宿德志 李 慧 劉 亮 張紀磊
(1.海軍航空大學航空基礎學院 煙臺 264001)(2.海軍航空大學岸防兵學院 煙臺 264001)
紅外偏振探測技術利用目標的偏振特性進行探測識別,既具有傳統(tǒng)紅外成像隱蔽性好、抗干擾性強和全天候工作等優(yōu)勢,又能充分利用目標紅外強度、偏振度和偏振角等多維信息進行探測,在遙感探測[1~3]和目標探測識別[4~7]等方面具有廣泛的應用,也是海面艦船目標探測的重要手段。分時偏振成像是技術最為成熟的一種偏振成像方式[8],近年來部分學者通過快速旋轉偏振片等方式將分時紅外偏振系統(tǒng)用于運動目標的紅外偏振檢測[9~10],進一步拓展了其應用的范圍,同時也對紅外偏振成像系統(tǒng)的檢測精度提出了更高的要求。很多學者針對紅外偏振系統(tǒng)的誤差進行了分析和研究,侯俊峰等研究了由線柵偏振片楔角引起的光束偏離對紅外偏振成像系統(tǒng)精度的影響,推導了光束偏離的一階近似補償模型,獲得了傾斜角與格蘭棱鏡楔角之間的函數(shù)關系[11]。文獻[12]提出了一種基于單偏振像元差分圖像的紅外偏振非均勻性校正方法,進一步提升了偏振成像的質量。在此基礎上,文獻[13]指出分時紅外偏振成像系統(tǒng)誤差主要包括兩部分,分別是系統(tǒng)輻射誤差和旋轉角度誤差。其中系統(tǒng)輻射誤差主要是由線柵偏振片輻射和反射的能量以及線柵偏振片透過率等參數(shù)引入的誤差。Li[14]針對前置偏振片的紅外偏振成像系統(tǒng)輻射誤差進行了分析和校正,有效提升了紅外偏振成像系統(tǒng)的精度和紅外偏振圖像的質量。黃飛[15]等針對近紅外偏振成像系統(tǒng)提出一種新線偏振度求解方法,校正了線柵偏振片透過率對線偏振度測量的影響。Hudson[16]等研究了偏振成像系統(tǒng)的輻射誤差對偏振度等參數(shù)的影響。除了系統(tǒng)輻射誤差,由于分時偏振成像時需要多次旋轉偏振片,其旋轉角度誤差也會對紅外偏振成像的檢測精度產(chǎn)生影響。李欣鍇等[17]針對旋轉角度誤差進行了初步探索,發(fā)現(xiàn)斯托克斯矢量的S1 分量和S2 分量差別越小,旋轉角度誤差對檢測精度的影響越大。文獻[18]建立可見光偏振成像修正模型時考慮了旋轉角度誤差,但是其假定偏振片在各個偏振角處的誤差值相同,得到偏振度的測量結果與旋轉角度誤差無關的結論。以上研究表明,旋轉角度誤差對偏振度測量影響的機理研究還不夠深入,這必然會影響復雜環(huán)境下紅外偏振成像系統(tǒng)的探測能力。本文從穆勒矩陣出發(fā),結合偏振成像的基本原理,推導了紅外偏振成像系統(tǒng)旋轉角度誤差校正模型,分析了旋轉角度誤差對偏振度測量精度的影響規(guī)律,并利用搭建的長波紅外偏振成像系統(tǒng)進行了實驗驗證。
斯托克斯矢量的四個分量都是光強的時間平均值,具有強度量綱,均可通過強度測量來確定。故通常采用偏振器和探測器測量入射光的斯托克斯矢量,從而完成偏振態(tài)的測量。當采用斯托克斯矢量表示偏振態(tài)時,偏振光器件可以用穆勒矩陣M表示。則根據(jù)偏振光學理論可求得經(jīng)過線柵偏振片后出射光的光強為
其中,θ為偏振片的偏振角,則可通過四個不同偏振角的偏振圖像求解斯托克斯矢量的前三個分量:
式中,I0、I45、I90和I135分別表示偏振片角度為0°、45°、90°和135°時的出射光光強,從式(3)可以看出S0表示總光強,S1表示水平分量與垂直分量的差,S2表示45°分量與135°分量的差。實際中也可以應用0°、60°和120°偏振方向的出射光光強進行求解:
考慮到式(4)這種測量方式的旋轉次數(shù)較少,引入的旋轉角度誤差參數(shù)僅有3 個,因此選用這種偏振測量方式。則出射光的線偏振度和偏振角測量值的斯托克斯矢量表示為
根據(jù)式(4)可知,偏振態(tài)的測量需要采集偏振片角度為0°、60°和120°時的偏振圖像。當入射光為部分偏振光時,根據(jù)馬呂斯定律可得:
其中,α為入射光的偏振角,IN為入射光中自然光部分的光強,IP為入射光中偏振光的光強,I0、I60和I120分別表示偏振片角度為0°、60°和120°時的出射光光強,Δ0、Δ60和Δ120分別表示偏振片在0°、60°和120°時的旋轉角度誤差。實際測量中通常忽略S3分量[19],則可求得斯托克斯矢量為
再根據(jù)式(5)、式(6)和式(10)可求得偏振角和線偏振度的測量值為
其中,AOP′和DOLP′分別表示偏振角和線偏振度的測量值,DOLP表示入射光的實際偏振度。為更好評價偏振成像系統(tǒng)測量的精度,本文采用偏振度誤差百分比指標,其定義為
從上述分析可知偏振度精度的影響參數(shù)較多,包括旋轉角度誤差Δ0、Δ60和Δ120以及入射光的實際偏振度DOLP和偏振角α??紤]一種特殊情況,當Δ0=Δ60=Δ120時,式(12)簡化為DOLP′=DOLP。即只要保證偏振片旋轉角度非常精確,則旋轉起點的角度誤差對偏振度測量結果是沒有影響的,這與文獻[18]的研究結果是一致的。首先假定只存在一個旋轉角度誤差,分析入射光實際偏振度和偏振角對偏振度測量誤差的影響。取Δ0=5°,由于海面背景和艦船目標的紅外偏振度通常小于0.1,考慮入射光偏振度分別為0.02、0.04、0.06、0.08 和0.1 時,旋轉角度誤差對偏振度測量誤差DOLPerr的影響,如圖1所示。從圖中可以看到,DOLPerr的主要影響因素是入射光的偏振角,與入射光偏振度的關系不大,且隨入射光的偏振角呈周期性變化。
圖1 DOLPerr 與入射光偏振度和偏振角的關系
為進一步分析Δ0、Δ60和Δ120單獨存在時對偏振度測量精度的影響,分別取其變化范圍為-5°、-3°、-1°、1°、3°和5°,計算入射光偏振度等于0.1時,DOLPerr隨偏振角的變化情況,如圖2所示。
圖2 單個旋轉角度誤差對DOLPerr 的影響
從圖2 可知,當偏振成像系統(tǒng)中僅存在1 個旋轉角度誤差時,偏振度測量誤差百分比DOLPerr隨旋轉角度誤差增大而增大,且旋轉角度誤差的正負基本對稱。因此研究中僅需針對旋轉角度誤差絕對值的最大值進行計算,即可確定偏振度測量的誤差范圍。根據(jù)式(13)計算了3 個旋轉角度誤差均為-5°~5°范圍內的隨機誤差時,DOLPerr的變化情況如圖3所示。
圖3 多個旋轉角度誤差對DOLPerr 的影響
從圖3(a)可知旋轉角度誤差為±5°時,偏振角對DOLPerr最大值的影響不大。為進一步考察旋轉角度誤差對偏振度測量精度的影響,繪制了隨機旋轉角度誤差的DOLPerr散點圖,如圖3(b)所示。圖中紅色曲線為DOLPerr的極值。從圖中可以看出DOLPerr最大值與偏振角有關,當入射光偏振角為22°時,DOLPerr最大值為可達12.35%。在海面艦船目標紅外偏振探測中這么大的誤差是不可忽略的,因此進行高精度的海面艦船目標探測必須對旋轉角度誤差進行校正。
根據(jù)上節(jié)分析可知,旋轉角度誤差對偏振度測量精度有較大影響,為進一步驗證本文建立誤差模型的有效性,搭建了長波紅外分時偏振成像系統(tǒng)進行實驗驗證。偏振成像系統(tǒng)的工作波段為8μm~14μm,分辨率為640×512。利用偏振成像系統(tǒng)對金屬板目標進行成像,首先分別旋轉偏振片至0°、60°和120°,可獲得I0、I60、I120,根據(jù)式(5)和式(6)可計算出目標的偏振度和偏振角信息,部分實驗采集圖像如圖4所示。
圖4 部分實驗采集圖像
在實驗中加入旋轉角度誤差Δ0、Δ60和Δ120,并重復上述步驟即可計算出不同旋轉角度誤差下的偏振度測量值,最后計算出不同旋轉角度誤差時偏振度測量值誤差百分比。實驗中,入射光的偏振度為0.0732,偏振角為22.8°,實驗結果見表1。
表1 存在3個旋轉角度誤差時的偏振度測量結果與校正結果
從表1可以看出,DOLPerr的最大值為10.93%,校正后的偏振度誤差百分比小于3%,有效提升了偏振成像系統(tǒng)的測量精度。
本文從紅外偏振成像的基本原理出發(fā),分析了旋轉角度誤差對紅外偏振成像系統(tǒng)測量精度的影響,建立了偏振測量的旋轉角度誤差校正模型,并進行了仿真和實驗驗證。仿真和實驗結果表明:當入射光偏振度不大時,偏振度誤差百分比主要由入射光的偏振角決定,且呈周期性變化。當僅存在1個旋轉角度誤差時,偏振度誤差百分比隨旋轉角度誤差增大而增大,其最大值隨入射光偏振角增大而大幅振動。當3 個旋轉角度誤差都存在時,偏振度測量誤差百分比最大值的變化幅度隨入射光偏振角增大而降低,當入射光偏振度為0.0732,偏振角為22°時,偏振度測量誤差百分比最大值為12.35%。實驗中偏振度測量誤差百分比的最大值為10.93%,校正后能夠降低至3%以內,驗證了本文校正方法的有效性。本文研究結果對提高紅外偏振成像設備的探測能力具有一定的指導意義。