国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

葡萄COMT基因家族的鑒定與表達(dá)分析

2023-10-27 09:00:25許雯雯高換超韓菲菲李凱薇賈山毅李桂榮
果樹學(xué)報(bào) 2023年10期
關(guān)鍵詞:功能分析

許雯雯 高換超 韓菲菲 李凱薇 賈山毅 李桂榮

DOI:10.13925/j.cnki.gsxb.20230113

摘? ? 要:【目的】咖啡酸O-甲基轉(zhuǎn)移酶(COMTs)是木質(zhì)素合成過程中一種多功能酶,參與多種初生代謝和次生代謝途徑,在植物木質(zhì)素次生物質(zhì)合成及植物抗逆脅迫反應(yīng)中起著重要作用。旨在鑒定葡萄COMT基因家族成員,探究其對(duì)葡萄真菌病害脅迫的響應(yīng),為葡萄抗病育種提供基因資源。【方法】基于擬南芥COMT基因搜索葡萄COMT基因家族,運(yùn)用生物信息學(xué)方法研究葡萄COMT蛋白質(zhì)理化性質(zhì)、基因染色體定位、motif分析和啟動(dòng)子順式作用元件等;利用熒光定量PCR法分析COMT基因在抗病品種摩爾多瓦和感病品種夏黑葡萄上接種霜霉病的表達(dá)模式?!窘Y(jié)果】從葡萄中鑒定出26個(gè)COMT基因,主要位于第10、12和15號(hào)染色體上;蛋白質(zhì)分子質(zhì)量差異較大,屬于不穩(wěn)定的兩性蛋白;亞細(xì)胞定位顯示其蛋白主要位于細(xì)胞質(zhì)和細(xì)胞外。從構(gòu)建的系統(tǒng)進(jìn)化樹中發(fā)現(xiàn),該家族分為Ⅰ和Ⅱ 2個(gè)亞組,在進(jìn)化過程中比較保守,與擬南芥和水稻親緣關(guān)系較近。啟動(dòng)子分析表明,葡萄COMT基因啟動(dòng)子包含豐富的植物激素響應(yīng)和脅迫響應(yīng)的順式元件,接種葡萄霜霉病后,在抗病品種摩爾多瓦中,除COMT2基因外其余25條COMT基因在接種24 h后均顯著上調(diào),而在感病品種夏黑中只有63%的COMT基因出現(xiàn)顯著上調(diào),且抗病品種的表達(dá)量顯著高于感病品種,其中以VvCOMT1、5、6、7、8、9和19上調(diào)最為顯著。【結(jié)論】共鑒定了26個(gè)葡萄COMT基因家族成員,同時(shí)發(fā)現(xiàn)COMT基因在葡萄抗病品種中受霜霉病的強(qiáng)烈誘導(dǎo),表明木質(zhì)素在葡萄抗病中起重要作用,可為后期研究葡萄抗霜霉病分子機(jī)制提供候選基因。

關(guān)鍵詞:葡萄霜霉??;咖啡酸-O-甲基轉(zhuǎn)移酶;生物學(xué)分析;功能分析

中圖分類號(hào):S663.1? S436.631 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)10-2061-15

Identification and expression analysis of grape COMT gene family

XU Wenwen1, GAO Huanchao1, HAN Feifei1, LI Kaiwei1, JIA Shanyi1, LI Guirong1, 2*

(1School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; 2Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, Henan, China)

Abstract: 【Objective】Caffeic acid O-methyltransferase (COMTs) is a multifunctional enzyme in lignin synthesis. It participates in some primary and secondary metabolic pathways, and plays an important role in the synthesis of lignin secondary substances and the responses to stresses in plants. The European grape genome was used in the study to search for genes and proteins homologous to members of the COMT gene family, and identification of the final grape COMT gene family and analysis of their expression levels under grape downy mildew stress were carried out to provide a molecular basis and genetic resources for grape resistance breeding. 【Methods】 Firstly, the identified O-methyltransferase gene sequence was searched from the Arabidopsis database. Based on the Arabidopsis COMT gene, the grape COMT gene family was searched by BLASTP tool, and candidate genes of the VvCOMT family were obtained by search and comparison, and duplicate and redundant sequences were deleted. The gene structure, protein physicochemical properties, protein secondary structure, chromosome location and promoter cis-acting elements were obtained using various biological online analysis software; Moldova and Summer Black were selected as materials to inoculate the pathogen spores of grape downy mildew on the leaves respectively. The samples were taken at 0, 6, 24, 48 h and 120 h after inoculation, and the expression patterns of the COMT gene family in Moldova and Summer Black after inoculation of downy mildew pathogen were analyzed by real-time fluorescence quantitative method. 【Results】A grape COMT gene family consisting of 26 COMT members was obtained through the identification, and all COMT genes had a Methyltransfer_2. The C-terminal catalytic domain (PF00891) was named VvCOMT1-26 according to the chromosome position, 84.6% of the grape COMTs had an amino acid length of over 300 aa, and their amino acid numbers ranged from 189 to 395. Among them, VvCOMT24 (VIT_215s0048g02460) had the longest sequence with 395 amino acids, while VvCOMT3 (VIT_208s0032g01130) has the shortest sequence with only 189 amino acids. The relative molecular weight of the proteins were between 21 179.45 (VvCOMT3) and 43 521.88 (VvCOMT24); The isoelectric points were distributed between 5.18 (VvCOMT22) and 6.23 (VvCOMT3), and the isoelectric points were all less than 7; The protein instability coefficients ranged from 27.21 (VvCOMT23) to 43.30 (VvCOMT5), among them 6 instability coefficients over 40 belonged to unstable proteins; All proteins with a hydrophilicity index between -0.158 (VvCOMT16) and 0.079 (VvCOMT7) were amphoteric proteins; The subcellular localization results showed that the final localization was in cytoplasm and extracellular space. By constructing the phylogenetic trees of the different species, it could be observed that the grape COMT gene was relatively conservative and highly similar in the evolutionary process, which was closely related to Arabidopsis and rice, and was farthest related to apple. From the prediction of the secondary structure of the proteins, it could be seen that the grape COMT gene family contained α-helix, β-corner, irregular curl and extended chain four configurations, the total proportion of α-helix and irregular curl was 70%. The Motif analysis yielded 19 more conservative motifs, and each VvCOMT gene was distributed with 4-14 motifs, the motif 6 present in all COMT genes, indicating that the motif 6 was highly conservative. At the same time, it was found that the COMT genes in the same group contained the same motifs. For example, the closely related VvCOMTs in Group I contained motifs 5, 7, 8, 17 and 19, while those in Group Ⅱ were different. Most COMT genes contained motifs 13, 14 and 16, while the VvCOMT4 only contained motifs 2, 3, 6 and 10. The difference in the motifs contained in different branches might be one of the reasons for functional differentiation in the evolution of the VvCOMT. It was found that 26 VvCOMT genes were irregularly distributed on 7 chromosome skeletons, among them the 12 chromosome had the most genes, including 13 VvCOMT genes. The promoter visualization showed that 227 cis-acting elements were found in the grape COMT gene family, including 184 hormone related elements, 19 fungal induction related elements and 29 defense and stress response related elements. By analyzing the expression of the COMT genes in the two cultivars after inoculation with downy mildew pathgen, it was found that 25 VvCOMTs were significantly upregulated under downy mildew stress in the resistant cultivar Moldova, with 42% of the COMT genes significantly upregulated at 48 h after inoculation, VvCOMT1, 5, 6, 7, 8, 9 and 19 were most significantly upregulated after inoculation with the pathogen in the susceptible cultivar Summer Black. Among them, the VvCOMT2 was not significantly upregulated in both cultivars, indicating that it did not respond to the infection of downy mildew. In addition, the expression of the COMT genes in resistant cultivar was significantly higher than that in susceptible cultivars, indicating that the VvCOMT genes played a certain role in the process of resistance to downy mildew. 【Conclusion】 This study showed that the grape COMT gene family responded to grape downy mildew and played an important role in the process of resistance to downy mildew infection.

Key words: Grape downy mildew; Caffeic acid O-methyltransferase; Biological analysis; Functional analysis

葡萄作為四大水果之一,因其營(yíng)養(yǎng)豐富,適應(yīng)性強(qiáng),普遍受到消費(fèi)者和生產(chǎn)者的青睞,在世界范圍內(nèi)被廣泛栽培。然而,葡萄生產(chǎn)過程中經(jīng)常遭受霜霉病、白腐病等真菌病害的危害,嚴(yán)重影響葡萄的產(chǎn)量和品質(zhì)。葡萄霜霉病是全世界范圍內(nèi)嚴(yán)重危害葡萄的真菌病害之一[1],該病原菌主要以卵孢子形態(tài)在病殘組織內(nèi)越冬,5月份通過氣流或雨滴濺散傳播,典型的癥狀為葉片背面出現(xiàn)白色霜狀霉層,即病菌的孢子囊和孢子梗,同時(shí)侵染嫩梢、卷須、葉柄和幼果等部位,嚴(yán)重危害葡萄的營(yíng)養(yǎng)器官和生殖器官[2-3]。

木質(zhì)素是一種多酚聚合物,被木纖維、其他維管束細(xì)胞和厚壁細(xì)胞包圍[4-5],是植物中重要的次生物質(zhì),不僅可以增強(qiáng)植物細(xì)胞和組織的強(qiáng)度,有利于植物組織中的水分運(yùn)輸,同時(shí)也能提高植物抵抗病蟲害的能力,其總量是僅次于纖維素的第二大有機(jī)物[6-7]。木質(zhì)素的生物合成是苯丙氨酸或酪氨酸在一系列酶的催化下逐漸轉(zhuǎn)化為木質(zhì)素單體,繼而形成木質(zhì)素的過程[8-9],該過程由3個(gè)途徑組成:苯丙烷途徑、木質(zhì)素合成的特定途徑以及木質(zhì)素單體向木質(zhì)素的糖基化轉(zhuǎn)運(yùn)和聚合的途徑??Х人酧-甲基轉(zhuǎn)移酶(COMT)是苯丙烷代謝途徑中重要的甲基化酶[10-11],COMT有多種功能,如催化咖啡酸的甲基化,5-羥基苯基醛生成阿魏酸、芥末醛等,還能催化S-腺苷L-蛋氨酸(SAM或AdoMet)的甲基基團(tuán)形成阿魏酸和S-腺苷L-同型半胱氨酸(SAH或AdoHcy)來調(diào)節(jié)木質(zhì)素的合成,且其N端在沒有金屬離子的環(huán)境下就能進(jìn)行同源二聚化,除參與木質(zhì)素合成外還在類黃酮和芥子酸酯等物質(zhì)中發(fā)揮催化作用[12-13]。

前人研究表明,COMT基因家族包含多個(gè)成員,如毛楊中有25個(gè)[14],擬南芥和甘藍(lán)型油菜中分別有14個(gè)[15]和42個(gè)[16]。在其他物種中也有相關(guān)的研究,如煙草[17]、燕麥[18]、松樹[19]、水稻[20]、大麥[21]和藍(lán)莓果實(shí)[22]。植物病原菌侵染和植株果實(shí)發(fā)育包含木質(zhì)素的積累過程,而COMT基因已被證明在木質(zhì)素積累過程中起著關(guān)鍵作用。Petitot等[23]發(fā)現(xiàn)非洲水稻COMT3在根結(jié)線蟲侵染過程中表達(dá)量明顯升高;Fornalé等[24]抑制玉米COMT基因的表達(dá)后發(fā)現(xiàn)其總木質(zhì)素含量和S單位/G單位比降低;Wang等[25]過表達(dá)COMT-3D基因使得轉(zhuǎn)基因小麥的耐病性與木質(zhì)素含量得到了提高。因此,COMT基因?qū)χ参锏挚股锖头巧锩{迫尤為重要。但在葡萄中尚未對(duì)COMT基因家族的特征和功能進(jìn)行全面研究。筆者在本研究中參考乃國(guó)潔等[26]的生物信息學(xué)方法,鑒定了葡萄COMT基因家族,分析其蛋白質(zhì)理化性質(zhì)、染色體定位、保守結(jié)構(gòu)域和基序分析,同時(shí)研究不同抗性葡萄品種COMT基因接種霜霉病的表達(dá)模式,旨在挖掘葡萄霜霉病響應(yīng)的關(guān)鍵COMT基因,有利于進(jìn)一步明確該基因家族在葡萄抗病反應(yīng)過程中的作用,為葡萄抗病品種的選育奠定基礎(chǔ)。

1 材料和方法

1.1 葡萄COMT基因的鑒定及理化性質(zhì)分析

葡萄基因組數(shù)據(jù)庫(v2.1)來自phytozome 13(https://Phytozome-next.igi.doe.gov),首先在擬南芥數(shù)據(jù)庫(https://www.arabidopsis.org)搜索O-甲基轉(zhuǎn)移酶基因,基于Pfam數(shù)據(jù)庫的隱馬爾可夫模型(PF00891),利用phytozome 13非冗余蛋白質(zhì)數(shù)據(jù)庫中BLASTP工具搜索比對(duì),獲取葡萄COMT家族候選基因,刪除重復(fù)和冗余序列,確定VvCOMT基因家族。利用在線ExPASy(http://web.expasy.org/)和Plant-PLocserve(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)工具預(yù)測(cè)VvCOMT蛋白的理化性質(zhì),包括蛋白長(zhǎng)度、分子質(zhì)量、等電點(diǎn)等,并預(yù)測(cè)亞細(xì)胞定位,利用線上分析軟件ProtParam(http://web.expasy.org/protparam)進(jìn)行蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè)。

1.2 系統(tǒng)發(fā)育樹的構(gòu)建及染色體定位

運(yùn)用MEGA 11軟件中的Clustal W程序?qū)M南芥、水稻、玉米、大豆和番茄等物種蛋白序列進(jìn)行多序列比對(duì),并通過鄰接法(neighbour-joining,NJ)和最大似然法(maximum likelihood,ML)構(gòu)建系統(tǒng)發(fā)育樹,Bootstrap檢驗(yàn)設(shè)定1000次重復(fù),以評(píng)價(jià)系統(tǒng)發(fā)育樹的統(tǒng)計(jì)可靠性。利用iTOL(http://iTOL.embl.de)在線軟件對(duì)進(jìn)化樹進(jìn)行美化。

為了解VvCOMTs基因在基因組內(nèi)的分布,通過JGI數(shù)據(jù)庫獲得基因組注釋文件中提供的位置信息,利用TBtools軟件[27]將葡萄COMT基因定位到相應(yīng)的染色體上。

1.3 VvCOMT家族基序與啟動(dòng)子順式作用分析

為更好地理解和調(diào)控VvCOMTs的基因功能,利用在線程序MEME(v4.3)(http://meme.nbcr.net/meme/)分析VvCOMTs序列特征蛋白保守模塊(motif),查找的motif數(shù)量設(shè)置為20,運(yùn)行參數(shù)為默認(rèn)。

從歐洲葡萄數(shù)據(jù)庫中查找VvCOMTs起始密碼子ATG上游2 kb的序列,提交使用在線程序PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)預(yù)測(cè)VvCOMT啟動(dòng)子區(qū)域的順式作用元件,將獲得的順式作用元件提交至TBtools軟件中進(jìn)行啟動(dòng)子可視化。

1.4 VvCOMT基因家族成員在葡萄霜霉病中的表達(dá)分析

為了解VvCOMTs在抗霜霉病侵染中的作用,采集病葉制作霜霉病病原孢子(濃度為1×105個(gè)·mL-1),材料選擇抗病品種摩爾多瓦和感病品種夏黑接種制備的霜霉病菌,接種后0、6、48、96、120 h分別采樣,液氮速凍于-80 ℃保存。樣品RNA提取采用試劑盒法(OMEGA,美國(guó)),利用UEIris RT mix with DNase(All-in-One)合成cDNA,使用實(shí)時(shí)熒光定量PCR(qRT-PCR)技術(shù)分析基因表達(dá)水平,熒光定量反應(yīng)體系10 μL:TB Green?Premix Ex Taq?(TaKaRa,大連)5 μL,模板0.5 μL,上、下游引物1 μL,ddH2O 3.5 μL。熒光定量反應(yīng)程序?yàn)椋?0 ℃ 2 min,95 ℃ 2 min,然后95 ℃ 15 s,60 ℃ 30 s,39次循環(huán)。Thresh值按PCR儀默認(rèn)為30,分別記錄每個(gè)反應(yīng)熒光信號(hào)由本底進(jìn)入指數(shù)增長(zhǎng)階段的拐點(diǎn)所對(duì)應(yīng)的循環(huán)數(shù)(threshold cycle,Ct),然后用2-△△CT法[28]以未接種霜霉病菌的葉片為對(duì)照,對(duì)不同時(shí)間點(diǎn)VvCOMTs基因的相對(duì)表達(dá)量進(jìn)行分析。所有樣本使用3次生物重復(fù)進(jìn)行分析。使用葡萄Actin作為內(nèi)參引物,本研究中使用的所有引物均列于表1。

1.5 統(tǒng)計(jì)分析

采用SPSS Stantistics v.26.0軟件對(duì)數(shù)據(jù)進(jìn)行方差分析(ANOVA)。采用最小顯著性差異(p<0.05)進(jìn)行顯著性分析。

2 結(jié)果與分析

2.1 葡萄COMT基因的鑒定和蛋白質(zhì)理化性質(zhì)分析

通過生物信息學(xué)分析獲得26條VvCOMT基因,按照染色體位置分別命名為VvCOMT1~26?;蚪Y(jié)構(gòu)和保守結(jié)構(gòu)域分析表明,26個(gè)葡萄COMT都具有一個(gè)名為Methyltransf_2結(jié)構(gòu)域的C端催化結(jié)構(gòu)域(PF00891),包括SAM/SAH結(jié)合袋和底物結(jié)合位點(diǎn)[29],SAM/SAH結(jié)合袋高度保守,而底物結(jié)合位點(diǎn)對(duì)不同組中的蛋白質(zhì)具有特異性[30](圖1)。利用ExPASy在線工具進(jìn)行蛋白理化性質(zhì)分析(表2),84.6%的葡萄COMT氨基酸長(zhǎng)度超過300 aa,且氨基酸數(shù)分布在189~395個(gè)之間,其中VvCOMT24(VIT_215s0048g02460)序列最長(zhǎng),有395個(gè)氨基酸,VvCOMT3(VIT_208s0032g01130)序列最短,氨基酸數(shù)只有189。蛋白質(zhì)相對(duì)分子質(zhì)量在21 179.45(VvCOMT3)~43 521.88 Ku(VvCOMT24);等電點(diǎn)分布在5.18(VvCOMT22)~6.23(VvCOMT3)之間,且等電點(diǎn)都小于7;蛋白質(zhì)不穩(wěn)定系數(shù)在27.21(VvCOMT23)~43.30(VvCOMT5),其中6條不穩(wěn)定系數(shù)大于40屬于不穩(wěn)定蛋白;親水指數(shù)在-0.158(VvCOMT16)~0.079(VvCOMT7)之間均為兩性蛋白;亞細(xì)胞定位結(jié)果顯示26個(gè)COMT蛋白定位于細(xì)胞質(zhì)和細(xì)胞外。

2.2 系統(tǒng)發(fā)育樹的構(gòu)建和蛋白質(zhì)二級(jí)結(jié)構(gòu)分析

為更好地了解葡萄與其他植物COMT的相似性和差異性,利用26條葡萄COMT蛋白與8條擬南芥、14條玉米、28條水稻、16條大豆和12條番茄共104條蛋白序列構(gòu)建了系統(tǒng)發(fā)育樹(圖2)。VvCOMT的系統(tǒng)發(fā)育分析顯示,26個(gè)VvCOMT蛋白序列可分為兩組:GroupⅠ包含17個(gè)VvCOMT蛋白,其余9個(gè)VvCOMT蛋白屬于Group Ⅱ。葡萄COMT基因家族成員呈現(xiàn)集中分布在2個(gè)類群之中,在進(jìn)化過程中較保守,具有高度的相似性,其中與擬南芥和水稻親緣關(guān)系較近,與玉米的親緣關(guān)系最遠(yuǎn),表明葡萄與玉米之間的COMT基因差異顯著。

通過ProtParam在線分析工具預(yù)測(cè)葡萄COMT基因家族成員的二級(jí)結(jié)構(gòu)(表3),葡萄COMT基因家族均含有α-螺旋、β-轉(zhuǎn)角、無規(guī)則卷曲和延伸鏈4種構(gòu)型,其中α-螺旋和無規(guī)則卷曲兩種構(gòu)型的總占比為70%,而β-轉(zhuǎn)角與延伸鏈兩種構(gòu)型則只占總比的30%。

2.3 染色體定位

利用TBtools軟件進(jìn)行染色體定位分析,結(jié)果顯示,26條基因在7條染色體骨架上呈無規(guī)則分布,且不同染色體骨架上的基因分布密度不同(圖3),其中第12號(hào)染色體上基因分布最多,含有13條VvCOMT基因,第2、18和19號(hào)染色體上成員最少,各含有1條VvCOMT基因。

2.4 基因結(jié)構(gòu)與基序分析

利用MEME在線工具分析,發(fā)現(xiàn)葡萄COMT基因存在19個(gè)較為保守的motif(圖4),每條VvCOMT基因分布4~14個(gè)motif,其中motif 6存在于所有的COMT基因,表明motif 6具有很強(qiáng)的保守性。同時(shí)發(fā)現(xiàn)同一類群的COMT基因包含的motif相同,如Group Ⅰ中親緣關(guān)系較近的VvCOMT都含有motif 5、7、8、17和19,Group Ⅱ與之不同,大多數(shù)COMT基因都含有motif 13、14和16,VvCOMT4中只含有motif 2、3、6、10基序,不同的分支所包含基序的不同可能是VvCOMT進(jìn)化過程中發(fā)生功能分化的原因之一。

根據(jù)VvCOMT系統(tǒng)發(fā)育關(guān)系,26個(gè)基因被分為3個(gè)亞組(圖4),其中Ⅰ組與Ⅱ組與COMT基因外顯子-內(nèi)含子結(jié)構(gòu)相似,都含有2個(gè)外顯子和1個(gè)內(nèi)含子,長(zhǎng)度在302~775 bp之間,而Ⅲ組則包含3~4個(gè)外顯子,且在同一進(jìn)化枝中的外顯子數(shù)量接近,說明系統(tǒng)發(fā)育樹的可靠性。此外,26個(gè)COMT基因中形成9個(gè)旁系同源對(duì),其中VvCOMT4/5/6,VvCOMT8/9及VvCOMT10/11步長(zhǎng)值高達(dá)100。

2.5 啟動(dòng)子順式作用元件分析

通過對(duì)葡萄COMT基因家族成員上游2000 bp啟動(dòng)子區(qū)的順式作用元件進(jìn)行分析,筆者發(fā)現(xiàn)葡萄26條COMT基因中共存在243個(gè)順式作用元件,其中192個(gè)激素相關(guān)元件(其中乙烯相關(guān)元件109個(gè),脫落酸相關(guān)元件39個(gè),水楊酸相關(guān)元件21個(gè),茉莉酸相關(guān)元件18個(gè),赤霉素相關(guān)元件5個(gè)),真菌誘導(dǎo)相關(guān)元件20個(gè),防御和應(yīng)激反應(yīng)相關(guān)元件31個(gè)(圖5)。說明葡萄COMT基因可能參與激素響應(yīng)和逆境脅迫響應(yīng)過程。

2.6 葡萄COMT基因家族成員接種霜霉病的表達(dá)分析

為探究葡萄COMT基因?qū)λ共〉捻憫?yīng),利用熒光定量PCR技術(shù),分析抗病品種摩爾多瓦和感病品種夏黑在接種霜霉病后COMT基因家族成員的表達(dá)量。由圖6和圖7可以看出,在抗病品種摩爾多瓦中,25個(gè)VvCOMT在霜霉病脅迫下均顯著上調(diào),其中42%的COMT基因在接種后的48 h即顯著上調(diào);而在感病品種夏黑中,VvCOMT1、2、、10、15、26和VvCOMT27在接種后病原菌后出現(xiàn)顯著下調(diào),63%的COMT基因在接種后的24 h出現(xiàn)顯著上調(diào),其中VvCOMT2在2個(gè)品種中均無顯著上調(diào),表明其不響應(yīng)霜霉病菌的侵染。此外,COMT基因在抗病品種的表達(dá)量顯著高于感病品種,GroupⅠ中VvCOMT5/6/8/9和19在抗病品種中分別比感病品種高出13、15、21、120和7倍;Group Ⅱ中VvCOMT1和VvCOMT7在抗病品種中分別比感病品種高出102和3580倍;Ⅲ家族成員VvCOMT25與VvCOMT26比較特殊,均顯著下調(diào)。綜合COMT基因在抗感品種中的表達(dá),VvCOMT1、5、6、7、8、9和VvCOMT19上調(diào)最為顯著,其最有可能在葡萄抵抗霜霉病菌脅迫過程中發(fā)揮著更重要的作用。

3 討 論

植物O-甲基轉(zhuǎn)移酶(OMTs)構(gòu)成一大類酶,其中Ⅰ型OMT形成功能發(fā)散的基團(tuán),并使多種底物(如類黃酮,生物堿和二苯乙烯)甲基化,主要以COMT為代表[31]。在植物木質(zhì)素生物合成、抵御病原菌侵染和抗逆脅迫中發(fā)揮重要作用。本研究基于phytozome 13數(shù)據(jù)庫,利用擬南芥COMT基因?qū)ζ咸袰OMT基因家族進(jìn)行了鑒定與分析,確定了26個(gè)VvCOMT基因,所有基因均包含咖啡酸輔酶A-O-甲基轉(zhuǎn)移酶結(jié)構(gòu)域,系統(tǒng)進(jìn)化分析結(jié)果與基因結(jié)構(gòu)及保守域分析結(jié)果一致,具有相同數(shù)量的內(nèi)含子和保守基序的基因家族成員優(yōu)先聚為一類,這與先前的研究結(jié)果一致[32],此外,各個(gè)亞類基因家族成員的蛋白質(zhì)理化性質(zhì)存在差異,本研究得到的26個(gè)COMT基因二級(jí)結(jié)構(gòu)同擬南芥COMT基因家族的蛋白質(zhì)組成和結(jié)果相似,其中α-螺旋和無規(guī)則卷曲比例最高,這與玉米COMT基因二級(jí)結(jié)構(gòu)相同[33]。啟動(dòng)子是RNA聚合酶識(shí)別、結(jié)合和開始轉(zhuǎn)錄的一段DNA序列,它含有RNA聚合酶特異性結(jié)合和轉(zhuǎn)錄起始所需的保守序列,關(guān)系到基因的時(shí)空表達(dá),是基因的開關(guān),分析其啟動(dòng)子順式作用元件有助于推測(cè)基因的潛在功能。VvCOMT基因的啟動(dòng)子中含有許多響應(yīng)激素調(diào)控的作用元件(TGA-elemet生長(zhǎng)素響應(yīng)元件,TCA-elemet響應(yīng)水楊酸響應(yīng)元件,ABRE脫落酸響應(yīng)元件,TGACG-motif茉莉酸甲酯響應(yīng)元件),防御和應(yīng)激反應(yīng)作用元件提示基因在應(yīng)對(duì)脅迫方面有重大作用,如VvCOMT1、5、13、14、19、20和VvCOMT26都含有防御和應(yīng)激反應(yīng)相關(guān)元件(TC-rich)。啟動(dòng)子分析結(jié)果表明,COMT基因家族作用于葡萄的抗病蟲、抗逆等方面,這與其他物種中COMT基因家族的研究結(jié)果相一致[34-35]。

據(jù)報(bào)道,COMT與COMT-like基因在植物次生物質(zhì)合成和抗逆脅迫反應(yīng)中起著關(guān)鍵性作用[36-37]。單木質(zhì)素生物合成是細(xì)胞壁貼合(cell wall apposition)過程中的關(guān)鍵,也是植物抵御病原菌的首要防線之一[38]。這一理論在其他物種中也得以驗(yàn)證,小麥中COMT-3D基因過表達(dá)可以提高其對(duì)紋枯病的抗性[25],增加木質(zhì)素的積累;棉花中n-乙酰轉(zhuǎn)移酶1(GhSNAT1)和咖啡酸O-甲基轉(zhuǎn)移酶(GhCOMT)沉默導(dǎo)致褪黑素的生物合成減少,從而影響木質(zhì)素和棉酚的合成,降低了對(duì)棉花黃萎病的抗性[39]; COMT的表達(dá)量下調(diào)降低了6個(gè)月齡的楊樹中木質(zhì)素的含量水平[40];水稻中咖啡酸O-甲基轉(zhuǎn)移酶的過表達(dá)通過5-甲氧基色胺途徑同樣也增加了褪黑素的產(chǎn)生,以此提高植物抗性[41]。同樣的,在VvCOMT基因家族在受到葡萄霜霉病侵染時(shí),抗病品種COMT基因家族除VvCOMT2外均在接種霜霉病后48 h出現(xiàn)顯著上調(diào),而在感病品種中只有63%的COMT基因在接種后的24 h內(nèi)出現(xiàn)短時(shí)上調(diào),且抗病力不同的品種,其表達(dá)量和表達(dá)模式也不同,摩爾多瓦多在6~48 h之間顯著表達(dá),而夏黑則是24 h后表達(dá)量提高,且抗病品種中96%的基因表達(dá)量都高于感病品種,說明在抗病品種抵御霜霉病時(shí)COMT基因發(fā)揮重要作用,這與筆者先前預(yù)期的結(jié)果一致。植物生長(zhǎng)發(fā)育過程中不會(huì)像動(dòng)物擁有體細(xì)胞適應(yīng)性免疫系統(tǒng)能夠主動(dòng)避開病原微生物和病蟲害,只能依靠植物合成的化學(xué)成分和本身的一些結(jié)構(gòu)作為屏障[42-43]。而在葡萄中,不同品種的抗霜霉病程度不一樣,其COMT基因家族的表達(dá)量也不一樣,結(jié)果中顯示VvCOMT1、5、6、7、8、9和VvCOMT19基因在抗病品種摩爾多瓦中表達(dá)量顯著高于感病品種夏黑,同時(shí)發(fā)現(xiàn)VvCOMT1、5、19啟動(dòng)子區(qū)域中包含抗防御和應(yīng)激反應(yīng)響應(yīng)元件,可以證明這些基因在葡萄抗霜霉病侵染中發(fā)揮重要作用,后期可對(duì)這幾個(gè)基因進(jìn)行過表達(dá)處理,獲得陽性轉(zhuǎn)基因苗,以期挖掘出VvCOMT基因家族更多的潛在功能,為葡萄抗病品種的培育做出貢獻(xiàn)。

4 結(jié) 論

筆者在本研究中鑒定了葡萄26個(gè)COMT基因家族成員,在接種霜霉病后均有表達(dá),尤其在抗病品種中表達(dá)較顯著,推測(cè)COMT基因在葡萄抗霜霉病侵染過程中發(fā)揮重要的作用,可為下一步研究其在抗病過程中的分子功能和在基因中的調(diào)控奠定基礎(chǔ)。

參考文獻(xiàn)References:

[1] 王璐璐,孫云開,徐旋,周潔,王清明,祝學(xué)珍. 葡萄霜霉病的發(fā)病規(guī)律和防治研究進(jìn)展[J]. 園藝與種苗,2022,42(9):31-33.

WANG Lulu,SUN Yunkai,XU Xuan,ZHOU Jie,WANG Qingming,ZHU Xuezhen. Research progress on pathogenesis and control of grape downy mildew [J]. Horticulture & Seed,2022,42(9):31-33.

[2] 李卓,周婷婷,楊超,李映程,孫琦,任毓忠,趙寶龍,張莉,李國(guó)英. 葡萄霜霉病菌侵染抗病和感病品種過程的組織學(xué)觀察[J]. 園藝學(xué)報(bào),2017,44(5):861-870.

LI Zhuo,ZHOU Tingting,YANG Chao,LI Yingcheng,SUN Qi,REN Yuzhong,ZHAO Baolong,ZHANG Li,LI Guoying. Histological studies on the infection processs of the grape downy mildew between susceptible cultivar and resistant cultivar[J]. Acta Horticulturae Sinica,2017,44(5):861-870.

[3] 杜興蘭. 葡萄霜霉病和白粉病生物防治的研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2008.

DU Xinglan. Biological control of grape downy mildew and powdery mildew[D]. Baoding:Hebei Agricultural University,2008.

[4] GUO W F,JIN L,MIAO Y H,HE X,HU Q,GUO K,ZHU L F,ZHANG X L. An ethylene response-related factor,GbERF1-like,from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis[J]. Plant Molecular Biology,2016,91(3):305-318.

[5] BOERJAN W,RALPH J,BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology,2003,54(1):519-546.

[6] VANHOLME R,DE MEESTER B,RALPH J,BOERJAN W. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology,2019,56:230-239.

[7] LEWIS N G,YAMAMOTO E. Lignin:Occurrence,biogenesis and biodegradation[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:455-496.

[8] ROJE S. S-Adenosyl-L-methionine:Beyond the universal methyl group donor[J]. Phytochemistry,2006,67(15):1686-1698.

[9] LAM K C,IBRAHIM R K,BEHDAD B,DAYANANDAN S. Structure,function,and evolution of plant O-methyltransferases[J]. Genome,2007,50(11):1001-1013.

[10] LU S W,ZHUGE Y X,HAO T Y,LIU Z J,ZHANG M W,F(xiàn)ANG J G. Systematic analysis reveals O-methyltransferase gene family members involved in flavonoid biosynthesis in grape[J]. Plant Physiology and Biochemistry,2022,173:33-45.

[11] JOSHI C P,CHIANG V L. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases[J]. Plant Molecular Biology,1998,37(4):663-674.

[12] BERIM A,GANG D R. Methoxylated flavones:Occurrence,importance,biosynthesis[J]. Phytochemistry Reviews,2016,15(3):363-390.

[13] BENNETT M R,SHEPHERD S A,CRONIN V A,MICKLEFIELD J. Recent advances in methyltransferase biocatalysis[J]. Current Opinion in Chemical Biology,2017,37:97-106.

[14] SHI R,SUN Y H,LI Q Z,HEBER S,SEDEROFF R,CHIANG V L. Towards a systems approach for lignin biosynthesis in Populus trichocarpa:Transcript abundance and specificity of the monolignol biosynthetic genes[J]. Plant and Cell Physiology,2010,51(1):144-163.

[15] MOINUDDIN S G A,JOURDES M,LASKAR D D,KI C,CARDENAS C L,KIM K W,ZHANG D Z,DAVIN L B,LEWIS N G. Insights into lignin primary structure and deconstruction from Arabidopsis thaliana COMT (caffeic acid O-methyl transferase) mutant Atomt1[J]. Organic & Biomolecular Chemistry,2010,8(17):3928-3946.

[16] LI W,LU J X,LU K,YUAN J L,HUANG J H,DU H,LI J N. Cloning and phylogenetic analysis of Brassica napus L. caffeic acid O-methyltransferase 1 gene family and its expression pattern under drought stress[J]. PLoS One,2016,11(11):e0165975.

[17] PELLEGRINI L,GEOFFROY P,F(xiàn)RITIG B,LEGRAND M. Molecular cloning and expression of a new class of ortho-diphenol-O-methyltransferases induced in tobacco (Nicotiana tabacum L.) leaves by infection or elicitor treatment[J]. Plant Physiology,1993,103(2):509-517.

[18] HEATH R,HUXLEY H,STONE B,SPANGENBERG G. cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from perennial ryegrass (Lolium perenne)[J]. Journal of Plant Physiology,1998,153(5/6):649-657.

[19] CHUNG N,ZHANG X D,KREAMER A,LOCCO L,KUAN P F,BARTZ S,LINSLEY P S,F(xiàn)ERRER M,STRULOVICI B. Median absolute deviation to improve hit selection for genome-scale RNAi screens[J]. Journal of Biomolecular Screening,2008,13(2):149-158.

[20] CHOI G H,LEE H Y,BACK K. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants[J]. Journal of Pineal Research,2017,63(1):e12412.

[21] DALY P,MCCLELLAN C,MALUK M,OAKEY H,LAPIERRE C,WAUGH R,STEPHENS J,MARSHALL D,BARAKATE A,TSUJI Y,GOEMINNE G,VANHOLME R,BOERJAN W,RALPH J,HALPIN C. RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite redundancy in the gene family[J]. Plant Biotechnology Journal,2019,17(3):594-607.

[22] LIU Y S,WANG Y Z,PEI J B,LI Y D,SUN H Y. Genome-wide identification and characterization of COMT gene family during the development of blueberry fruit[J]. BMC Plant Biology,2021,21(1):5.

[23] PETITOT A S,KYNDT T,HAIDAR R,DEREEPER A,COLLIN M,DE ALMEIDA ENGLER J,GHEYSEN G,F(xiàn)ERNANDEZ D. Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots[J]. Annals of Botany,2017,119(5):885-899.

[24] FORNAL? S,SONBOL F M,MAES T,CAPELLADES M,PUIGDOM?NECH P,RIGAU J,CAPARR?S-RUIZ D. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors[J]. Plant Molecular Biology,2006,62(6):809-823.

[25] WANG M X,ZHU X L,WANG K,LU C G,LUO M Y,SHAN T L,ZHANG Z Y. A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength[J]. Scientific Reports,2018,8:6543.

[26] 乃國(guó)潔,盧世雄,馬維峰,李艷梅,陳佰鴻,毛娟. 葡萄EIN3/EIL轉(zhuǎn)錄因子家族成員鑒定及表達(dá)特征分析[J]. 果樹學(xué)報(bào),2021,38(6):856-870.

NAI Guojie,LU Shixiong,MA Weifeng,LI Yanmei,CHEN Baihong,MAO Juan. Genome-wide identification and expression characteristic analysis of EIN3/EIL transcription factor family in grape[J]. Journal of Fruit Science,2021,38(6):856-870.

[27] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,F(xiàn)RANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.

[28] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,2001,25(4):402-408.

[29] RAMMESMAYER G,PICHORNER H,ADAMS P,JENSEN R G,BOHNERT H J. Characterization of IMT1,myo-inositol O-methyltransferase,from Mesembryanthemum crystallinum[J]. Archives of Biochemistry and Biophysics,1995,322(1):183-188.

[30] DO C T,POLLET B,TH?VENIN J,SIBOUT R,DENOUE D,BARRI?RE Y,LAPIERRE C,JOUANIN L. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin,flavonoids and sinapoyl malate biosynthesis in Arabidopsis[J]. Planta,2007,226(5):1117-1129.

[31] IBRAHIM R K,BRUNEAU A,BANTIGNIES B. Plant O-methyltransferases:Molecular analysis,common signature and classification[J]. Plant Molecular Biology,1998,36(1):1-10.

[32] 包穎亮. 構(gòu)樹咖啡酸-O-甲基轉(zhuǎn)移酶基因的克隆及生物信息學(xué)分析[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2018.

BAO Yingliang. Cloning and bioinformatics analysis of caffeic acid O-methyl-transferase gene from Broussonetia papyrifera[D]. Hohhot:Inner Mongolia Agricultural University,2018.

[33] 徐碧瑩,張敏艷,黃偉鵬,沙哈尼,吳委林,鄭大浩. 玉米O-甲基轉(zhuǎn)移酶(ZmOMT)基因家族的生物信息學(xué)分析[J/OL]. 分子植物育種,2021:1-12. [2021-11-05]. https://kns.cnki.net/kcms/detail/46.1068.s.20211104.1914.021.html.

XU Biying,ZHANG Minyan,HUANG Weipeng,SHA Hani,WU Weilin,ZHENG Dahao. Bioinformatics analysis of maize O-methyltransferase (ZmOMT) gene family[J/OL]. Molecular Plant Breeding, 2021:1-12. [2021-11-05]. https://kns.cnki.net/kcms/detail/46.1068.s.20211104.1914.021.html.

[34] WU C C,ZUO D Y,XIAO S P,WANG Q L,CHENG H L,LV L M,ZHANG Y P,LI P B,SONG G L. Genome-wide identification and characterization of GhCOMT gene family during fiber development and Verticillium wilt resistance in cotton[J]. Plants,2021,10(12):2756.

[35] 陳安琪. 川芎咖啡酸-O-甲基轉(zhuǎn)移酶(LcCOMT)的功能鑒定與應(yīng)用研究[D]. 成都:西南交通大學(xué),2021.

CHEN Anqi. Functional identification and application of Ligusticum chuanxiong caffcie acid-O-methyltransferase (LcCOMT)[D].

Chengdu:Southwest Jiaotong University,2021.

[36] LEE J E,VOGT T,HAUSE B,L?BLER M. Methyl jasmonate induces an O-methyltransferase in Barley[J]. Plant and Cell Physiology,1997,38(7):851-862.

[37] TOQUIN V,GRAUSEM B,GEOFFROY P,LEGRAND M. Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene:Identification of promoter sequences involved in gene inducibility by various stimuli[J]. Plant Molecular Biology,2003,52(3):495-509.

[38] COLLINGE D B. Cell wall appositions:The first line of defence[J]. Journal of Experimental Botany,2009,60(2):351-352.

[39] LI C,HE Q L,ZHANG F,YU J W,LI C,ZHAO T L,ZHANG Y,XIE Q W,SU B R,MEI L,ZHU S J,CHEN J H. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis[J]. The Plant Journal,2019,100(4):784-800.

[40] BARAKAT A,CHOI A,YASSIN N B M,PARK J S,SUN Z C,CARLSON J E. Comparative genomics and evolutionary analyses of the O-methyltransferase gene family in Populus[J]. Gene,2011,479(1/2):37-46.

[41] BYEON Y,CHOI G H,LEE H Y,BACK K. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice[J]. Journal of Experimental Botany,2015,66(21):6917-6925.

[42] HO-YUE-KUANG S,ALVARADO C,ANTELME S,BOUCHET B,C?ZARD L,LE BRIS P,LEG?E F,MAIA-GRONDARD A,YOSHINAGA A,SAULNIER L,GUILLON F,SIBOUT R,LAPIERRE C,CHATEIGNER-BOUTIN A L. Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality[J]. Journal of Experimental Botany,2016,67(1):227-237.

[43] 李偉,熊謹(jǐn),陳曉陽. 木質(zhì)素代謝的生理意義及其遺傳控制研究進(jìn)展[J]. 西北植物學(xué)報(bào),2003,23(4):675-681.

LI Wei,XIONG Jin,CHEN Xiaoyang. Advances in the research of physiological significances and genetic regulation of lignin metabolism[J]. Acta Botanica Boreali-Occidentalia Sinica,2003,23(4):675-681.

收稿日期:2023-04-04 接受日期:2023-05-24

基金項(xiàng)目:河南省科技攻關(guān)項(xiàng)目(222102110199、232102111090)

作者簡(jiǎn)介:許雯雯,女,碩士,研究方向?yàn)楣麡浞N質(zhì)資源與遺傳育種。Tel:15136767398,E-mail:xuwen199810@163.com

通信作者 Author for correspondence. Tel:13569430110,E-mail:liguirong10@163.com

猜你喜歡
功能分析
基于功能分析的職業(yè)技術(shù)教育管理和改革措施研究
海洋微生物次生代謝的生物合成機(jī)制
科技資訊(2016年19期)2016-11-15 10:39:12
核電廠出入口控制系統(tǒng)技術(shù)分析
淺析道具在漢族民間舞中的功能
戲劇之家(2016年20期)2016-11-09 23:08:07
《哈克》的性別批評(píng)分析與解讀
淺談高校學(xué)工系統(tǒng)的需求分析與功能描述
高校多媒體教室設(shè)備選型和布局
科技視界(2016年13期)2016-06-13 21:00:36
關(guān)于大學(xué)音樂欣賞教育與素質(zhì)教育的功能分析
戲劇之家(2016年6期)2016-04-16 11:52:45
寧波工程學(xué)院排課管理系統(tǒng)功能及數(shù)據(jù)分析
科技視界(2016年4期)2016-02-22 20:53:20
煤礦機(jī)車監(jiān)控系統(tǒng)的功能分析及應(yīng)用①
科技資訊(2015年8期)2015-07-02 18:49:25
黑龙江省| 宁南县| 六安市| 金阳县| 陇南市| 金堂县| 遂昌县| 嘉义市| 固安县| 三门县| 临邑县| 安达市| 鄢陵县| 徐闻县| 德庆县| 廉江市| 丰城市| 亳州市| 盐山县| 邯郸市| 工布江达县| 东丰县| 太保市| 醴陵市| 定兴县| 都江堰市| 从化市| 西华县| 永宁县| 花垣县| 南投县| 葫芦岛市| 定结县| 广平县| 松原市| 钟山县| 乐东| 库车县| 达孜县| 四川省| 十堰市|