,構(gòu)建“活性成分-靶點(diǎn)-疾病-通路”網(wǎng)絡(luò),見圖5。其中紅色三角形節(jié)點(diǎn)為疾病名稱,深綠色三角形形節(jié)點(diǎn)為霍山石斛;藍(lán)色正方形節(jié)點(diǎn)為霍山石斛活性成分,紫色菱形節(jié)點(diǎn)為通路,黃色圓形節(jié)點(diǎn)為“活性成分-疾病-通路”共同靶點(diǎn)。度值越大,節(jié)點(diǎn)越大,表明節(jié)點(diǎn)在網(wǎng)絡(luò)中更重要。
圖5 霍山石斛治療NAFLD的“活性成分-靶點(diǎn)-疾病-通路”網(wǎng)絡(luò)
運(yùn)用分子對(duì)接對(duì)5個(gè)核心靶點(diǎn)(INS、AKT1、ALB、TNF-α、IL-6)和“活性成分-靶點(diǎn)-疾病-通路”網(wǎng)絡(luò)中度值排名前5的有效活性成分(石斛酚、鐵皮石斛素A、4,4′-dihydroxy-3,5-dimethoxydihydrostilbene、柚皮素、3,4-二羥基-5,4′-二甲氧基聯(lián)芐)進(jìn)行分析,結(jié)果見表3?;羯绞?個(gè)活性成分和5個(gè)核心靶點(diǎn)的結(jié)合能均小于?5 kJ/mol,表明霍山石斛活性與核心靶點(diǎn)具有良好的結(jié)合能力,從而發(fā)揮抗NAFLD作用,利用PyMOL對(duì)部分對(duì)接結(jié)果進(jìn)行可視化,見圖6。
表3 分子對(duì)接
Table 3 Molecular docking
活性成分結(jié)合能/(kJ·mol?1) INSAKT1ALBTNFIL-6 石斛酚?18.13?19.33?18.42?22.02?22.89 鐵皮石斛素A?19.72?18.75?22.36?20.25?16.83 4,4′-dihydroxy-3,5-dimethoxydihydrostilbene?21.88?16.78?21.88?18.99?21.01 柚皮素?28.95?24.24?28.71?29.43?28.28 3,4-二羥基-5,4′-二甲氧基聯(lián)芐?24.77?19.72?20.05?23.28?19.91
圖6 霍山石斛活性成分與核心靶點(diǎn)的分子對(duì)接
3.8.1 霍山石斛對(duì)NAFLD模型小鼠體質(zhì)量和肝臟指數(shù)的影響 如圖7所示,與對(duì)照組比較,模型組小鼠體質(zhì)量和肝臟指數(shù)顯著升高(<0.05、0.01);與模型組比較,霍山石斛各劑量組小鼠體質(zhì)量均顯著降低(<0.01),各給藥組小鼠肝臟指數(shù)均顯著降低(<0.01),表明霍山石斛抑制了高脂高糖飲食誘導(dǎo)的小鼠體質(zhì)量和肝臟指數(shù)的增加。
3.8.2 霍山石斛對(duì)NAFLD模型小鼠血清TC、TG、ALT、AST、HDL-C、LDL-C及肝臟中TC、TG水平的影響 如圖8所示,與對(duì)照組比較,模型組小鼠血清TG、TC、ALT、AST、LDL-C和肝臟TC、TG水平顯著升高(<0.01),血清HDL-C顯著降低(<0.01);與模型組比較,各給藥組血清TG、TC、ALT、AST、LDL-C和肝臟TC、TG水平顯著降低(<0.05、0.01),血清HDL-C水平顯著升高(<0.01)。
與對(duì)照組相比較:#P<0.05 ##P<0.01;與模型組比較:*P<0.05 **P<0.01,下圖同
圖8 霍山石斛對(duì)NAFLD小鼠血清TC、TG、ALT、AST、HDL-C、LDL-C及肝臟中TC、TG水平的影響(, n = 6)
3.8.3 霍山石斛對(duì)NAFLD小鼠肝臟脂肪堆積和肝組織病理變化的影響 對(duì)肝組織進(jìn)行HE和油紅O染色分析,如圖9所示,對(duì)照組肝細(xì)胞形態(tài)正常,肝小葉結(jié)構(gòu)清晰,無(wú)脂肪變性和炎細(xì)胞浸潤(rùn);與對(duì)照組比較,模型組肝細(xì)胞形態(tài)紊亂,脂滴堆積和脂肪空泡變性嚴(yán)重,且伴有炎性細(xì)胞浸潤(rùn)。經(jīng)霍山石斛干預(yù)后,與模型組比較,肝細(xì)胞形態(tài)結(jié)構(gòu)明顯改善,脂滴堆積和脂肪空泡顯著降低,幾乎不見炎細(xì)胞浸潤(rùn)。提示霍山石斛能有效抑制肝臟脂肪變性和堆積,改善高脂高糖所致的肝損傷。
圖9 霍山石斛對(duì)NAFLD小鼠肝臟脂肪堆積和肝組織病理變化的影響(×200)
3.8.4 霍山石斛對(duì)NAFLD小鼠肝臟炎癥水平的影響 如圖10所示,與對(duì)照組比較,模型組小鼠肝臟IL-6、IL-1β、TNF-α水平顯著升高(<0.01);與模型組比較,各給藥組小鼠肝臟IL-6、TNF-α水平顯著降低(<0.05、0.01),霍山石斛中、高劑量組和吡格列酮組肝臟IL-1β水平顯著降低(<0.05、0.01),表明霍山石斛可以改善高脂高糖飲食誘導(dǎo)的肝臟炎癥。
3.8.5 霍山石斛對(duì)NAFLD小鼠肝臟InsR/PI3K/ Akt/GSK-3β通路蛋白表達(dá)的影響 如圖11所示,與對(duì)照組比較,模型組小鼠肝臟InsR、PI3K、p-Akt/Akt蛋白表達(dá)降低(<0.01),p-GSK-3β/GSK-3β蛋白表達(dá)顯著升高(<0.01);與模型組比較,各給藥組小鼠肝臟InsR、PI3K、p-Akt/Akt蛋白表達(dá)水平顯著增加(<0.05、0.01),p-GSK-3β/GSK-3β蛋白表達(dá)顯著減少(<0.01),表明霍山石斛可以調(diào)節(jié)InsR/PI3K/Akt/GSK-3β信號(hào)通路蛋白的表達(dá),從而發(fā)揮抗NAFLD作用。
圖10 霍山石斛對(duì)NAFLD小鼠肝臟IL-6、IL-1β、TNF-α含量的影響(, n = 6)
圖11 霍山石斛對(duì)NAFLD小鼠肝臟中InsR/PI3K/Akt/GSK-3β通路蛋白表達(dá)的影響(, n = 3)
NAFLD是世界范圍內(nèi)最普遍的代謝性肝病,其復(fù)雜的發(fā)病機(jī)制限制了預(yù)防、診斷和治療的進(jìn)展。脂質(zhì)蓄積、胰島素抵抗、炎癥、氧化應(yīng)激和腸道菌群等均與NAFLD的發(fā)病機(jī)制息息相關(guān),然而驅(qū)動(dòng)疾病發(fā)展的機(jī)制尚不完全清楚[16-19]。中藥在預(yù)防和治療NAFLD中顯示出獨(dú)特的優(yōu)勢(shì),金釵石斛可以通過增加肝臟中的牛磺結(jié)合膽汁酸水平,促進(jìn)膽固醇的排泄,改善肝臟脂質(zhì)異常發(fā)揮抗NAFLD作用[20]。鐵皮石斛能夠調(diào)節(jié)脂質(zhì)代謝和糖代謝相關(guān)基因的表達(dá),抑制NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor pyrin domain containing 3,NLRP3)炎癥小體的激活,調(diào)節(jié)線粒體功能、腸道菌群,抑制脂多糖/Toll樣受體4(Toll-like receptor 4,TLR4)相關(guān)的炎癥介質(zhì)的激活,減輕小鼠肝臟損傷[21-24]。霍山石斛雖能有效改善四氯化碳所致肝損傷和酒精性肝損傷等肝臟疾病,然而對(duì)高脂高糖飲食誘導(dǎo)NAFLD的小鼠作用機(jī)制仍不清楚[25-26]。本研究基于網(wǎng)絡(luò)藥理學(xué),通過霍山石斛抗NAFLD的核心作用靶點(diǎn)并結(jié)合霍山石斛的“活性成分-疾病-靶點(diǎn)-通路”網(wǎng)絡(luò)、分子對(duì)接和體內(nèi)實(shí)驗(yàn)驗(yàn)證,對(duì)霍山石斛防治NAFLD的潛在機(jī)制進(jìn)行初步探究。
本研究采用網(wǎng)絡(luò)藥理學(xué)分析霍山石斛治療NAFLD的潛在機(jī)制,發(fā)現(xiàn)霍山石斛共有石斛酚、鐵皮石斛素A、4,4′-dihydroxy-3,5-dimethoxy-dihydrostilbene、柚皮素、3,4-dihydroxy-5,4′-dimethoxybibenzyl等38個(gè)活性成分,PPI網(wǎng)路分析后發(fā)現(xiàn)霍山石斛的關(guān)鍵靶點(diǎn)有胰島素(insulin,INS)、AKT1、白蛋白(albumin,ALB)、TNF、IL-6、血管內(nèi)皮生長(zhǎng)因子A(vascular endothelial growth factor A,VEGFA)、過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor γ,PPARG)、IL-1β、雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)等,涉及1708條生物過程,1191條信號(hào)通路,其中與NAFLD密切相關(guān)的有PI3K/Akt信號(hào)通路、HIF-1信號(hào)通路、TNF-α信號(hào)通路,分子對(duì)接結(jié)果顯示霍山石斛中5種活性成分與5個(gè)核心靶點(diǎn)均具有較好的結(jié)合能力,表明霍山石斛可能通過多靶點(diǎn)、多途徑來(lái)改善NAFLD。
炎癥是免疫系統(tǒng)對(duì)組織損傷或感染的生理反應(yīng),可導(dǎo)致細(xì)胞因子、趨化因子和類花生酸等炎癥介質(zhì)的釋放,引導(dǎo)免疫系統(tǒng)修復(fù)受傷組織和抵抗外界病原體的入侵[27]。炎癥活動(dòng)會(huì)隨著時(shí)間的持續(xù)導(dǎo)致慢性炎癥變化,加重組織損傷,導(dǎo)致類風(fēng)濕性關(guān)節(jié)炎、炎癥性腸道疾病等疾病發(fā)生[28]。炎癥在NAFLD中扮演著重要角色,是促使單純性脂肪肝發(fā)展為脂肪性肝炎的重要驅(qū)動(dòng)因素,損傷的肝細(xì)胞會(huì)促進(jìn)促炎細(xì)胞因子的產(chǎn)生,進(jìn)而導(dǎo)致NAFLD加重,甚至發(fā)展成NASH[29]。因此,抑制炎癥對(duì)NAFLD的治療具有重要意義。
本研究建立高脂高糖飲食誘導(dǎo)的NAFLD小鼠模型,探索霍山石斛對(duì)NAFLD的影響。結(jié)果表明,與對(duì)照組比較,模型組小鼠體質(zhì)量、肝臟指數(shù)、血清及肝臟中TC、TG、ALT、AST、LDL-C含量顯著升高,HDL-C水平顯著下降,油紅O和HE染色顯示模型組小鼠肝臟中有大量脂質(zhì)沉積和空泡樣脂肪變性,說(shuō)明高脂高糖飲食成功誘導(dǎo)NAFLD小鼠模型?;羯绞委熀竽茱@著減少NAFLD小鼠體質(zhì)量、肝臟指數(shù)、血清及肝臟中TC、TG、ALT、AST、LDL-C含量,提高HDL-C水平,同時(shí)減輕肝臟脂肪變性和脂質(zhì)沉積。此外,霍山石斛能顯著降低NAFLD小鼠肝臟中IL-6、IL-1β、TNF-α水平,表明霍山石斛可能通過調(diào)節(jié)肝臟炎癥來(lái)改善NAFLD。以上結(jié)果表明霍山石斛能夠有效減輕NAFLD小鼠的肝臟脂肪沉積、變性,對(duì)NAFLD有良好的防治作用。
通過KEGG富集分析,預(yù)測(cè)霍山石斛防治NAFLD的可能作用通路并結(jié)合文獻(xiàn)報(bào)道,PI3K/Akt通路在防治NAFLD中發(fā)揮著重要作用。PI3K/Akt信號(hào)通路參與多種細(xì)胞功能的調(diào)節(jié),如代謝、葡萄糖轉(zhuǎn)運(yùn)、增殖、細(xì)胞存活、生長(zhǎng)和血管生成等[30],并且與胰島素抵抗密切相關(guān),胰島素及其信號(hào)通路直接參與肝臟糖代謝的調(diào)節(jié),包括加速肝糖原合成和葡萄糖攝取,抑制肝臟糖異生。PI3K及其下游因子Akt在胰島素信號(hào)通路中發(fā)揮了關(guān)鍵作用[31]。胰島素可以與細(xì)胞表面的受體InsR結(jié)合,激活胰島素受體底物(insulin receptor substrate,IRS)磷酸化,隨后PI3K被激活,一旦PI3K被激活并被吸收到細(xì)胞膜上,磷脂酰肌醇4,5-二磷酸(phosphatidylinositol-4,5-bisphosphate,PIP2)在肌醇環(huán)的D3位點(diǎn)發(fā)生磷酸化,生成磷脂酰肌醇3,4,5-二磷酸(phosphatidylinositol-3,4,5-triphosphate,PIP3)。PIP3又與Akt的Pleckstrin同源性結(jié)構(gòu)域結(jié)合,并轉(zhuǎn)位到3-磷酸肌醇依賴性蛋白激酶1的PH結(jié)構(gòu)域,激活絲氨酸-蘇氨酸激酶Akt磷酸化[28]。PIP3依賴的Akt磷酸化激活啟動(dòng)了包括GSK-3β/人糖原合成酶2(glycogen synthase 2,GYS2)和叉頭框蛋白O1(forkhead box protein O1,F(xiàn)oxO1)/磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxykinase,PEPCK)/葡萄糖-6-磷酸酶(glucose-6-phosphatase G-6-pase,G6Pase)在內(nèi)的一系列信號(hào)級(jí)聯(lián),從而增強(qiáng)GYS2活性,降低PEPCK和G6Pase活性,最終促進(jìn)肝糖原合成,抑制肝臟糖異生[32]。因此,PI3K/Akt通路在霍山石斛調(diào)節(jié)肝臟糖代謝中的作用不容忽視。為了研究霍山石斛對(duì)NAFLD的可能作用機(jī)制,對(duì)PI3K/Akt通路蛋白的表達(dá)進(jìn)行研究。結(jié)果表明,霍山石斛能顯著提高NAFLD小鼠肝臟InsR、PI3K、p-Akt/Akt表達(dá),顯著降低p-Gsk-3β/GSK-3β水平,表明霍山石斛可能通過激活I(lǐng)nsR/PI3K/Akt/GSK-3β途徑調(diào)節(jié)糖原合成和胰島素抵抗,發(fā)揮對(duì)NAFLD的保護(hù)作用。
綜上,本研究對(duì)霍山石斛治療NAFLD的機(jī)制進(jìn)行了初步研究,通過網(wǎng)絡(luò)藥理學(xué)和體內(nèi)實(shí)驗(yàn)驗(yàn)證了霍山石斛可能通過PI3K/Akt信號(hào)通路和減少促炎癥因子的表達(dá),從而調(diào)節(jié)肝臟胰島素抵抗和抑制炎癥介質(zhì)的釋放,發(fā)揮防治NAFLD的作用。本研究結(jié)果為霍山石斛治療NAFLD提供理論支持,為霍山石斛治療NAFLD提供一定理論依據(jù)。
利益沖突 所有作者均聲明不存在利益沖突
[1] Abood S, Veisaga M L, López L A,. Dehydroleucodine inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest [J]., 2018, 32(8): 1583-1592.
[2] Tarantino G, Citro V, Capone D. Nonalcoholic fatty liver disease: A challenge from mechanisms to therapy [J]., 2019, 9(1): 15.
[3] Zhi H J, Jin X, Zhu H Y,. Exploring the effective materials of flavonoids-enriched extract fromroots based on the metabolic activation in influenza A virus induced acute lung injury [J]., 2020, 177: 112876.
[4] 鄧光輝, 俞年軍, 王妍妍, 等. 霍山石斛活性成分對(duì)肝臟疾病作用及其機(jī)制研究進(jìn)展[J]. 中草藥, 2022, 53(21): 6959-6967.
[5] Zha X Q, Deng Y Y, Li X L,. The core structure of apolysaccharide required for the inhibition of human lens epithelial cell apoptosis [J]., 2017, 155: 252-260.
[6] Wang H Y, Li Q M, Yu N J,.polysaccharide regulates hepatic glucose homeostasis and pancreatic β-cell function in type 2 diabetic mice [J]., 2019, 211: 39-48.
[7] Yuan Z Z, Pan Y Y, Leng T,. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine [J]., 2022, 25: 218-226.
[8] 牛明, 張斯琴, 張博, 等. 《網(wǎng)絡(luò)藥理學(xué)評(píng)價(jià)方法指南》解讀 [J]. 中草藥, 2021, 52(14): 4119-4129.
[9] 甘江華, 黃玙璠, 彭代銀, 等. 3種石斛對(duì)脾陰虛型大鼠便秘的治療作用及其機(jī)制初步研究 [J]. 中國(guó)中藥雜志, 2019, 44(12): 2600-2606.
[10] Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules [J]., 2017, 7: 42717.
[11] Lei S S, Zhang N Y, Zhou F C,.regulates fatty acid metabolism to ameliorate liver lipid accumulation in NAFLD mice [J]., 2021, 2021: 1-12.
[12] Shannon P, Markiel A, Ozier O,. Cytoscape: A software environment for integrated models of biomolecular interaction networks [J]., 2003, 13(11): 2498-2504.
[13] Gaillard T. Evaluation of AutoDock and AutoDock vina on the CASF-2013 benchmark [J]., 2018, 58(8): 1697-1706.
[14] Cho J, Johnson B D, Watt K D,. Exercise training attenuates pulmonary inflammation in high-fat high-carbohydrate induced NAFLD [J]., 2022, 54(9S): 652.
[15] Feng Y B, Li H, Chen C,. Study on the hepatoprotection ofcaulis polysaccharides in nonalcoholic fatty liver disease in rats based on metabolomics [J]., 2021, 12: 727636.
[16] Musso G, Cassader M, Paschetta E,. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis [J]., 2018, 155(2): 282-302.
[17] Neumann K, Schiller B, Tiegs G. NLRP3 inflammasome and IL-33: Novel players in sterile liver inflammation [J]., 2018, 19(9): 2732.
[18] Watt M J, Miotto P M, De Nardo W,. The liver as an endocrine organ-linking NAFLD and insulin resistance [J]., 2019, 40(5): 1367-1393.
[19] Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD) [J]., 2019, 76(8): 1541-1558.
[20] Huang S, Wu Q, Liu H,. Alkaloids ofLindl. Altered hepatic lipid homeostasis via regulation of bile acids [J]., 2019, 241: 111976.
[21] Lei S S, Li B, Chen Y H,., a traditional Chinese edible and officinal plant, accelerates liver recovery by regulating the gut-liver axis in NAFLD mice [J]., 2019, 61: 103458.
[22] Yin X Z, Chi W M, Zhang L,. Protective effects ofWall ex Lindl. on high-fat diet-induced liver damage in mice [J]., 2021, 45(4): e13687.
[23] Ji L S, Li Q, He Y,. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: A promising drugBunge [J]., 2022, 12(9): 3529-3547.
[24] 王鳳華, 韓吉春, 李德芳, 等. 霍山石斛水提取物通過介導(dǎo)NF-κB/p65和p38 MAPK減輕小鼠酒精性肝損傷 [J]. 天然產(chǎn)物研究與開發(fā), 2017, 29(4): 569-574.
[25] Pan L H, Lu J, Luo J P,. Preventive effect of a galactoglucomannan (GGM) fromon selenium-induced liver injury and fibrosis in rats [J]., 2012, 64(7/8): 899-904.
[26] Coussens L M, Werb Z. Inflammation and cancer [J]., 2002, 420(6917): 860-867.
[27] Fullerton J N, Gilroy D W. Resolution of inflammation: A new therapeutic frontier [J]., 2016, 15(8): 551-567.
[28] Marra F, Gastaldelli A, Svegliati Baroni G,. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis [J]., 2008, 14(2): 72-81.
[29] 劉宏民, 吳潔潔, 陳歡, 等. 基于InsR/PI3K/Akt通路研究巖黃連總堿糾正高脂喂養(yǎng)小鼠糖代謝紊亂的作用機(jī)制[J]. 中草藥, 2022, 53(12): 3687-3693.
[30] Hatting M, Tavares C D J, Sharabi K,. Insulin regulation of gluconeogenesis [J]., 2018, 1411(1): 21-35.
[31] Miao B C, Skidan I, Yang J S,. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains [J]., 2010, 107(46): 20126-20131.
[32] Liu T Y, Shi C X, Gao R,. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes [J]., 2015, 129(10): 839-850.
Mechanisms ofagainst non-alcoholic fatty liver disease by network pharmacology combined with molecular docking and experimental validation
DENG Guang-hui1, 2, YE Meng-juan1, 2, CAI Xiao1, 2, MA Meng-zhen1, 2, LYU Jia-hui1, 2, WU Jing1, 2, ZHANG Xiao-qian1, 2, XING Li-hua1, 2, PENG Dai-yin1, 2, 3, 4, WANG Yan-yan1, 2, YU Nian-jun1, 2, 3, 4
1. Anhui University of Chinese Medicine, Hefei 230012, China 2. Anhui Academy of Traditional Chinese Medicine & Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei 230012, China 3. MOE-Anhui Joint Collaborative Innovation Center for Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China 4. Key Laboratory of Traditional Chinese Medicine Research and Development of Anhui Province, Hefei 230012, China
To explore the therapeutic effect and mechanism ofon non-alcoholic fatty liver disease (NAFLD) based on network pharmacology, molecular docking andexperimental verification.The active components ofwere searched by literature, the potential targets were predicted by SwissTargetPrediction database, the targets of NAFLD were screened by DisGeNET and GeneCards databases, drug targets and disease targets were intersected to construct protein-protein interaction network. Gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out by DAVID database, and “active ingredient-target-disease-pathway” network was constructed, molecular docking verification of key active ingredients and core targets was carried out by AutoDock and other software. NAFLD mouse model was induced by high-fat and high-sugar diet, control group, model group, pioglitazone group (10 mg/kg) andlow-, medium-and high-dose (200, 400, 600 mg/kg) groups were set up, drugs were continuously given for eight weeks. Levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were detected; The levels of TC, TG, interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in liver were detected by ELISA. The pathological changes of liver tissue were detected by oil red O staining and hematoxylin-eosin (HE) staining. Western blotting was used to detect the expressions of insulin receptor (InsR)/phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway related proteins in liver tissue.A total of 38 active components were screened from, including moscatilin, dendrobixin A, 4,4′-dihydroxy-3,5-dimethohydroxystilbene, naringin, and 155 common targets with NAFLD, acting on 19 core targets such as insulin, protein kinase B1 (AKT1), albumin, tumor necrosis factor (TNF), interleukin-6 (IL-6), vascular endothelial growth factor A, peroxisome proliferator-activated receptor γ, IL-1β, mainly involving cancer pathway, PI3K/Akt pathway, advanced glycation end products-receptor for advanced glycation end products signaling pathway, hypoxia inducible factor signaling pathway and TNF signaling pathway. Molecular docking showed that the top five core components have good binding ability with the top five core targets. The animal experiment results confirmed that the mouse NAFLD model was successfully established. Compared with model group, body weight, liver index, levels of TG, TC, ALT, AST, LDL-C in serum and TC, TG in liver ofgroup were significantly decreased (< 0.05, 0.01), and HDL-C level in serum was significantly increased (< 0.01), improved the accumulation and degeneration of liver fat. And expression levels of InsR, PI3K and p-Akt/Akt proteins in liver were significantly increased (< 0.05, 0.01), while the expression of p-GSK-3β/GSK-3β protein was significantly decreased (< 0.01).has protective effect on NAFLD, and its mechanism may be related to activating PI3K/Akt pathway, improving insulin resistance and reducing inflammatory reaction.
C. Z. Tang et S. J. Cheng; non-alcoholic fatty liver disease; network pharmacology; rutin; moscatilin; naringenin; InsR/PI3K/Akt/GSK-3β pathway;insulin resistance; inflammation
R285.5
A
0253 - 2670(2023)16 - 5244 - 13
10.7501/j.issn.0253-2670.2023.16.013
2023-04-27
國(guó)家自然科學(xué)基金聯(lián)合基金項(xiàng)目(U19A2009);省部共建安徽道地中藥材品質(zhì)提升協(xié)同創(chuàng)新中心項(xiàng)目(教科信廳函[2022]4號(hào));安徽省教育廳項(xiàng)目(皖教秘科[2014]44號(hào))
鄧光輝(1997—),男,碩士研究生,研究方向?yàn)橹兴庂Y源與中藥質(zhì)量。Tel: 17856419316 E-mail: 3111630539@qq.com
王妍妍,教授,研究方向?yàn)橹兴幩幚怼el: (0551)68129180 E-mail: wangyanyan@ahtcm.edu.cn
俞年軍,教授,研究方向?yàn)橹兴庂|(zhì)量評(píng)價(jià)。Tel: (0551)68129173 E-mail: ynj2005288@sina.com
[責(zé)任編輯 李亞楠]