国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

中華獼猴桃全基因組MADS-box基因家族鑒定及表達(dá)分析

2023-11-21 07:56:09高歡鄭珂昕廖光聯(lián)王海令陳璐賈東峰黃春輝曲雪艷徐小彪
果樹學(xué)報(bào) 2023年11期
關(guān)鍵詞:生長發(fā)育

高歡 鄭珂昕 廖光聯(lián) 王海令 陳璐 賈東峰 黃春輝 曲雪艷 徐小彪

摘? ? 要:【目的】鑒定并分析中華獼猴桃MADS-box基因家族成員,探明MADS-box基因家族成員在果實(shí)生長發(fā)育及芽休眠中的表達(dá)模式。【方法】基于中華獼猴桃紅陽V3基因組數(shù)據(jù)庫,利用生物信息學(xué)方法對(duì)中華獼猴桃MADS-box全基因組進(jìn)行鑒定,分析其家族成員的理化性質(zhì)、系統(tǒng)進(jìn)化樹、保守基序、順式作用元件,并對(duì)其在果實(shí)生長發(fā)育及不同組織中的表達(dá)模式進(jìn)行分析?!窘Y(jié)果】在中華獼猴桃紅陽基因組中鑒定到了68個(gè)AcMADS-box基因,共包含11個(gè)亞家族,不均勻地分布于22條染色體上,成員間共存在32對(duì)共線性基因?qū)?;在基因家族上游啟?dòng)子區(qū)域發(fā)現(xiàn)與光響應(yīng)、激素響應(yīng)、逆境脅迫響應(yīng)等相關(guān)的順式元件;17個(gè)AcMADS-box基因在組織間高表達(dá)且有表達(dá)特異性,推測(cè)是參與調(diào)控中華獼猴桃生長發(fā)育的關(guān)鍵基因?!窘Y(jié)論】初步鑒定并提供了AcMADS-box家族成員信息,16個(gè)AcMADS-box家族成員在根、枝、莖、葉、花中高表達(dá),8個(gè)家族成員在花芽中高表達(dá)。結(jié)果為進(jìn)一步研究AcMADS-box參與中華獼猴桃的生長發(fā)育調(diào)控機(jī)制提供參考。

關(guān)鍵詞:中華獼猴桃;MADS-box;光響應(yīng);順式元件;生長發(fā)育

中圖分類號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)11-2307-18

Genome-wide identification and expression analysis of the MADS-box gene family in Actinidia chinensis

GAO Huan1, 2, ZHENG Kexin1, 2, LIAO Guanglian2, WANG Hailing1, 2, CHEN Lu2, JIA Dongfeng1, 2, HUANG Chunhui1, 2, QU Xueyan1, 2, XU Xiaobiao1, 2*

(1College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China; 2Kiwifruit Institute of Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China)

Abstract: 【Objective】 MADS-box transcription factor plays an important role in plant growth and development, such as regulating abiotic stress response, transition from vegetative growth to reproductive growth, root development and fruit maturation. Members of the MADS-box gene family have been identified in several species. However, knowledge about MADS-box gene family members, and their evolutionary and functional characteristics is limited in kiwifruit. The purpose of this study was to identify and analyze MADS-box gene family and determined its expression during the fruit development and bud dormancy, so as to provide theoretical basis for the regulation mechanism of MADS-box gene family members. 【Methods】 Based on the Hongyang ‘V3 genome data of Actinidia chinensis, MADS-box was identified and its gene structure, chromosome distribution, phylogeny, promoter cis-acting element and expression patterns were analyzed. 【Results】 68 AcMADS-box genes were identified in the Hongyang genome of A. chinensis, among which 35 belonged to Type I genes and 33 belonged to Type Ⅱ genes. There were 11 subfamilies (Mγ, Mβ, Mδ, Mα, FLM, SOC1, ANR1, SVP, AP3, SHP and SEP). AcMADS-box gene was unevenly distributed on 21 chromosomes except 8, 10, 17, 18, 19, 22 and 24. There were 32 collinear gene pairs, 11, 4 and 3 pairs of MIKC, M, MIKC and M genomes, respectively. The results of the physical and chemical properties showed that the protein encoded by AcMADS-box gene family was composed of 77 to 1703 aa, the molecular weight of the protein was 8 917.01 to 121 149.91 u, and the isoelectric point was 4.55 to 11.25. Except AcMIDS24-MIKC, the protein was fat-soluble hydrophilic protein. AcMADS24-MIKC was a water-soluble hydrophilic protein. The CDS sequence length encoded by AcMADS-box protein was 234 to 1791 bp except for AcMIDS33-M, and the CDS sequence length encoded by AcMIDS33-M gene was 3222 bp, which was significantly higher than other genes of AcMADS-box gene family. In addition, the subcellular localization prediction analysis showed that the AcMADS-box gene family members were located in the nucleus. By predicting the secondary structure of the proteins encoded by 68 members of the MADS gene family, it was found that the secondary structure of the MADS gene family proteins was mainly Alpha helix, in which Type Ⅱ accounted for 45.83%-83.57% and TypeⅠaccounted for 23.75%-72.72%. Random coil of Type Ⅱ accounted for 7.14%-47.06% and TypeⅠaccounted for 16.58%-52.71%. Beta turn of Type Ⅱ accounted for 0%-8.74% and TypeⅠBeta turn accounted for 1.3%-13.1%. Extension strand of Type Ⅱ accounted 1.94%-18.13% and TypeⅠaccount for 5.88%-28.22%. The proportion of Beta turn and extension strand had little difference but was significantly lower than Alpha helix and Random coil. 12 motifs were found in AcMADS-box protein sequence named Motif 1-Motif 12 motifs. Motif 1 and Motif 2 were typical domains of MADS, and all proteins contained Motif 1 or Motif 2. Motif 4 was found in all Type Ⅱ proteins except AcMADS1-MIKC and AcMADS30-MIKC. Motif 5, Motif 7, Motif 9 and Motif 10 belonged to the specific domain of TypeⅠ. A total of 47 elements related to light response (28), hormone response (12), stress resistance (4) and growth rhythm (3) were identified in the upstream promoter region of AcMADS-box gene family. 771 components related to optical response were identified, including G-Box, Box4, GT1-motif and CTt-motif, and each AcMADS-box contained at least 5 components related to optical response. Five hormones regulated by AcMADS-box cis-acting element were ABA (ABRE), Auxin (AuxRE, AuxRR-core, TGA-box and TGA-element), MeJA (CGTCA-motif and TGACG-motif), GA3 (GARE-motif, P-box and TATC-box), and SA (SARE and TAT-element). There were stress-related elements in the gene family, including those related to drought induction (MBS), low temperature response (LTR), anaerobic induction (ARE) and stress-resistance (TC-rich repeats). In addition, the AcMADS-box gene family also contained cis-acting element related to meristem expression (CAT-box, NON-box) and circadian rhythms. Transcriptomic analysis showed that the expression of AcMADS -box genes was significantly different in fruit ripening, 18 family members (10 M type and 3 MIKC type) had no expression in the whole development stage, and 16 members of AcMADS-box family had the highest expression level in young fruit period. The expression levels of 20 family members decreased with fruit ripening, while the expression levels of 14 family members increased with fruit ripening. The expression levels of AcMADS35-M and AcMADS21-MIKC genes were the highest at the ripening period, and then decreased. The expression levels of AcMADS26-M genes were opposite to those of AcMADS35-M and AcMADS21-MIKC genes, and increased with fruit ripening. During ripening period, its expression was significantly higher than that in young fruit period and mature-green period. The expression levels of AcMADS10-MIKC, AcMADS12-MIKC and AcMADS6-MIKC were the highest in the mature-green period. The expression level of AcMADS10-MIKC gene was higher in young fruit period, mature-green period and ripening period. The analysis of AcMADS-box expression in different tissues (leaf, root, vine, cane, flower and flower bud) showed that AcMADS-box genes were differentially expressed in different tissues, and 16 family members were highly expressed in leaves, roots, vines, canes and flowers of A. chinensis. Among them, AcMADS10-MIKC, AcMADS11-MIKC, AcMADS12-MIKC, AcMADS17-MIKC, AcMADS21-MIKC, AcMADS23-MIKC and AcMADS7-M were expressed significantly higher in flowers than in other tissues. The expression level of AcMADS2-MIKC in vines and canes was higher than that in leaves, roots and flowers. The expression of AcMADS19-MIKC, AcMADS20-MIKC and AcMADS31-MIKC was significantly higher in leaves, vines and canes than in roots and flowers. Eight family members were highly expressed in the flower buds. Among them, the expression of AcMADS20-MIKC was higher in Jan., Feb., Mar., Apr., Nov. and Dec., while AcMADS26-M was significantly higher in May, Jun., Jul. and Aug. than that of the remaining 6 months. 【Conclusion】 A total of 68 AcMADS-box genes were identified in this paper. Through the sequence analysis of 2000 bp upstream promoter of AcMADS-box family members, it was found that each gene member of the family contained multiple cis-acting elements related to hormone response and stress response. It is speculated that members of this family may be involved in the regulation of fruit ripening and the resistance to stress such as drought, low temperature and anaerobic response. We found that 17 AcMADS-box genes were highly expressed and had expression specificity among tissues, which were speculated to be the key genes involved in regulating the development of the growth and development of A. chinensis.

Key words: Actinidia chinensis; MADS-box; Optical response; Cis-acting element; Growth and development

收稿日期:2023-03-22 接受日期:2023-08-03

基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(32160692)

作者簡(jiǎn)介:高歡,女,在讀碩士研究生,研究方向:果樹種質(zhì)資源與分子生物技術(shù)。Tel:15797810980,E-mail:gh11180128@163.com

*通信作者Author for correspondence. Tel:13767008891,E-mail:xbxu@jxau.edu.cn

MADS命名源于4種蛋白因子的首字母:MINICHROMOSOME MAINTENANCE 1(MCM1)、AGAMOUS(AG)、DEFICIENS(DEF)和SERUM RESPONSE FACTOR(SRF)[1]。這些蛋白因子的共同特點(diǎn)是N段均含有50~60個(gè)氨基酸殘基組成的高度保守結(jié)構(gòu)域—MADS結(jié)構(gòu)域[2],該結(jié)構(gòu)域可與靶基因調(diào)控域中CArG-box[CC(A/T)6GG]序列結(jié)合[3]。根據(jù)進(jìn)化系譜,MADS主要包括Type-Ⅰ和Type-Ⅱ兩類[4]。其中Type-Ⅰ型基因的數(shù)目大,進(jìn)化過程中選擇的壓力較小,常以串聯(lián)重復(fù)的方式產(chǎn)生新基因。而Type-Ⅱ型基因的數(shù)目大,進(jìn)化過程中選擇的壓力極大,以重復(fù)的方式產(chǎn)生新的基因[5-7]。植物中常見的MADS-box基因?yàn)镸型(Type-Ⅰ)和MIKC型(Type-Ⅱ)。早期發(fā)現(xiàn)MADS-box調(diào)節(jié)花器官的發(fā)育并形成了著名的ABCDE模型[8-9],揭示了MADS-box在花器官發(fā)育中的作用。在擬南芥中A類(AP1和FUL)B類(AP3和PI),主要負(fù)責(zé)花萼和花瓣的發(fā)育,在花瓣和雄蕊中特異性表達(dá);C類(AGAMOUS),負(fù)責(zé)調(diào)控雄蕊和心皮發(fā)育;D類(AGL11),在胚珠中特異表達(dá);E類(SEP),負(fù)責(zé)調(diào)控四輪花器官的形成[10]。近些年有關(guān)MADS-box轉(zhuǎn)錄因子的研究陸續(xù)報(bào)道,發(fā)現(xiàn)它們除了參與調(diào)節(jié)開花時(shí)間、影響花器官的形成和花粉育性外,還可以參與調(diào)控植物營養(yǎng)生長到生殖生長的轉(zhuǎn)化、參與調(diào)控植物的光合作用、種皮發(fā)育、胚形態(tài)建成、子房發(fā)育、根的生長發(fā)育,該家族基因成為果實(shí)成熟及品質(zhì)形成的重要調(diào)控網(wǎng)絡(luò)[11]。2018年,Lu等[12]證明了FaMADS1a負(fù)調(diào)控FaPAL6、FaCHS、FaDFR和FaANS來抑制花青苷的積累;梅忠等[13]也發(fā)現(xiàn),PpcDAM6還參與櫻桃花芽休眠及休眠解除過程。

目前為止已經(jīng)在多個(gè)物種中進(jìn)行了MADS-box基因家族成員鑒定,如擬南芥、蘋果、梨、葡萄、枇杷、蘭花[14-19]、番茄[4]等,但關(guān)于獼猴桃MADS-box基因家族的鑒定研究尚未進(jìn)行。筆者基于獼猴桃數(shù)據(jù)庫紅陽獼猴桃全基因組測(cè)序結(jié)果,利用生物信息的方法對(duì)獼猴桃MADS-box轉(zhuǎn)錄因子家族成員進(jìn)行鑒定,同時(shí)對(duì)其家族成員在不同組織及果實(shí)發(fā)育的不同期表達(dá)情況進(jìn)行差異分析,以期為揭示MADS-box基因家族的生物學(xué)功能奠定理論基礎(chǔ)。

1 材料和方法

1.1 數(shù)據(jù)獲取

從獼猴桃轉(zhuǎn)錄因子數(shù)據(jù)庫PlantTFDB(http://planttfdb.gao-lab.org/index.php)下載中華獼猴桃紅陽V3基因組和基因注釋文件,從甜橙數(shù)據(jù)庫(http://citrus.Hzau.edu.cn/index.php)下載基因組蛋白序列文件,根據(jù)文獻(xiàn)獲得擬南芥MADS-box轉(zhuǎn)錄因子的登錄號(hào)[14],并從TAIR網(wǎng)站(http://www.arabidopsis.org/)下載擬南芥MADS-box轉(zhuǎn)錄因子共107個(gè)基因編碼蛋白序列。

1.2 AcMADS-box基因家族成員的全基因組鑒定

利用TBtools[20]軟件將已知的擬南芥MADS基因蛋白序列與紅陽和甜橙的基因組蛋白序列進(jìn)行BLAST比對(duì),利用Microsoft Excel 2019刪除重復(fù)序列分別獲得AcMADS-M、AcMADS-MIKC基因家族的候選序列。結(jié)合pfam(http://pfam.xfam.org/)在線網(wǎng)站篩選獲得候選基因序列是否具有MADS-box的保守序列,同時(shí)根據(jù)其是否具有K-box結(jié)構(gòu)域?qū)⑵鋭澐譃镸IKC型MADS-box基因和M型MADS-box基因成員。同樣的方法篩選CsMADS-box基因家族成員。

1.3 AcMADS-box基因家族系統(tǒng)發(fā)育樹構(gòu)建

分別從甜橙數(shù)據(jù)庫和獼猴桃數(shù)據(jù)庫下載甜橙和中華獼猴桃紅陽的MADS-box基因家族成員的氨基酸序列。利用MEGA X軟件先將擬南芥、獼猴桃及甜橙的MADS-box編碼的氨基酸序列進(jìn)行多重序列比對(duì),然后用鄰接法構(gòu)建進(jìn)化樹,軟件參數(shù)設(shè)置默認(rèn)值。

1.4 AcMADS-box基因家族的理化性質(zhì)分析

利用中華獼猴桃紅陽V3基因組的注釋文件用TBtools[20]軟件提取染色體定位信息。利用ExPASy(https://web.expasy.org/protparam/)在線網(wǎng)站預(yù)測(cè)CsMADS基因蛋白質(zhì)分子質(zhì)量大小、等電點(diǎn)和疏水性等信息[21]。用Plant-mPLoc(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)在線網(wǎng)站來預(yù)測(cè)AcMADS的亞細(xì)胞定位。

1.5 AcMADS-box蛋白二級(jí)結(jié)構(gòu)預(yù)測(cè)與保守域分析

使用NPSA(https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?page=npsa_sopma.html)在線網(wǎng)站對(duì)AcMADS-box基因家族成員的蛋白質(zhì)二級(jí)結(jié)構(gòu)進(jìn)行分析。利用MEME(http://meme-suite.org/tools/meme)在線網(wǎng)站對(duì)AcMADS-box蛋白的motifs進(jìn)行識(shí)別,motifs的最大值設(shè)為12[22],然后利用TBtools[20]軟件進(jìn)行可視化分析。

1.6 AcMADS-box基因家族成員順式作用元件及共線性分析

利用TBtools[20]軟件提取AcMADS-box基因翻譯起始位點(diǎn)上游2000 bp,然后利用PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)在線網(wǎng)站進(jìn)行順式作用元件分析[23],利用Microsoft Excel 2019對(duì)結(jié)果進(jìn)行統(tǒng)計(jì)分析,用TBtools[20]軟件繪制熱圖。利用TBtools[20]對(duì)MADS家族基因進(jìn)行共線性分析。

1.7 AcMADS-box基因家族在果實(shí)發(fā)育期的表達(dá)分析

從獼猴桃數(shù)據(jù)庫(https://kiwifruitgenome.org/organism/3)下載中華獼猴桃紅陽V3在幼果期(immature)、綠熟期(mature green)、軟熟期(ripe)3個(gè)時(shí)期的轉(zhuǎn)錄組數(shù)據(jù),同時(shí)從NCBI下載PRJNA888809轉(zhuǎn)錄組測(cè)序數(shù)據(jù),采用RPKM法計(jì)算基因表達(dá)量,利用TBtools[20]進(jìn)行l(wèi)og2標(biāo)準(zhǔn)化后生成熱圖。

2 結(jié)果與分析

2.1 AcMADS-box基因家族成員

鑒定出中華獼猴桃MADS-box基因家族成員68個(gè),其中M型AcMADS-box基因有35個(gè),命名為AcMADS1-M~AcMADS35-M,MIKC型AcMADS-box基因33個(gè),命名為AcMADS1-MIKC~AcMADS33-MIKC(表1),ACMADS-box基因不均勻的分布在除8、10、17、18、19、22、24號(hào)以外的22條染色體上,其中MIKC型家族基因在15號(hào)染色體上分布最多。M型家族基因在2、12號(hào)染色體上分布最多。除AcMIDS33-M外AcMADS-box蛋白編碼CDS序列長度為234(AcMIDS23-M)~1791(AcMIDS24-M)bp,AcMIDS33-M基因CDS序列長度為3222 bp,顯著高于AcMADS-box基因家族成員的其他基因。另外所有AcMADS-box基因家族成員均為預(yù)測(cè)定位于細(xì)胞核。

2.2 AcMADS-box基因家族的理化性質(zhì)

利用ExPASY在線網(wǎng)站對(duì)AcMADS-box蛋白的理化性質(zhì)進(jìn)行分析,結(jié)果如表2所示,AcMADS-box基因家族編碼蛋白由77~1703個(gè)氨基酸組成,蛋白質(zhì)分子質(zhì)量大小為8 917.01~121 149.91 u,等電點(diǎn)為4.55~11.25。此外,除AcMIDS24-MIKC外AcMADS-box蛋白均為脂溶性親水蛋白,AcMADS24-MIKC為水溶性親水蛋白;94%的MIKC型AcMADS-box蛋白和71%的M型為不穩(wěn)定性蛋白。

2.3 AcMADS-box蛋白結(jié)構(gòu)預(yù)測(cè)及保守域

利用NPSA在線軟件對(duì)68個(gè)MADS基因家族成員編碼的蛋白質(zhì)進(jìn)行二級(jí)結(jié)構(gòu)預(yù)測(cè),結(jié)果如表3所示,中華獼猴桃MADS基因家族蛋白二級(jí)結(jié)構(gòu)主要是α螺旋(Alpha helix),其中Type Ⅱ型占比45.83%(AcMADS1-MIKC)~83.57%(AcMADS24-MIKC),Type Ⅰ型占比23.75%(AcADS35-M)~72.72%(AcADS12-M);不規(guī)則卷曲(Random coil)Type Ⅱ型占比7.14%(AcMADS24-MIKC)~47.06%(AcMADS14-MIKC),Type Ⅰ型占比16.58%(AcADS12-M)~52.71%(AcADS34-M)。Type Ⅱ型β轉(zhuǎn)角(Beta turn)占比0%(AcMADS14-MIKC、AcMADS 18-MIKC、AcMADS 28-MIKC)~8.74%(AcMADS 17-MIKC),Type Ⅰ型β轉(zhuǎn)角(Beta turn)占比1.30%(AcADS23-M)~13.10%(AcADS8-M);Type Ⅱ型延伸鏈(Extenden strand)占比1.94%(AcMADS18-MIKC)~18.13%( AcMADS 13-MIKC),Type Ⅰ型延伸鏈(Extenden strand)占比5.88%(AcADS12-M)~28.22%(AcADS13-M);β轉(zhuǎn)角與延伸鏈所占比例相差不大但顯著低于α螺旋與不規(guī)則卷曲占比。

如圖1所示,通過MEME在線軟件對(duì)AcMADS-box蛋白質(zhì)序列進(jìn)行分析,將基序數(shù)量設(shè)置為12個(gè)保守基序,分別為Motif1~Motif12。Motif1和Motif2是典型的MADS結(jié)構(gòu)域,所有蛋白都含有Motif1或Motif2。除AcMADS1-MIKC、AcMADS30-MIKC蛋白外,Type Ⅱ型蛋白都有Motif4。Motif5、Motif7、Motif9、Motif10屬于Type Ⅰ型特有結(jié)構(gòu)域。

2.4 AcMADS-box基因家族的進(jìn)化

如圖2所示,擬南芥、甜橙、中華獼猴桃的MADS基因分為11個(gè)亞家族:Mγ、Mβ、Mδ、Mα、FLM、SOC1、ANR1、SVP、AP3、SHP、SEP。M型家族成員主要分布在Mα亞家族,該家族由16個(gè)M型家族成員組成。MIKC型家族成員不均勻地分布在8個(gè)亞家族,猜測(cè)可能與其功能多樣性有關(guān)。以上分析表明,AcMADS-box家族成員進(jìn)化存在差異,也預(yù)示著該家族蛋白功能具有多樣性。

2.5 AMADS-box基因家族順式作用元件、多重共線性分析

利用PlantCARE在線軟件預(yù)測(cè)AcMADS-box基因家族成員上游2000 bp序列,在AcMADS-box中共鑒定出47種與光響應(yīng)(28種)、激素響應(yīng)(12種)、抵御逆境脅迫響應(yīng)(4種)及生長節(jié)律(3種)相關(guān)的元件(圖3)。AcMADS-box中鑒定出771個(gè)與光響應(yīng)相關(guān)的元件主要有G-Box、Box4、GT1-motif、TCT-motif,其中G-Box和Box4最多且在每個(gè)AcMADS-box中都至少含有5個(gè)與光響應(yīng)相關(guān)的元件。AcMADS-box順式元件調(diào)控5種激素分別為ABA(ABRE)、Auxin(AuxRE、AuxRR-core、TGA-box、TGA-element)、MeJA(CGTCA-motif、TGACG-motif)、GA3(GARE-motif、P-box、TATC-box)、SA(SARE、TAT-element)?;蚣易逯杏信c逆境脅迫相關(guān)的元件,包括與干旱誘導(dǎo)(MBS)、低溫反應(yīng)(LTR)、厭氧誘導(dǎo)(ARE)、抵御逆境脅迫(TC-rich repeats)相關(guān)的元件。除此之外AcMADS-box基因家族中還含有與分生組織表達(dá)(CAT-box、NON-box)、晝夜節(jié)律(Circadian)相關(guān)的順式元件。

利用TBtools軟件對(duì)中華獼猴桃MADS-box基因家族成員進(jìn)行物種內(nèi)共線性分析,共檢測(cè)出32對(duì)片段重復(fù)事件,如圖4所示。MIKC型、M型、MIKC和M型基因組之間分別有11對(duì)(AcMADS2-MIKC/AcMADS22-MIKC,AcMADS13-MIKC/AcMADS9-MIKC,AcMADS27-MIKC/AcMADS15-MIKC,AcMADS16-MIKC/AcMADS3-MIKC,AcMADS32-MIKC/AcMADS29-MIKC,AcMADS33-MIKC/AcMADS31-MIKC,AcMADS33-MIKC/AcMADS20-MIKC,AcMADS20-MIKC/AcMADS14-MIKC,AcMADS17-MIKC/AcMADS11-MIKC,AcMADS17-MIKC/AcMADS4-MIKC,AcMADS11-MIKC/AcMADS4-MIK),4對(duì)(AcMADS22-M/AcMADS18-M,AcMADS34-M/AcMADS31-M,AcMADS34-M/AcMADS27-M,AcMADS25-M/AcMADS1-M),3對(duì)(AcMADS16-MIKC/AcMADS32-MIK,AcMADS7-M/AcMADS21-MIKC,AcMADS23-M/AcMADS3-MIKC)重復(fù)基因,有部分基因聚集在染色體的特定區(qū)域,這可能與基因重復(fù)有關(guān)。結(jié)果表明,基因復(fù)制可能是中華獼猴桃基因組MADS基因擴(kuò)增、進(jìn)化的動(dòng)力。

2.6 AcMADS-box基因家族成員在不同發(fā)育期的表達(dá)

對(duì)中華獼猴桃幼果期、綠熟期、軟熟期三個(gè)時(shí)期的轉(zhuǎn)錄組表達(dá)進(jìn)行分析,結(jié)果如圖5所示。AcMADS基因在不同發(fā)育期的表達(dá)具有差異性,18個(gè)家族成員(M型15個(gè)、MIKC型3個(gè))在整個(gè)發(fā)育期均無表達(dá),16個(gè)AcMADS-box家族成員在綠熟期的表達(dá)量最高。20個(gè)家族成員基因隨著果實(shí)成熟表達(dá)量下降,14個(gè)家族成員表達(dá)量相反隨著果實(shí)的成熟表達(dá)量升高。AcMADS35-M、AcMADS21-MIKC基因在幼果期表達(dá)量最高,隨后表達(dá)量降低,AcMADS26-M基因的表達(dá)量與AcMADS35-M、AcMADS21-MIKC基因相反,隨果實(shí)的成熟表達(dá)量增加,在軟熟期其表達(dá)量顯著高于幼果期和綠熟期。AcMADS10-MIKC、AcMADS12-MIKC、AcMADS6-MIKC在綠熟期表達(dá)量最高,其中AcMADS10-MIKC基因在幼果期、綠熟期、軟熟期三時(shí)期的表達(dá)量都較高。

2.7 AcMADS-box基因家族成員在不同組織的表達(dá)

為了研究AcMADS-box基因家族的表達(dá)模式,分別對(duì)AcMADS-box在不同組織(葉、根、枝、莖、花、芽)的表達(dá)量進(jìn)行分析,結(jié)果如圖6所示。AcMADS-box基因在不同組織中有差異的表達(dá),16個(gè)家族成員(AcMADS2-MIKC,AcMADS10-MIKC,AcMADS11-MIKC,AcMADS12-MIKC,AcMADS17-MIKC,AcMADS19-MIKC,AcMADS20-MIKC,AcMADS21-MIKC,AcMADS23-MIKC,AcMADS27-MIKC,AcMADS31-MIKC,AcMADS33-MIKC,AcMADS7-M,AcMADS25-M,AcMADS26-M,AcMADS35-M)在中華獼猴桃葉、根、枝、莖、花中高表達(dá)(圖6-A)。其中AcMADS10-MIKC、AcMADS11-MIKC、AcMADS12-MIKC、AcMADS17-MIKC、AcMADS21-MIKC、AcMADS23-MIKC、AcMADS7-M在花中表達(dá)量顯著高于其他組織;AcMADS2-MIKC在枝、莖中的表達(dá)量高于葉、根、花;AcMADS19-MIKC、AcMADS20-MIKC、AcMADS31-MIKC在葉、枝、莖中的表達(dá)量顯著高于在根花中的表達(dá)量。

8個(gè)家族成員(AcMADS2-MIKC,AcMADS19-MIKC,AcMADS20-MIKC,AcMADS22-MIKC,AcMADS27-MIKC,AcMADS31-MIKC,AcMADS33-MIKC,AcMADS26-M)在花芽中高表達(dá)(圖6-B)。其中AcMADS20-MIKC在1、2、3、4、11、12月表達(dá)量高于5、6、7、8月表達(dá)量,而AcMADS26-M在5、6、7、8月表達(dá)量顯著高于其余6個(gè)月。

3 討 論

MADS-box是調(diào)控果樹花器官發(fā)育、果實(shí)成熟及果品發(fā)育調(diào)節(jié)網(wǎng)絡(luò)中的關(guān)鍵因子,是呼吸躍變型果實(shí)成熟所必需的。筆者在本研究中通過鑒定和分析AcMADS-box基因家族成員,探究該家族基因?qū)χ腥A獼猴桃生長發(fā)育的影響。

目前,從擬南芥[14]、蘋果[15]、梨[16]、葡萄[17]、枇杷[18]、大豆[24]等物種分別鑒定出107、146、95、54、89、143個(gè)MADS-box基因家族成員,筆者在本研究中利用生物信息分析的方法從獼猴桃紅陽數(shù)據(jù)庫獲得68個(gè)MADS-box轉(zhuǎn)錄因子,推測(cè)其數(shù)量差異可能受基因組大小或物種進(jìn)化過程的缺失和復(fù)制的影響。M型MADS家族基因數(shù)量高于MIKC型,這與前人在葡萄[17]上的研究結(jié)果不一致。進(jìn)化分析與保守域分析的結(jié)果一致,具有相同保守域的基因家族成員優(yōu)先聚為一類,其進(jìn)化樹的分類結(jié)構(gòu)與擬南芥和甜橙基本一致,說明MADS基因家族在物種間具有相對(duì)保守的進(jìn)化趨勢(shì)。對(duì)啟動(dòng)子順式作用元件進(jìn)行分析,可能對(duì)某一基因功能的研究具有重要意義。通過對(duì)AcMADS-box家族成員啟動(dòng)子上游2000 bp的序列分析,發(fā)現(xiàn)家族各基因成員含有多個(gè)與激素反應(yīng)、脅迫反應(yīng)等相關(guān)的順式作用元件,推測(cè)該家族成員可能參與了果實(shí)成熟的調(diào)控和抵御干旱、低溫、厭氧等逆境脅迫。除此之外,AcMADS-box家族成員每個(gè)基因都至少含有5個(gè)與光響應(yīng)相關(guān)的順式元件,推測(cè)AcMADS-box的表達(dá)量受光的調(diào)控。在錐栗[25]、葡萄[17]、枇杷[18]的啟動(dòng)子中也發(fā)現(xiàn)了光響應(yīng)、激素反應(yīng)及逆境脅迫等相關(guān)的響應(yīng)元件。

筆者在本研究中發(fā)現(xiàn),AcMADS-box基因在不同組織及果實(shí)發(fā)育的不同時(shí)期表現(xiàn)出不同的表達(dá)特征,基因的表達(dá)特征與其功能密切相關(guān),推測(cè)AcMADS-box在組織發(fā)育和植物生長過程中具有不同作用。擬南芥中的SVP/AGL24類MADS-box基因與休眠轉(zhuǎn)變密切相關(guān),在休眠誘導(dǎo)期間表達(dá)量上調(diào),休眠解除期間下調(diào)[26],目前已經(jīng)在杏[27]、桃[26]、蘋果[28]、梨[29]中有相關(guān)報(bào)道。在本研究中,屬于SVP分支的AcMADS20-MIKC基因1、2、3、4、11、12月在花芽中高表達(dá);5、6、7、8月表達(dá)量較低,與擬南芥FLC聚集的基因AcMADS26-M表達(dá)量與其相反,Hemming等[30]研究發(fā)現(xiàn),F(xiàn)LC不僅參與擬南芥開花應(yīng)答的溫度調(diào)控,而且還能夠調(diào)控多年生木本植物的芽休眠。FLC在休眠誘導(dǎo)期間表達(dá)上調(diào),休眠解除后表達(dá)下調(diào)[31],在本研究中,AcMADS26-M在5、6、7、8月(休眠期)上調(diào),1、2、3、4、11、12月表達(dá)量顯著低于5、6、7、8月,這與前人的研究結(jié)果一致,推測(cè)AcMADS20-MIKC、AcMADS26-M是調(diào)控芽休眠及休眠解除關(guān)鍵基因。筆者在本研究中還發(fā)現(xiàn),在中華獼猴桃植物組織中MIKC型表達(dá)量顯著高于M型,其中屬于AP3/PI、SHP、SEP分支的AcMADS10-MIKC、AcMADS11-MIKC、AcMADS12-MIKC、AcMADS17-MIKC、AcMADS21-MIKC、AcMADS23-MIKC、AcMADS27-MIKC、AcMADS31-MIKC在花中的表達(dá)量最高;SOC1、SVP分支中AcMADS19-MIKC、AcMADS20-MIKC在葉、枝、莖的表達(dá)量高于花。

在果實(shí)成熟過程中有6個(gè)基因表達(dá)量高且有明顯差異,其中AcMADS21-MIKC屬于SEP亞家族成員,在草莓[12]、甜櫻桃[32]、蘋果[15]、枇杷[18]的研究中發(fā)現(xiàn)SEP亞家族基因?qū)粑S變型和非呼吸躍變型的果實(shí)有負(fù)調(diào)控作用,可以抑制乙烯的生物合成及信號(hào)傳導(dǎo)影響果實(shí)成熟和軟化。AcMADS21-MIKC基因轉(zhuǎn)錄本在果實(shí)中積累,且積累量隨著果實(shí)的成熟逐漸減少,這與Gaffe等[33]的研究結(jié)果相同。AcMADS26-M基因表達(dá)量與AcMADS21-MIKC、AcMADS35-M呈相反趨勢(shì),隨著果實(shí)成熟表達(dá)量上調(diào),筆者推測(cè)該基因可能是乙烯合成積累的促進(jìn)因子。MADS家族基因的SHP亞家族基因成員在胚珠、心皮及發(fā)育中的果皮表達(dá),可以控制類胡蘿卜素的形成。Vrebalov等[34]在番茄中發(fā)現(xiàn)該家族基因在早期發(fā)育及果實(shí)成熟中均發(fā)揮作用。本研究中屬于SHP亞家族的AcMADS12-MIKC基因在果實(shí)成熟期間先上升后下降,因此推測(cè)該基因的差異表達(dá)可能是促進(jìn)果實(shí)成熟及類胡蘿卜素形成的關(guān)鍵。

目前有關(guān)中華獼猴桃MADS基因家族成員的信息還沒有報(bào)道,筆者分析中華獼猴桃MADS基因家族成員,推測(cè)該家族成員不僅參與中華獼猴桃花芽萌發(fā)還參與調(diào)控營養(yǎng)和繁殖型器官的生長發(fā)育,以期為今后關(guān)于MADS基因家族的研究和品種選育提供理論參考。

4 結(jié) 論

從中華獼猴桃紅陽V3基因組中鑒定得到了68個(gè)AcMADS-box基因(M型35個(gè),MIKC型33個(gè)),均位于細(xì)胞核且不均勻地分布于22條染色體上。在啟動(dòng)子區(qū)域發(fā)現(xiàn)有與光響應(yīng)、激素響應(yīng)、逆境脅迫等相關(guān)的順式元件。果實(shí)成熟過程中有6個(gè)AcMADS-box基因表達(dá)量高且有明顯差異,17個(gè)AcMADS-box基因在葉、根、枝、莖、花、芽組織中有差異性高表達(dá)。表明AcMADS-box在中華獼猴桃生長發(fā)育過程中有重要的調(diào)控作用。

參考文獻(xiàn) References:

[1] ALVAREZ-BUYLLA E R,LILJEGREN S J,PELAZ S,GOLD S E,BURGEFF C,DITTA G S,VERGARA-SILVA F,YANOFSKY M F. MADS-box gene evolution beyond flowers:Expression in pollen,endosperm,guard cells,roots and trichomes[J]. The Plant Journal,2000,24(4):457-466.

[2] SHORE P,SHARROCKS A D. The MADS-box family of transcription factors[J]. European Journal of Biochemistry,1995,229(1):1-13.

[3] RIECHMANN J L,WANG M Q,MEYEROWITZ E M. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1,APETALA3,PISTILLATA and AGAMOUS[J]. Nucleic Acids Research,1996,24(16):3134-3141.

[4] WANG Y S,ZHANG J L,HU Z L,GUO X H,TIAN S B,CHEN G P. Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum[J]. International Journal of Molecular Sciences,2019,20(12):2961.

[5] PAUL P,DHATT B K,MILLER M,F(xiàn)OLSOM J J,WANG Z,KRASSOVSKAYA I,LIU K,SANDHU J,YU H H,ZHANG C,OBATA T,STASWICK P,WALIA H. MADS78 and MADS79 are essential regulators of early seed development in rice[J]. Plant Physiology,2020,182(2):933-948.

[6] KANG I H,STEFFEN J G,PORTEREIKO M F,LLOYD A,DREWS G N. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis[J]. The Plant Cell,2008,20(3):635-647.

[7] 呂山花,孟征. MADS-box基因家族基因重復(fù)及其功能的多樣性[J]. 植物學(xué)通報(bào),2007,42(1):60-70.

L? Shanhua,MENG Zheng. Gene duplication and functional diversification in the MADS-box gene family[J]. Chinese Bulletin of Botany,2007,42(1):60-70.

[8] COEN E S,MEYEROWITZ E M. The war of the whorls:Genetic interactions controlling flower development[J]. Nature,1991,353(6339):31-37.

[9] PELAZ S,DITTA G S,BAUMANN E,WISMAN E,YANOFSKY M F. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature,2000,405(6783):200-203.

[10] SOLTIS D E,MA H,F(xiàn)ROHLICH M W,SOLTIS P S,ALBERT V A,OPPENHEIMER D G,ALTMAN N S,DEPAMPHILIS C,LEEBENS-MACK J. The floral genome:an evolutionary history of gene duplication and shifting patterns of gene expression[J]. Trends in Plant Science,2007,12(8):358-367.

[11] 蘆旺,席萬鵬. MADS-box轉(zhuǎn)錄因子在果實(shí)成熟及品質(zhì)形成中的調(diào)控作用研究進(jìn)展[J]. 園藝學(xué)報(bào),2018,45(9):1802-1812.

LU Wang,XI Wanpeng. MADS-box transcription factors are involved in regulation for fruit ripening and quality development[J]. Acta Horticulturae Sinica,2018,45(9):1802-1812.

[12] LU W J,CHEN J X,REN X C,YUAN J J,HAN X Y,MAO L C,YING T J,LUO Z S. One novel strawberry MADS-box transcription factor FaMADS1a acts as a negative regulator in fruit ripening[J]. Scientia Horticulturae,2018,227:124-131.

[13] 梅忠,朱友銀,劉向蕾,李永強(qiáng),趙華. 中國櫻桃花芽休眠相關(guān)MADS-box基因的克隆與功能初探[J]. 植物生理學(xué)報(bào),2018,54(9):1433-1440.

MEI Zhong,ZHU Youyin,LIU Xianglei,LI Yongqiang,ZHAO Hua. Isolation and functional analysis of dormancy-associated MADS-box gene in cherry (Prunus pseudocerasus) flower bud[J]. Plant Physiology Journal,2018,54(9):1433-1440.

[14] PARENICOV? L,DE FOLTER S,KIEFFER M,HORNER D S,F(xiàn)AVALLI C,BUSSCHER J,COOK H E,INGRAM R M,KATER M M,DAVIES B,ANGENENT G C,COLOMBO L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:New openings to the MADS world[J]. The Plant Cell,2003,15(7):1538-1551.

[15] 董慶龍,冀志蕊,遲福梅,田義,安秀紅,徐成楠,周宗山. 蘋果MADS-box轉(zhuǎn)錄因子的生物信息學(xué)及其在不同組織中的表達(dá)[J]. 中國農(nóng)業(yè)科學(xué),2014,47(6):1151-1161.

DONG Qinglong,JI Zhirui,CHI Fumei,TIAN Yi,AN Xiuhong,XU Chengnan,ZHOU Zongshan. Bioinformatics of the MADS-box transcription factor and their expression in different apple tissues[J]. Scientia Agricultura Sinica,2014,47(6):1151-1161.

[16] WANG R Z,MING M L,LI J M,SHI D Q,QIAO X,LI L T,ZHANG S L,WU J. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence[J]. PeerJ,2017,5:e3776.

[17] GRIMPLET J,MART?NEZ-ZAPATER J M,CARMONA M J. Structural and functional annotation of the MADS-box transcription factor family in grapevine[J]. BMC Genomics,2016,17(1):1-23.

[18] 劉楠,寇燕,李小婷,陳旭,高歡歡,張晶,王超,鄭嘉敏,鄭國華. 枇杷MADS-box全基因組鑒定及其在果實(shí)成熟過程中的潛在作用[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,51(3):351-360.

LIU Nan,KOU Yan,LI Xiaoting,CHEN Xu,GAO Huanhuan,ZHANG Jing,WANG Chao,ZHENG Jiamin,ZHENG Guohua. Genome-wide identification and analysis of MADS-box gene family in loquat and its potential role in fruit ripening[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2022,51(3):351-360.

[19] 李瓊潔,江周. 蘭花MADS-box基因研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2017,45(6):137-140.

LI Qiongjie,JIANG Zhou. Research progress of MADS-box gene in orchid[J]. Journal of Anhui Agricultural Sciences,2017,45(6):137-140.

[20] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,F(xiàn)RANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.

[21] WILKINS M R,GASTEIGER E,BAIROCH A,SANCHEZ J C,WILLIAMS K L,APPEL R D,HOCHSTRASSER D F. Protein identification and analysis tools in the ExPASy server[J]. Methods in Molecular Biology,1999,112:531-552.

[22] BAILEY T L,WILLIAMS N,MISLEH C,LI W W. MEME:Discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research,2006,34(Web Server issue):W369-373.

[23] ROMBAUTS S,D?HAIS P,VAN MONTAGU M,ROUZ? P. PlantCARE,a plant cis-acting regulatory element database[J]. Nucleic Acids Research,1999,27(1):295-296.

[24] FAN C M,WANG X,WANG Y W,HU R B,ZHANG X M,CHEN J X,F(xiàn)U Y F. Genome-wide expression analysis of soybean MADS genes showing potential function in the seed development[J]. PLoS One,2013,8(4):e62288.

[25] 余玉云,沈軍,柳明珠,羅開金,陳世品. 錐栗MADS-box基因家族鑒定及組織特異性表達(dá)分析[J]. 森林與環(huán)境學(xué)報(bào),2023,43(1):60-67.

YU Yuyun,SHEN Jun,LIU Mingzhu,LUO Kaijin,CHEN Shipin. Identification of the MADS-box gene family and its tissue-specific expression in Castanea henryi[J]. Journal of Forest and Environment,2023,43(1):60-67.

[26] BIELENBERG D G,WANG Y,LI Z G,ZHEBENTYAYEVA T,F(xiàn)AN S H,REIGHARD G L,SCORZA R,ABBOTT A G. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation[J]. Tree Genetics & Genomes,2008,4(3):495-507.

[27] SASAKI R,YAMANE H,OOKA T,JOTATSU H,KITAMURA Y,AKAGI T,TAO R. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot[J]. Plant Physiology,2011,157(1):485-497.

[28] KUMAR G,ARYA P,GUPTA K,RANDHAWA V,ACHARYA V,SINGH A K. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malus × domestica)[J]. Scientific Reports,2016,6:20695.

[29] NIU Q F,LI J Z,CAI D Y,QIAN M J,JIA H M,BAI S L,HUSSAIN S,LIU G Q,TENG Y W,ZHENG X Y. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud[J]. Journal of Experimental Botany,2016,67(1):239-257.

[30] HEMMING M N,TREVASKIS B. Make hay when the Sun shines:The role of MADS-box genes in temperature-dependant seasonal flowering responses[J]. Plant Science,2011,180(3):447-453.

[31] DO?RAMACI M,HORVATH D P,CHAO W S,F(xiàn)OLEY M E,CHRISTOFFERS M J,ANDERSON J V. Low temperatures impact dormancy status,flowering competence,and transcript profiles in crown buds of leafy spurge[J]. Plant Molecular Biology,2010,73(1):207-226.

[32] 段續(xù)偉,倪楊,張曉明,閆國華,王晶,周宇,張開春. 甜櫻桃成花相關(guān)MADS-box基因的克隆及表達(dá)分析[J]. 果樹學(xué)報(bào),2018,35(1):20-31.

DUAN Xuwei,NI Yang,ZHANG Xiaoming,YAN Guohua,WANG Jing,ZHOU Yu,ZHANG Kaichun. Isolation and expression analysis of MADS-box gene related to flowering regulation in sweet cherry[J]. Journal of Fruit Science,2018,35(1):20-31.

[33] GAFFE J,LEMERCIER C,ALCARAZ J P,KUNTZ M. Identification of three tomato flower and fruit MADS-box proteins with a putative histone deacetylase binding domain[J]. Gene,2011,471(1/2):19-26.

[34] VREBALOV J,RUEZINSKY D,PADMANABHAN V,WHITE R,MEDRANO D,DRAKE R,SCHUCH W,GIOVANNONI J. A MADS-box gene necessary for fruit ripening at the tomato Ripening-inhibitor (Rin) locus[J]. Science,2002,296(5566):343-346.

猜你喜歡
生長發(fā)育
避雨栽培對(duì)宿遷地區(qū)早熟桃生長發(fā)育及果實(shí)品質(zhì)的影響
秸稈覆蓋和保水劑對(duì)烤煙生長發(fā)育的影響
溫度與降水條件對(duì)玉米生長發(fā)育的影響
冬油菜栽培技術(shù)探析
果樹生長發(fā)育的外界環(huán)境條件探討
果利大植物營養(yǎng)液對(duì)花生災(zāi)后復(fù)壯生長發(fā)育的影響
環(huán)境監(jiān)測(cè)用青鳉魚的人工繁殖研究
淺談鹽脅迫對(duì)紫穗槐生理指標(biāo)的影響
研究早期綜合干預(yù)對(duì)高危兒生長發(fā)育近期影響
兒童保健在兒童成長發(fā)育中的應(yīng)用效果分析
周至县| 灵丘县| 滁州市| 鹤壁市| 明水县| 庆城县| 景德镇市| 宜兴市| 久治县| 枣庄市| 商洛市| 海城市| 怀柔区| 惠东县| 屯昌县| 苍梧县| 自贡市| 运城市| 西贡区| 宜兰县| 延安市| 苍梧县| 明水县| 中宁县| 揭东县| 建湖县| 巴塘县| 芜湖县| 隆林| 十堰市| 佛学| 郑州市| 深水埗区| 闽清县| 华池县| 瑞安市| 太康县| 渝北区| 阿坝县| 阿合奇县| 逊克县|