周舟,桑慶,王磊
特邀綜述
人類卵母細胞減數(shù)分裂的生理和病理機制
周舟1,2,桑慶1,王磊1
1. 復旦大學生物醫(yī)學研究院,上海 200032 2. 上海市生物醫(yī)藥技術(shù)研究院,上海 200237
正常的卵子發(fā)生是人類成功繁育后代的關鍵步驟。女性胚胎發(fā)育時期,原始生殖細胞從有絲分裂轉(zhuǎn)變?yōu)闇p數(shù)分裂,經(jīng)過同源染色體配對和重組后,減數(shù)分裂被阻滯在減數(shù)第一次分裂前期的雙線期。卵泡內(nèi)卵母細胞的減數(shù)分裂阻滯的維持主要歸因于胞質(zhì)中高濃度的環(huán)磷酸腺苷。在月經(jīng)周期中,卵泡刺激素和黃體生成素促進某些卵母細胞恢復減數(shù)分裂,完成排卵過程。卵母細胞減數(shù)分裂過程中發(fā)生任何缺陷都可能影響卵子發(fā)生,進而影響受精和胚胎發(fā)育過程。輔助生殖、高通量測序和分子生物學技術(shù)的快速發(fā)展,為人類認識減數(shù)分裂背后的精確分子機制以及卵母細胞成熟缺陷疾病的發(fā)病機制與診療提供新的思路和手段。本文主要介紹了近年來發(fā)現(xiàn)的調(diào)控卵子發(fā)生的生理和病理機制,涉及同源重組、減數(shù)分裂阻滯與恢復、母源mRNA降解、翻譯后調(diào)節(jié)、透明帶組裝等過程,旨在增進相關領域研究人員對卵母細胞減數(shù)分裂的了解,并為進一步機制研究和疾病治療提供理論基礎。
卵子發(fā)生;卵母細胞;減數(shù)分裂;突變
成熟的卵母細胞,被稱為卵子,是終末成熟狀態(tài)的女性生殖細胞,由卵原細胞通過減數(shù)分裂而產(chǎn)生[1]。卵子發(fā)生,即卵母細胞的生長和分化過程,不僅對受精和胚胎發(fā)育至關重要,而且對胎兒后期的發(fā)育和生長也有長期的影響。這一過程的分子調(diào)控也是生殖醫(yī)學及發(fā)育生物學最重要的科學問題之一。
卵母細胞減數(shù)分裂過程至少在3個方面與精子不同:女性生殖細胞在胚胎發(fā)育過程中進入并經(jīng)歷減數(shù)第一次分裂進程,并且在出生前停滯在減數(shù)第一次分裂前期的雙線期階段;在青春期后的每個月經(jīng)周期中,一些在完全生長的卵泡內(nèi)停滯的卵母細胞將恢復減數(shù)分裂;卵母細胞的細胞分裂為不對稱胞質(zhì)分裂。在激素的作用下,初級卵母細胞恢復減數(shù)分裂,發(fā)生染色質(zhì)濃縮、細胞核膜溶解,進入減數(shù)第一次分裂中期;隨后,卵母細胞排出含有一小部分細胞質(zhì)和1組染色體的第一極體,完成減數(shù)第一次分裂;不久之后,卵母細胞開始減數(shù)第二次分裂,停滯于細胞分裂中期;受精后,卵母細胞才完成減數(shù)分裂過程[1]。卵母細胞的減數(shù)分裂成熟包括一系列復雜的細胞核和細胞質(zhì)事件,最終獲得卵母細胞以及早期胚胎發(fā)育所需的全部能力。
近年來,得益于輔助生殖技術(shù)的發(fā)展和分子生物學技術(shù)的進步,科學家們利用人類卵母細胞樣本和轉(zhuǎn)基因小鼠模型發(fā)現(xiàn)精確調(diào)控減數(shù)分裂成熟的多種信號通路[2,3]。任何涉及這些關鍵反應或信號途徑的干擾都會造成低質(zhì)量卵子,進而導致受精失敗或早期胚胎停滯等異常生殖表型[4]。本文討論了從卵原細胞發(fā)育為卵子的重要生理調(diào)節(jié)機制以及導致人類卵母細胞成熟缺陷的病理因素,為進一步研究卵母細胞減數(shù)分裂奠定基礎。
卵子發(fā)生在女性胚胎發(fā)育早期就已經(jīng)開始[5],大約在胚胎發(fā)育第7周,卵原細胞首先出現(xiàn)在性腺脊上。卵原細胞與外面包裹的單層扁平顆粒細胞共同組成原始卵泡。直至妊娠第20周,原始生殖細胞經(jīng)歷快速的有絲分裂,產(chǎn)生600~700萬個卵原細胞,這些卵原細胞陸續(xù)分裂分化為初級卵母細胞,隨后進入減數(shù)分裂過程。減數(shù)分裂是卵子發(fā)生的關鍵環(huán)節(jié),分為前期、中期、后期、末期4個階段,減數(shù)第一次分裂前期根據(jù)染色體形態(tài)分為細線期、偶線期、粗線期、雙線期和終變期。同源染色體在偶線期聯(lián)會配對并在粗線期重組。卵母細胞的數(shù)量通過卵泡閉鎖持續(xù)減少,直到出生時新生兒只有100~200萬個初級卵母細胞。這些卵母細胞停滯于減數(shù)第一次分裂前期的雙線期,因細胞核膨大而被稱為生發(fā)泡(germinal vesicle,GV)卵母細胞,其后進入漫長的靜息階段,直到青春期來臨才恢復減數(shù)分裂[1]。
女性青春期后,卵巢由于卵泡閉鎖只剩下30~50萬個卵泡,部分原始卵泡通過磷脂酰肌醇3激酶/蛋白激酶B(phosphoinositide 3-kinase/protein kinase B,PI3K/Akt)信號通路的激活和抗繆勒管激素(anti- Müllerian hormone,AMH)的抑制而脫離靜息狀態(tài),開始生長發(fā)育并依次形成初級和次級卵泡[6,7]。在此期間,顆粒細胞快速分裂,形成多層顆粒細胞層,為卵母細胞提供多種生長必需的物質(zhì);初級卵母細胞的生發(fā)泡增大,進入轉(zhuǎn)錄活躍的網(wǎng)狀期,逐漸積累mRNA和蛋白等物質(zhì),導致卵母細胞直徑增大、并且卵外周形成一層被稱為透明帶的細胞外基質(zhì)[8]。在垂體分泌的卵泡刺激素(follicle-stimulating hormone,F(xiàn)SH)和黃體生成素(luteinizing hormone,LH)的作用下,次級卵泡發(fā)育為竇狀卵泡,最終形成一個最大的優(yōu)勢卵泡并排卵[6,9]。卵泡生長基本完成到排卵之間僅有數(shù)天時間。首先,初級卵母細胞恢復減數(shù)分裂,染色質(zhì)濃縮、細胞核膜溶解,該過程通常被稱為生發(fā)泡破裂(germinal vesicle breakdown,GVBD)。隨后,初級卵母細胞的紡錘體組裝,使染色體整齊排列在細胞中央,進入減數(shù)第一次分裂中期(metaphase I,MI),然后經(jīng)過不均等分裂產(chǎn)生次級卵母細胞和第一極體。次級卵母細胞幾乎包含全部的初級卵母細胞細胞質(zhì),極體則是無分裂和受精能力的單倍體小細胞,通常依附于卵母細胞的動物極(圖1)。最后,次級卵母細胞的紡錘體在極短的時間內(nèi)迅速解聚并再次聚合,引導剩余染色體發(fā)生赤道板集合,進入減數(shù)第二次分裂中期(metaphase II,MII)并再次靜止,這一時期的MII卵母細胞通常被稱為卵子(圖1)[8]。卵子透明帶之外圍繞著若干層卵丘顆粒細胞,最靠近透明帶的一層被稱為放射冠,具有保護卵母細胞和提供營養(yǎng)物質(zhì)的作用。女性排卵時,卵泡破裂,卵子連同周圍的透明帶和放射冠組成卵丘-卵母細胞復合體(cumulus-oocyte complex,COC),隨卵泡液一起從卵巢排出,被輸卵管傘端所拾取,由于輸卵管上皮細胞纖毛的擺動和肌層的收縮,進入輸卵管壺腹部,等待精子受精[10]。卵子在受精之后發(fā)生一系列生理生化變化,包括鈣離子震蕩、減數(shù)分裂恢復、皮質(zhì)反應、雌雄原核形成等,通過不均等分裂排出第二極體(圖1),完成減數(shù)第二次分裂;若未受精,該次級卵母細胞將在排卵后12~24 h內(nèi)退化[11]。因此,哺乳動物中不存在真正意義上單倍體的卵子。女性一生中只有400~500個卵泡能夠成為優(yōu)勢卵泡,從而完成排卵過程[12]。
圖1 人類卵母細胞減數(shù)分裂過程
GV代表生發(fā)泡,GVBD代表生發(fā)泡破裂,MI代表減數(shù)第一次分裂中期,MII代表減數(shù)第二次分裂中期,2PN代表兩原核。
卵子發(fā)生包括同源重組、減數(shù)第一次分裂阻滯和恢復、減數(shù)第一次分裂向減數(shù)第二次分裂轉(zhuǎn)變、減數(shù)第二次分裂中期阻滯等關鍵過程。絲裂原激活蛋白激酶、成熟促進因子、減數(shù)分裂抑制因子、Securin、分離酶等多種蛋白可通過泛素-蛋白酶體通路、磷脂酰肌醇通路、環(huán)磷酸腺苷通路等多個信號通路調(diào)控卵母細胞的成熟。這些通路中關鍵蛋白的研究建立了系統(tǒng)的卵子發(fā)生調(diào)控機制,為減數(shù)分裂缺陷的病理機制研究提供了理論基礎。
同源重組是減數(shù)分裂所特有的核心步驟,保證了后代遺傳物質(zhì)的重新分配、同源染色體的精確分離及遺傳多樣性[13]。每對同源染色體由兩個通過黏附蛋白連接的姐妹染色單體組成,程序化的DNA雙鏈斷裂(DNA double-strand breaks,DSBs)誘導姐妹染色單體之間產(chǎn)生交換重組、交叉重組或非交叉重組,交叉及非交叉重組都會導致同源染色體之間片段發(fā)生交換[14]。DSB位點并非沿染色體隨機分布,減數(shù)分裂特異的甲基轉(zhuǎn)移酶PRDM9 (PR/SET domain 9)通過鋅指結(jié)構(gòu)域結(jié)合DNA并進行組蛋白第3亞基4號賴氨酸的三甲基化(H3K4me3)和組蛋白第3亞基36號賴氨酸的三甲基化(H3K36me3)修飾,從而確定DSB熱點區(qū)域[15]。HORMAD1 (HORMA domain containing 1)蛋白優(yōu)先結(jié)合未聯(lián)會的染色體軸,通過招募IHO1 (interactor of HORMAD1 1)實現(xiàn)DSBs,促進蛋白IHO1、REC114 (REC114 meiotic recombination protein)和MEI4 (meiotic double- stranded break formation protein 4)在染色軸上組裝為三聚體復合物,將拓撲異構(gòu)酶SPO11 (SPO11 initiator of meiotic double strand breaks)與染色體軸聯(lián)系起來[16]。在PRDM9甲基化作用和IHO1- REC114-MEI4的幫助下,SPO11被募集到染色體軸處共價結(jié)合DNA并發(fā)揮作用。此后核酸內(nèi)切酶MRE11 (MRE11 double strand break repair nuclease A)將SPO11-寡核苷酸復合物從染色質(zhì)上切除并導致DSBs位點暴露短的單鏈DNA尾巴[17]。這些單鏈尾巴通過核酸酶進一步延伸,最終結(jié)合重組酶DMC1 (DNA meiotic recombinase 1)和RAD51 (RAD51 recombinase)完成同源重組[18]。
成熟促進因子(maturation promoting factor,MPF)在GVBD和隨后的卵母細胞成熟過程中發(fā)揮著關鍵作用。復合物MPF由催化亞基細胞周期蛋白依賴性激酶CDK1 (cyclin dependent kinase 1,別名CDC2)和調(diào)節(jié)亞基細胞周期蛋白Cyclin B組成,磷酸化其靶蛋白的特定絲氨酸和蘇氨酸殘基,以發(fā)揮激酶活性。在卵母細胞發(fā)育早期,卵泡內(nèi)的膜細胞、壁顆粒細胞和卵丘顆粒細胞產(chǎn)生環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)并持續(xù)轉(zhuǎn)移到卵母細胞中,從而保持卵母細胞內(nèi)高水平的cAMP[19]。高水平的cAMP持續(xù)激活蛋白激酶A (protein kinase A,PKA),PKA磷酸化并激活蛋白激酶WEE2 (WEE2 oocyte meiosis inhibiting kinase),激活的WEE2蛋白能夠抑制磷酸酶CDC25 (cell division cycle 25),而CDC25是CDK1的激活劑;同時,蛋白激酶WEE2將CDK1的Thr14和Tyr15磷酸化而抑制其活性(圖2A)。此時,身為泛素連接酶的后期促進復合體(anaphase promoting complex/cyclosome,APC/C)持續(xù)降解Cyclin B蛋白(圖2A)。以上數(shù)個信號通路使MPF保持在失活狀態(tài),而低活性的MPF有利于維持磷酸酶1 (phosphatase 1,PP1)對減數(shù)分裂蛋白的去磷酸化作用,進而使卵母細胞停滯在GV時期[19]。
在優(yōu)勢卵泡的顆粒細胞內(nèi),LH結(jié)合相應受 體LHCGR (luteinizing hormone/choriogonadotropin receptor),產(chǎn)生cAMP并激活PKA,促進表皮生長因子(epidermal growth factor,EGF)相關多肽的釋放[20]。這些因子結(jié)合EGF受體,從而激活RAS和細胞外信號調(diào)節(jié)激酶(extracellular signal-related kinase 1/2,ERK1/2)信號通路[20]。ERK1/2一方面減弱了環(huán)磷酸鳥苷(cyclic guanosine monophosphate,cGMP)介導的減數(shù)分裂抑制信號;一方面磷酸化縫隙連接蛋白CX37 (Connexin 37),阻礙cAMP和cGMP在顆粒細胞和卵母細胞間的傳遞[21,22]。當卵母細胞中的cAMP水平降低,WEE2被從核中運出,激活的CDC25將CDK1去磷酸化;同時,F(xiàn)BXO5表達升高并抑制APC/C的活性以積累Cyclin B;導致MPF恢復活性,調(diào)節(jié)下游多種信號通路,進而促使卵母細胞GVBD (圖2B)[19]。
ERK1/2在GVBD后促進紡錘體的組裝,從而調(diào)控卵母細胞減數(shù)分裂周期進程。ERK1/2能夠磷酸化細胞質(zhì)中的RNA結(jié)合蛋白CPEB1 (cytoplasmic polyadenylation element binding protein 1),激活的CPEB1蛋白結(jié)合到mRNA的3′UTR區(qū)域的CPE (cytoplasmic polyadenylation element)位點,從而延長紡錘體組裝相關轉(zhuǎn)錄本的poly(A)尾并啟動其翻譯[23]。當卵母細胞完成減數(shù)第一次分裂后,立即開始減數(shù)第二次分裂,并停滯在MII階段。
MII卵母細胞通過細胞靜止因子(cytostatic factor,CSF)信號通路維持MPF的活性,而停滯在MII階段(圖3)。CSF由多個分子或蛋白組成,CSF的重要組分FBXO43 (F-box protein 43)通過結(jié)合APC/C效應器CDC20 (cell division cycle 20)而抑制APC/C的活性,有利于Cyclin B和分離酶抑制劑Securin的積累[24]。MOS (MOS proto-oncogene, serine/threonine kinase)誘導的絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)激活能夠穩(wěn)定FBXO43蛋白[25];同時,MOS/MEK/MAPK/p90RSK級聯(lián)通路可以維持CSF的功能,從而抑制APC/C的活性,協(xié)助卵母細胞MII阻滯[26]。
圖2 減數(shù)第一次分裂阻滯和恢復的調(diào)控機制
A:減數(shù)第一次分裂前期阻滯的調(diào)控機制;B:減數(shù)第一次分裂恢復的調(diào)控機制。
圖3 減數(shù)第二次分裂阻滯的調(diào)控機制
精子進入卵子后,釋放一系列信號,引發(fā)鈣離子震蕩,鈣離子作為第二信使與鈣調(diào)蛋白結(jié)合,激活鈣離子/鈣調(diào)蛋白依賴性蛋白激酶II (calcium/ calmodulin dependent protein kinase II,CAMKII),CAMKII活化WEE2,WEE2磷酸化CDK1,使MPF活性降低;同時,CAMKII導致FBXO43磷酸化失活和降解,激活APC/C,無法維持MPF的穩(wěn)定,使Cyclin B被降解;最終促使卵子重新進入減數(shù)分裂,姐妹染色單體分離并排出第二極體[27]。
人類卵母細胞的減數(shù)分裂成熟過程需要經(jīng)過一系列的分子和形態(tài)變化,一般包括兩部分:核成熟和質(zhì)成熟[28]。核成熟主要發(fā)生在LH水平劇增之后,GV卵母細胞重新進入減數(shù)第一次分裂,染色體在紡錘體的作用下有序分離并排出卵母細胞[8]。而質(zhì)成熟則提供核成熟過程所涉及到的一些細胞關鍵組分并調(diào)控相應分子的合成,為卵子受精和胚胎發(fā)育提供物質(zhì)準備[28]。卵子發(fā)生過程中初級卵母細胞始終無法排出第一極體,即核成熟缺陷,被稱為卵母細胞成熟障礙,根據(jù)卵母細胞發(fā)育停滯的不同時期,分為GV阻滯和MI阻滯。目前臨床上僅靠形態(tài)學判斷精子、卵子以及胚胎質(zhì)量,然而形態(tài)上的正常并不意味著精子、卵子和胚胎在關鍵性的分子水平上是正常的,即形態(tài)正常的精子和卵子可能由于質(zhì)成熟缺陷而弱化或失去發(fā)育潛能,因此無法順利完成受精及胚胎發(fā)育過程。只有擁有完整發(fā)育潛能的卵子才能正常受精,而在卵母細胞減數(shù)分裂成熟過程中出現(xiàn)任何缺陷和錯誤都將可能導致成熟障礙,或者影響其后的受精和胚胎發(fā)育過程,最終導致受精失敗和早期胚胎停滯[28]。受精失敗根據(jù)臨床特征被劃分為精卵結(jié)合異常、無法形成原核和原核數(shù)目異常。早期胚胎停滯表型指移植前早期胚胎停止分裂而無法形成囊胚或者囊胚無法著床。其中,合子分裂失敗是早期胚胎停滯的一種獨特表型,表現(xiàn)為卵子受精后合子不卵裂。
在臨床實踐中,許多女性不孕患者的卵巢儲備、月經(jīng)周期、子宮及雙側(cè)附件正常,基礎性激素水平和其他不孕癥相關的檢查未見明顯異常;然而,她們因遺傳學因素而患有卵母細胞成熟缺陷,具體表現(xiàn)為卵子死亡、透明帶異常、卵母細胞成熟障礙、受精失敗和早期胚胎停滯等,經(jīng)過多次輔助生殖治療仍無法成功妊娠,飽嘗多個輔助生殖周期失敗的經(jīng)濟和精神壓力、以及反復促排卵過程對身體的傷害[4]。
近年來,一些涉及調(diào)控卵母細胞減數(shù)分裂的基因(包括、、、、、、、、、、、、、、、、、、、、、、和)被報道與人類一系列卵母細胞成熟缺陷表型相關,包括卵母細胞成熟障礙、受精失敗、早期胚胎停滯和胚胎著床失敗(表1)。
(thyroid hormone receptor interactor 13)廣泛表達于包括生殖細胞在內(nèi)的各種組織中,在有絲分裂和減數(shù)分裂中均發(fā)揮重要作用。在減數(shù)分裂過程中,主要在減數(shù)第一次分裂前期發(fā)揮功能,參與同源染色體聯(lián)會和重組。TRIP13是檢驗點蛋白HORMAD1和HORMAD2(HORMA domain containing 2)的負調(diào)控因子,通過調(diào)控HORMAD2從突觸染色體軸上移除而打開檢驗點,使同源染色體得以成功分離。錯義突變降低了TRIP13蛋白水平,并導致其下游分子HORMAD2的累積,阻礙了同源染色體的分離,最終造成卵母細胞發(fā)育缺陷。攜帶純合或復雜合錯義突變的患者均表現(xiàn)為卵母細胞MI阻滯或合子分裂失敗[29]。
表1 卵母細胞減數(shù)分裂缺陷的致病基因
AD:常染色體顯性遺傳;AR:常染色體隱性遺傳;GV:生發(fā)泡;MI:減數(shù)第一次分裂中期;MII:減數(shù)第二次分裂中期;DSBs:DNA雙鏈斷裂;MPF:成熟促進因子。
突變導致自身蛋白水平降低,并且失去了維持MEI4穩(wěn)定性的能力,從而導致REC114- MEI4-IHO1復合物功能喪失。另外,REC114參與促進SPO11與染色質(zhì)的結(jié)合,MEI4的正常染色體定位受REC114和MER2影響。因此,REC114蛋白量減少可能導致SPO11和MEI4無法正確定位,造成染色體配對過程中DSBs發(fā)生異常。異常DSBs所誘導的同源染色體重組可能會進一步造成染色體排列混亂或分離異常,導致卵母細胞發(fā)育缺陷,具體表現(xiàn)為受精多原核、早期胚胎停滯、反復葡萄胎和流產(chǎn),表型差異可能取決于不同突變帶來的不同影響[30]。
MEI1 (meiotic double-stranded break formation protein 1)蛋白是正常減數(shù)分裂染色體聯(lián)會所必需的,并且在減數(shù)分裂DSBs的形成中發(fā)揮關鍵作用。隱性突變破壞了MEI1蛋白的功能,進而導致早期胚胎停滯、反復葡萄胎或反復流產(chǎn)[31]。
隨著卵泡發(fā)育,生發(fā)泡卵母細胞逐漸積累了大量處于翻譯抑制狀態(tài)的母源性mRNA。在卵子發(fā)生過程中,卵胞質(zhì)儲存的母源mRNA開始有序的分批次被翻譯加工,主要參與調(diào)控紡錘體組裝、MII阻滯的維持以及部分母源mRNA降解等過程,對于卵子發(fā)生和早期胚胎發(fā)育起著關鍵性的作用[57,58]。在人類卵子中,(PAT1 homolog 2)突變導致相應蛋白快速降解或破壞,卵子內(nèi)PATL2蛋白減少可能擾亂了正常的翻譯抑制途徑并激活下游的一些轉(zhuǎn)錄本提前進入蛋白合成過程[32]。因此,突變除了導致本身蛋白功能喪失之外,還有一個可能的致病機制是破壞了其他mRNA結(jié)合蛋白的總量,從而導致患者的卵母細胞GV阻滯、受精失敗及早期胚胎停滯表型[33,34]。另外,患者表型的多樣性取決于突變對蛋白的破壞程度,破壞性越大,則卵子發(fā)育阻滯在更早期的階段。
PABPC1L (poly(A) binding protein cytoplasmic 1 like)是人類卵母細胞和合子基因組激活前早期胚胎中的一種主要poly(A)結(jié)合蛋白,在母源mRNA的翻譯激活中起著關鍵作用。突變通過影響PABPC1L與母源mRNA的結(jié)合,導致蛋白截短、蛋白水平降低、定位改變以及母源mRNA翻譯激活減少,從而影響卵母細胞的胞質(zhì)成熟,導致卵母細胞成熟障礙[35]。
TBPL2 (TATA-box binding protein like 2)是卵母細胞特異性的通用轉(zhuǎn)錄因子,可以結(jié)合活性基因啟動子的TATA盒并介導RNA聚合酶II的轉(zhuǎn)錄起始。純合剪接突變破壞了mRNA的結(jié)構(gòu),導致密碼子提前終止,因此降低了許多對卵母細胞成熟和受精很重要的卵母細胞特異性基因的表達,從而導致卵母細胞成熟障礙(包括GV和MI阻滯)、卵子退化和早期胚胎停滯[36]。
透明帶能夠協(xié)助卵母細胞生長和卵泡發(fā)育、輔助精卵相互識別和特異性結(jié)合、限制異種受精和多精受精、保護早期胚胎[59]。在人類卵泡發(fā)育過程中,生長中的初級卵母細胞表達糖蛋白ZP1 (zona pellucida glycoprotein 1)、ZP2 (zona pellucida glycoprotein 2)、ZP3 (zona pellucida glycoprotein 3)和ZP4(zona pellucida glycoprotein 4)并分泌到胞外。這些糖蛋白相互交聯(lián),從而形成透明帶。隱性突變可能會影響ZP1蛋白在體內(nèi)的表達或分泌,從而導致透明帶纖維無法相互連接,阻止透明帶的形成[37]?;螂s合突變通過顯性負效應影響野生型透明帶蛋白間的相互作用,從而阻礙透明帶的有序組裝[38]。當透明帶缺失時,卵丘顆粒細胞將完全脫離卵子,導致卵子退化消失?;蚣兒贤蛔兤茐牧薢P2蛋白的表達和分泌,突變型ZP2蛋白無法分泌到卵子表面,因而患者卵子周圍只能形成一層薄而有缺陷的僅由另外3種透明帶蛋白組成的透明帶[39]。精子與患者卵子薄透明帶的結(jié)合缺陷是體外受精失敗的原因,最終嚴重影響女性的生育能力。
精卵融合時,卵胞質(zhì)的皮質(zhì)顆粒中的水解酶通過胞吐作用釋放到卵周隙,其中ASTL (astacin like metalloendopeptidase)蛋白切割透明帶表面結(jié)合精子的ZP2蛋白,導致其他精子不能識別與結(jié)合卵子,繼而誘導透明帶硬化,阻止其他精子穿過透明帶。突變破壞了ASTL的結(jié)構(gòu),ASTL缺失的卵子仍然能夠在一定程度上阻止多精受精,得到質(zhì)量較好的8細胞胚胎。但ASTL缺失影響了卵母細胞的胞質(zhì)成熟,造成患者卵子受精差和早期胚胎停滯的表型,最終導致女性不孕[40]。
TUBB8 (tubulin beta 8 class VIII)是靈長類特異性β微管蛋白亞型,特異性表達于卵子和早期胚胎中,是構(gòu)成卵母細胞紡錘體β微管蛋白的最主要的形式。有絲分裂和減數(shù)分裂紡錘體都由微管組成,這些微管是由α微管蛋白和β微管蛋白組裝而成的動態(tài)聚合物[42]。突變遵循顯性或隱性遺傳模式,新發(fā)和遺傳的錯義雜合突變通過顯性負效應影響依賴伴侶蛋白的折疊、改變微管動力學、使紡錘體形態(tài)結(jié)構(gòu)紊亂;而純合缺失和移碼突變通過單倍劑量不足效應破壞微管功能,影響減數(shù)分裂紡錘體組裝;不同突變導致患者卵子和胚胎發(fā)育表型多樣化,包括卵母細胞成熟障礙、受精失敗、早期胚胎停滯及反復移植失敗等,最終造成女性原發(fā)性不孕[41]。
FBXO43在人的卵母細胞、睪丸和肝臟組織中高表達,作為APC/C的抑制分子在卵母細胞減數(shù)第二次分裂阻滯和早期胚胎發(fā)育中發(fā)揮重要功能。突變破壞了FBXO43蛋白的正常表達模式,同時降低了FBXO43穩(wěn)定下游MPF組分Cyclin B的能力,造成患者卵母細胞減數(shù)分裂異常,進而影響受精后早期胚胎發(fā)育,最終導致女性不孕[43]。
CDC20作為APC/C的效應器在雙線期卵母細胞中表達較低,而在阻滯的MII卵子中表達升高。FBXO43結(jié)合CDC20后能夠抑制APC/C的活性,從而維持MPF的穩(wěn)定性。攜帶隱性突變的患者表現(xiàn)出卵母細胞MI阻滯、受精失敗或早期胚胎停滯的表型,這取決于不同突變對CDC20蛋白的損傷程度[44]。
基因編碼絲氨酸/蘇氨酸蛋白激酶,作為細胞生長抑制因子,通過磷酸化絲裂原活化蛋白激酶(mitogen-activated protein kinase,MEK)而激活細胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinase,ERK)通路,從而維持卵母細胞MII阻滯[45]。MOS-ERK信號通路介導的MII阻滯依賴于FBXO43介導的APC/CCDC20抑制以防止Cyclin B降解[45]。mRNA在GV卵母細胞中幾乎未被翻譯,但在卵母細胞成熟過程中快速翻譯并在受精后迅速降解。隱性突變影響蛋白表達和ERK1/2激活。卵母細胞中MOS-ERK信號通路的失活導致F-肌動蛋白組裝異常、母源效應基因降解缺陷和線粒體功能障礙,導致早期胚胎停滯[45~47]。
WEE2是一種卵母細胞特異性蛋白激酶,通過調(diào)控MPF的活性而調(diào)控細胞周期。在人類卵子中,突變破壞了蛋白結(jié)構(gòu),進而影響蛋白的穩(wěn)定性和功能,導致突變型WEE2蛋白自身磷酸化水平、磷酸化下游CDK1蛋白Tyr15的能力以及促進卵子生成原核的能力均有顯著下降,造成卵子受精后無法形成雌雄原核,即受精失敗表型[48]。
母源合子轉(zhuǎn)換是卵母細胞向早期胚胎的基因表達模式轉(zhuǎn)換。其中,卵胞質(zhì)儲存的母源mRNA的適時降解是胚胎自身基因組轉(zhuǎn)錄激活的重要前提,對于卵子發(fā)生和早期胚胎發(fā)育至關重要。脫腺苷酸化酶CCR4-NOT復合物通過脫腺苷酸化縮短母源mRNA的poly(A)尾而開始mRNA降解過程。BTG4 (BTG anti-proliferation factor 4)是一種CCR4-NOT復合物的銜接蛋白,能夠結(jié)合母源mRNA的5′端m7G帽和3′端poly(A)尾巴上的結(jié)合蛋白EIF4E、PABPN1和PABPC1L,進而招募催化亞基CNOT7 (CCR4-NOT transcription complex subunit 7)或CNOT8 (CCR4-NOT transcription complex subunit 8),觸發(fā)CCR4-NOT復合物介導的母源mRNA降解途徑[60]。已報道的基因純合突變均破壞BTG4蛋白的正常功能,包括蛋白缺失、截短和影響B(tài)TG4與CNOT7之間的互作,從而影響母源mRNA降解和母源合子轉(zhuǎn)換,造成患者合子中母源mRNA非正常累積,最終導致合子分裂失敗[49]。
在卵母細胞成熟過程中,RNA結(jié)合蛋白ZFP36L2 (ZFP36 ring finger protein like 2)通過結(jié)合CCR4- NOT復合物的催化亞基CNOT6L而招募該復合物,從而介導具有腺嘌呤/尿嘧啶富集元件(AU-rich element,ARE)的mRNA的降解[61]。人類復雜合突變被報道破壞合子的母源mRNA的降解,從而影響早期胚胎發(fā)育,造成早期胚胎停滯[50]。
(karyopherin subunit alpha 7)編碼核轉(zhuǎn)運蛋白α7蛋白,KPNA7是人類卵母細胞和早期胚胎中表達最高的核轉(zhuǎn)運蛋白α家族成員,介導核蛋白從細胞質(zhì)到細胞核的轉(zhuǎn)移。突變降低了KPNA7蛋白水平,減弱了KPNA7與底物RSL1D1 (ribosomal L1 domain containing 1)結(jié)合的能力,并影響了KPNA7的核轉(zhuǎn)運活性,從而阻礙某些底物的核輸入,而這些底物對于胚胎自身基因組轉(zhuǎn)錄激活至關重要[51]。
(checkpoint kinase 1)編碼一種絲氨酸/蘇氨酸蛋白激酶,主要定位于細胞核中的染色質(zhì)上。CHK1通過N-末端激酶結(jié)構(gòu)域和C-末端調(diào)節(jié)結(jié)構(gòu)域之間的相互作用而保持閉合構(gòu)象;而保守基序CM1或CM2中的突變可以破壞CHK1的閉合構(gòu)象,暴露其激酶結(jié)構(gòu)域,從而激活 CHK1。激活的CHK1被運輸?shù)铰寻|(zhì),磷酸化CDC25C的Ser216位點,導致CDK1的Thr14和Tyr15磷酸化而抑制其活性,從而阻止G2/M轉(zhuǎn)換并導致細胞周期停滯。此外,受精卵的晚期原核階段對應于G2階段,之后受精卵進入有絲分裂。因此,雜合突變增加了受精卵中CHK1的激酶活性,并通過抑制性CDK1的積累引起原核融合失敗和合子停滯,從而誘導受精卵G2/M轉(zhuǎn)換停滯[52]。
卵子發(fā)生過程中,母源mRNA不斷累積,大多數(shù)mRNA被翻譯成蛋白并且在卵母細胞減數(shù)分裂過程中發(fā)揮作用,合子形成后這些母源mRNA逐漸被降解。但是,仍然有一些母源mRNA在合子中發(fā)揮功能,參與調(diào)控早期胚胎發(fā)育過程,被稱為母源效應基因。皮質(zhì)下母源復合體(subcortical maternal complex,SCMC)是由多種母源效應基因編碼的母源蛋白組成的復合體,對早期胚胎發(fā)育具有重要調(diào)控作用。人類SCMC的核心組分NLRP2 (NLR family pyrin domain containing 2)、NLRP5 (NLR family pyrin domain containing 5)、OOEP (oocyte expressed protein)、PADI6 (peptidyl arginine deiminase 6)、TLE6 (TLE family member 6)和KHDC3L (KH domain containing 3 like)共定位于卵子和早期胚胎的皮質(zhì)部分,調(diào)控胞質(zhì)晶格(cytoplasmic lattices,CPLs)的形成,而CPL是母源核糖體和mRNA儲存的位置[62]。其中,TLE6參與調(diào)控了纖維型微絲網(wǎng)絡的動態(tài)變化,在卵子由受精前的不對稱減數(shù)分裂轉(zhuǎn)變?yōu)槭芫蟮膶ΨQ有絲分裂的過程中起到重要作用。純合或復雜合突變,破壞了TLE6蛋白的結(jié)構(gòu),影響了TLE6的表達或磷酸化水平,進而破壞TLE6與SCMC其他成員KHDC3L和OOEP的相互作用,導致受精失敗和早期胚胎發(fā)育停滯[53]。專一的在不同時期卵子以及早期胚胎中表達,與CPL共同定位,其表達水平隨著卵子的成熟顯著升高,而到8細胞胚胎時則顯著降低,至囊胚時期則幾乎檢測不到表達?;驒z測發(fā)現(xiàn),患者攜帶有基因純合或復雜合突變,影響了PADI6蛋白的表達,通過劑量效應抑制早期胚胎的合子基因組激活,最終導致早期胚胎停滯和女性不孕[54]。此外,和的隱性突變導致受精失敗或者早期胚胎停滯,不同突變對蛋白功能的破壞程度不同,造成患者的表型差異[55]。隱性突變也被發(fā)現(xiàn)導致早期胚胎停滯和復發(fā)性葡萄胎[56]。
減數(shù)分裂是人類卵子形成的關鍵環(huán)節(jié),受到了復雜而精妙的調(diào)控。輔助生殖技術(shù)使人們能夠在體外直觀地觀察到人類卵母細胞減數(shù)分裂的形態(tài)學變化,并借此展開生理和病理學研究。隨著分子生物學技術(shù)的進步,對卵子發(fā)生的分子機制研究越來越深入;動物模型、輔助生殖和高通量測序技術(shù)的廣泛應用使人們對卵母細胞減數(shù)分裂缺陷的病理機制有了更為清晰地了解。本綜述重點介紹了卵子發(fā)生的主要細胞和分子事件,特別是卵母細胞減數(shù)分裂阻滯和恢復事件,以及該過程的調(diào)控機制。此外,本文列舉了一系列干擾重要信號通路進而導致卵母細胞成熟缺陷的致病基因,并且介紹了相關致病機制。
間隙連接是卵母細胞與其卵泡環(huán)境之間唯一的通訊方式,因此卵母細胞的發(fā)育不僅取決于卵母細胞本身,還取決于卵泡內(nèi)細胞間的相互通訊和物理接觸。目前,PI3K/Akt信號通路、AMH、LH等觸發(fā)卵泡和卵母細胞發(fā)育的確切機制仍不確定,需要進一步研究和探索激素和其他細胞外分子在調(diào)節(jié)卵泡顆粒細胞和卵母細胞分化中的作用[63]。未來的研究應當更多地關注卵母細胞內(nèi)的表觀遺傳變化,例如翻譯后修飾和非編碼RNA在減數(shù)分裂中的作用[64]。此外,成像技術(shù)、高通量測序技術(shù)和組學技術(shù)的發(fā)展能夠?qū)⒙炎影l(fā)生的關鍵事件以更清晰的三維甚至時間依賴性四維方式進行展示[65],借此發(fā)現(xiàn)更多的卵母細胞特異性蛋白,如卵母細胞表達的旁分泌分子和RNA結(jié)合蛋白,進一步闡明卵母細胞減數(shù)分裂的生理機制。同時,已發(fā)現(xiàn)的致病基因只能解釋少部分不孕不育患者的病因,大多數(shù)患者背后的遺傳因素和致病機制仍有待發(fā)現(xiàn)。因此,卵子發(fā)生的生理和病理研究仍然是未來研究的重要課題。
[1] Sen A, Caiazza F. Oocyte maturation: a story of arrest and release., 2013, 5(2): 451–477.
[2] He MN, Zhang T, Yang Y, Wang C. Mechanisms of oocyte maturation and related epigenetic regulation., 2021, 9: 654028.
[3] Pei ZL, Deng K, Xu CJ, Zhang S. The molecular regulatory mechanisms of meiotic arrest and resumption in oocyte development and maturation., 2023, 21(1): 90.
[4] Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality., 2021, 38(5): 993–1002.
[5] Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review., 2012, 18(1): 73–91.
[6] Orisaka M, Miyazaki Y, Shirafuji A, Tamamura C, Tsuyoshi H, Tsang BK, Yoshida Y. The role of pituitary gonadotropins and intraovarian regulators in follicle development: a mini-review., 2021, 20(2): 169–175.
[7] Zhao Y, Feng HW, Zhang YH, Zhang JV, Wang XH, Liu DT, Wang TR, Li RHW, Ng EHY, Yeung WSB, Rodriguez-Wallberg KA, Liu K. Current understandings of core pathways for the activation of mammalian primordial follicles., 2021, 10(6): 1491.
[8] Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte., 2012, 27(Suppl 1): i2–i21.
[9] Gougeon A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation., 2010, 71(3): 132–143.
[10] Suarez SS. Mammalian sperm interactions with the female reproductive tract., 2016, 363(1): 185–194.
[11] Sanders JR, Swann K. Molecular triggers of egg activation at fertilization in mammals., 2016, 152(2): R41–R50.
[12] Ahmed TA, Ahmed SM, El-Gammal Z, Shouman S, Ahmed A, Mansour R, El-Badri N. Oocyte aging: the role of cellular and environmental factors and impact on female fertility., 2020, 1247(8): 109–123.
[13] Hunter N. Meiotic recombination: the essence of heredity., 2015, 7(12): a016618.
[14] de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes., 2013, 47: 563–599.
[15] Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM, Paigen K. The meiotic recombination activator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots., 2016, 12(6): e1006146.
[16] Stanzione M, Baumann M, Papanikos F, Dereli I, Lange J, Ramlal A, Tr?nkner D, Shibuya H, de Massy B, Watanabe Y, Jasin M, Keeney S, Tóth A. Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) in mice., 2016, 18(11): 1208–1220.
[17] Moreau S, Ferguson JR, Symington LS. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance., 1999, 19(1): 556–566.
[18] Cloud V, Chan YL, Grubb J, Budke B, Bishop DK. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis., 2012, 337(6099): 1222–1225.
[19] Adhikari D, Liu K. The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes., 2014, 382(1): 480–487.
[20] Conti M, Hsieh M, Zamah AM, Oh JS. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation., 2012, 356(1–2): 65–73.
[21] Su YQ, Wigglesworth K, Pendola FL, O'Brien MJ, Eppig JJ. Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotropin-induced oocyte meiotic resumption and cumulus expansion in the mouse., 2002, 143(6): 2221–2232.
[22] Sela-Abramovich S, Chorev E, Galiani D, Dekel N. Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles., 2005, 146(3): 1236–1244.
[23] Sha QQ, Dai XX, Dang YJ, Tang FC, Liu JP, Zhang YL, Fan HY. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes., 2017, 144(3): 452–463.
[24] Wu JQ, Kornbluth S. Across the meiotic divide—CSF activity in the post-Emi2/XErp1 era., 2008, 121(Pt 21): 3509–3514.
[25] Dupré A, Haccard O, Jessus C. Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions., 2011, 2011: 350412.
[26] Zhang YL, Liu XM, Ji SY, Sha QQ, Zhang J, Fan HY. ERK1/2 activities are dispensable for oocyte growth but are required for meiotic maturation and pronuclear formation in mouse., 2015, 42(9): 477–485.
[27] Krauchunas AR, Wolfner MF. Molecular changes during egg activation., 2013, 102: 267–292.
[28] Sang Q, Ray PF, Wang L. Understanding the genetics of human infertility., 2023, 380(6641): 158–163.
[29] Zhang ZH, Li B, Fu J, Li R, Diao FY, Li CH, Chen BB, Du J, Zhou Z, Mu J, Yan Z, Wu L, Liu S, Wang WJ, Zhao L, Dong J, He L, Liang XZ, Kuang YP, Sun XX, Sang Q, Wang L. Bi-allelic missense pathogenic variants in TRIP13 cause female infertility characterized by oocyte maturation arrest., 2020, 107(1): 15–23.
[30] Wang WJ, Dong J, Chen BB, Du J, Kuang YP, Sun XX, Fu J, Li B, Mu J, Zhang ZH, Zhou Z, Lin Z, Wu L, Yan Z, Mao XY, Li QL, He L, Wang L, Sang Q. Homozygous mutations in REC114 cause female infertility chara-cterised by multiple pronuclei formation and early embryonic arrest., 2020, 57(3): 187–194.
[31] Dong J, Zhang H, Mao XY, Zhu JH, Li D, Fu J, Hu JJ, Wu L, Chen BB, Sun YM, Mu J, Zhang ZH, Sun XX, Zhao L, Wang WJ, Wang WJ, Zhou Z, Zeng Y, Du J, Li QL, He L, Jin L, Kuang YP, Wang L, Sang Q. Novel biallelic mutations in MEI1: expanding the phenotypic spectrum to human embryonic arrest and recurrent implantation failure., 2021, 36(8): 2371–2381.
[32] Christou-Kent M, Kherraf ZE, Amiri-Yekta A, Le Blévec E, Karaouzène T, Conne B, Escoffier J, Assou S, Guttin A, Lambert E, Martinez G, Boguenet M, Fourati Ben Mustapha S, Cedrin Durnerin I, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Coutton C, Thierry- Mieg N, Nef S, Bottari SP, Zouari R, Issartel JP, Ray PF, Arnoult C. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice., 2018, 10(5): e8515.
[33] Chen BB, Zhang ZH, Sun XX, Kuang YP, Mao XY, Wang XQ, Yan Z, Li B, Xu Y, Yu M, Fu J, Mu J, Zhou Z, Li QL, Jin L, He L, Sang Q, Wang L. Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest., 2017, 101(4): 609–615.
[34] Wu L, Chen H, Li D, Song D, Chen BB, Yan Z, Lyu QF, Wang L, Kuang YP, Li B, Sang Q. Novel mutations in PATL2: expanding the mutational spectrum and corres-ponding phenotypic variability associated with female infertility., 2019, 64(5): 379–385.
[35] Wang WJ, Guo J, Shi JZ, Li Q, Chen BB, Pan ZQ, Qu RG, Fu J, Shi R, Xue X, Mu J, Zhang ZH, Wu TY, Wang WJ, Zhao L, Li QL, He L, Sun XX, Sang Q, Lin G, Wang L. Bi-allelic pathogenic variants in PABPC1L cause oocyte maturation arrest and female infertility., 2023, 15(6): e17177.
[36] Yang P, Chen TL, Wu KL, Hou ZZ, Zou Y, Li M, Zhang XZ, Xu JT, Zhao H. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility., 2021, 36(7): 2011–2019.
[37] Huang HL, Lv C, Zhao YC, Li W, He XM, Li P, Sha AG, Tian X, Papasian CJ, Deng HW, Lu GX, Xiao HM. Mutant ZP1 in familial infertility., 2014, 370(13): 1220–1226.
[38] Chen TL, Bian YH, Liu XM, Zhao SG, Wu KL, Yan L, Li M, Yang ZL, Liu HB, Zhao H, Chen ZJ. A recurrent missense mutation in ZP3 causes empty follicle syndrome and female infertility., 2017, 101(3): 459–465.
[39] Dai C, Hu L, Gong F, Tan YQ, Cai SF, Zhang SP, Dai J, Lu CF, Chen J, Chen YZ, Lu GX, Du J, Lin G. ZP2 pathogenic variants cause in vitro fertilization failure and female infertility., 2019, 21(2): 431–440.
[40] Maddirevula S, Coskun S, Al-Qahtani M, Aboyousef O, Alhassan S, Aldeery M, Alkuraya FS. ASTL is mutated in female infertility., 2022, 141(1): 49–54.
[41] Chen BB, Li B, Li D, Yan Z, Mao XY, Xu Y, Mu J, Li QL, Jin L, He L, Kuang YP, Sang Q, Wang L. Novel mutations and structural deletions in TUBB8: expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development., 2017, 32(2): 457–464.
[42] Feng RZ, Sang Q, Kuang YP, Sun XX, Yan Z, Zhang SZ, Shi JZ, Tian GL, Luchniak A, Fukuda Y, Li B, Yu M, Chen JL, Xu Y, Guo L, Qu RG, Wang XQ, Sun ZG, Liu M, Shi HJ, Wang HY, Feng Y, Shao RJ, Chai RJ, Li QL, Xing QH, Zhang R, Nogales E, Jin L, He L, Gupta ML, Cowan NJ, Wang L. Mutations in TUBB8 and human oocyte meiotic arrest., 2016, 374(3): 223–232.
[43] Wang WJ, Wang WJ, Xu Y, Shi JZ, Fu J, Chen BB, Mu J, Zhang ZH, Zhao L, Lin J, Du J, Li QL, He L, Jin L, Sun XX, Wang L, Sang Q. FBXO43 variants in patients with female infertility characterized by early embryonic arrest., 2021, 36(8): 2392–2402.
[44] Zhao L, Xue SG, Yao ZY, Shi JZ, Chen BB, Wu L, Sun LH, Xu Y, Yan Z, Li B, Mao XY, Fu J, Zhang ZH, Mu J, Wang WJ, Du J, Liu S, Dong J, Wang WJ, Li Q, He L, Jin L, Liang XZ, Kuang YP, Sun XX, Wang L, Sang Q. Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embry-onic development., 2020, 11(12): 921–927.
[45] Zhang YL, Zheng W, Ren PP, Hu HL, Tong XM, Zhang SP, Li X, Wang HC, Jiang JC, Jin JM, Yang WJ, Cao LR, He YL, Ma YR, Zhang YY, Gu YF, Hu L, Luo KL, Gong F, Lu GX, Lin G, Fan HY, Zhang SY. Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation., 2021, 13(12): e14887.
[46] Zeng Y, Shi JZ, Xu SR, Shi R, Wu TH, Li HY, Xue X, Zhu YC, Chen BB, Sang Q, Wang L. Bi-allelic mutations in MOS cause female infertility characterized by preim-plantation embryonic arrest., 2022, 37(3): 612–620.
[47] Zhang YL, Zheng W, Ren PP, Jin JM, Hu ZH, Liu Q, Fan HY, Gong F, Lu GX, Lin G, Zhang SY, Tong XM. Biallelic variants in MOS cause large polar body in oocyte and human female infertility., 2022, 37(8): 1932–1944.
[48] Sang Q, Li B, Kuang YP, Wang XQ, Zhang ZH, Chen BB, Wu L, Lyu QF, Fu YL, Yan Z, Mao XY, Xu Y, Mu J, Li QL, Jin L, He L, Wang L. Homozygous mutations in WEE2 cause fertilization failure and female infertility., 2018, 102(4): 649–657.
[49] Zheng W, Zhou Z, Sha QQ, Niu XL, Sun XX, Shi JZ, Zhao L, Zhang SP, Dai J, Cai SF, Meng F, Hu L, Gong F, Li XR, Fu J, Shi R, Lu GX, Chen BB, Fan HY, Wang L, Lin G, Sang Q. Homozygous mutations in BTG4 cause zygotic cleavage failure and female infertility., 2020, 107(1): 24–33.
[50] Zheng W, Sha QQ, Hu HL, Meng F, Zhou QW, Chen XQ, Zhang SP, Gu YF, Yan X, Zhao L, Zong YR, Hu L, Gong F, Lu GX, Fan HY, Lin G. Biallelic variants in ZFP36L2 cause female infertility characterised by recurrent preimplantation embryo arrest., 2022, 59(9): 850–857.
[51] Wang WJ, Miyamoto Y, Chen BB, Shi JZ, Diao FY, Zheng W, Li Q, Yu L, Li L, Xu Y, Wu L, Mao XY, Fu J, Li B, Yan Z, Shi R, Xue X, Mu J, Zhang ZH, Wu TY, Zhao L, Wang WJ, Zhou Z, Dong J, Li QL, Jin L, He L, Sun XX, Lin G, Kuang YP, Wang L, Sang Q. Karyopherin α deficiency contributes to human preimplantation embryo arrest., 2023, 133(2): e159951.
[52] Zhang HH, Chen TL, Wu KL, Hou ZZ, Zhao SG, Zhang CX, Gao Y, Gao M, Chen ZJ, Zhao H. Dominant mutations in CHK1 cause pronuclear fusion failure and zygote arrest that can be rescued by CHK1 inhibitor., 2021, 31(7): 814–817.
[53] Alazami AM, Awad SM, Coskun S, Al-Hassan S, Hijazi H, Abdulwahab FM, Poizat C, Alkuraya FS. TLE6 mutation causes the earliest known human embryonic lethality., 2015, 16: 240.
[54] Xu Y, Shi YL, Fu J, Yu M, Feng RZ, Sang Q, Liang B, Chen BB, Qu RG, Li B, Yan Z, Mao XY, Kuang YP, Jin L, He L, Sun XX, Wang L. Mutations in PADI6 cause female infertility characterized by early embryonic arrest., 2016, 99(3): 744–752.
[55] Mu J, Wang WJ, Chen BB, Wu L, Li B, Mao XY, Zhang ZH, Fu J, Kuang YP, Sun XX, Li QL, Jin L, He L, Sang Q, Wang L. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest., 2019, 56(7): 471–480.
[56] Zhang WD, Chen ZL, Zhang DF, Zhao B, Liu L, Xie ZY, Yao YG, Zheng P. KHDC3L mutation causes recurrent pregnancy loss by inducing genomic instability of human early embryonic cells., 2019, 17(10): e3000468.
[57] Jiang ZY, Fan HY. Five questions toward mRNA degradation in oocytes and preimplantation embryos: when, who, to whom, how, and why?, 2022, 107(1): 62–75.
[58] Sha QQ, Zhang J, Fan HY. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals., 2019, 101(3): 579–590.
[59] Abou-Haila A, Bendahmane M, Tulsiani DR. Significance of egg's zona pellucida glycoproteins in sperm-egg interaction and fertilization., 2014, 66(4): 409–419.
[60] Yu C, Ji SY, Sha QQ, Dang YJ, Zhou JJ, Zhang YL, Liu Y, Wang ZW, Hu BQ, Sun QY, Sun SC, Tang FC, Fan HY. BTG4 is a meiotic cell cycle-coupled maternal-zygotic- transition licensing factor in oocytes., 2016, 23(5): 387–394.
[61] Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte., 2018, 37(24): e99333.
[62] Bebbere D, Albertini DF, Coticchio G, Borini A, Ledda S. The subcortical maternal complex: emerging roles and novel perspectives., 2021, 27(7): gaab043.
[63] da Silveira JC, de ávila ACFCM, Garrett HL, Bruemmer JE, Winger QA, Bouma GJ. Cell-secreted vesicles containing microRNAs as regulators of gamete maturation., 2018, 236(1): R15–R27.
[64] Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition., 2018, 19(7): 436–450.
[65] Xu Y, Su GH, Ma D, Xiao Y, Shao ZM, Jiang YZ. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence., 2021, 6(1): 312.
Physiological and pathological mechanisms of oocyte meiosis
Zhou Zhou1,2, Qing Sang1, Lei Wang1
Normal oogenesis is crucial to successful reproduction. During the human female fetal stage, primordial germ cells transform from mitosis to meiosis. After synapsis and recombination of homologous chromosomes, meiosis is arrested at the diplotene stage of prophase in meiosis I. The maintenance of oocyte meiotic arrest in the follicle is primarily attributed to high cytoplasmic concentrations of cyclic adenosine monophosphate. During the menstrual cycle, follicle-stimulating hormone and luteinizing hormone lead to the resumption of meiosis that occurs in certain oocytes and complete the ovulation process. Anything that disturbs oocyte meiosis may result in failure of oogenesis and seriously affect both the fertilization and embryonic development. The rapid development of the assisted reproduction technology, high-throughput sequencing technology, and molecular biology technology provide new ideas and means for human to understand molecular mechanism of meiosis and diagnosis and treatment of oocyte maturation defects. In this review, we mainly summarize the recent physiological and pathological mechanisms of oogenesis, involving homologous recombination, meiotic arrest and resumption, maternal mRNA degradation, post-translational regulation, zona pellucida assembly, and so on. We wish to take this opportunity to raise the awareness of researchers in related fields on oocyte meiosis, providing a theoretical basis for further research and disease treatments.
oogenesis; oocyte; meiosis; variant
2023-08-07;
2023-10-11;
2023-10-24
國家自然科學基金項目(編號:82288102,32130029,81725006,82171643,81971450),國家重點研發(fā)計劃(編號:2021YFC2700100)和中國博士后科學基金(編號:2022M712147)資助[Supported by the National Natural Science Foundation of China (Nos. 82288102, 32130029, 81725006, 82171643, 81971450), the National Key Research and Development Program of China (No. 2021YFC2700100) and the China Postdoctoral Science Fund (No. 2022M712147)]
周舟,博士,研究方向:女性生殖遺傳學。E-mail: zhouzhoustudy@163.com
王磊,博士,教授,研究方向:生殖遺傳學。E-mail: wangleiwanglei@fudan.edu.cn
桑慶,博士,研究員,研究方向:生殖遺傳學。E-mail: sangqing@fudan.edu.cn
10.16288/j.yczz.23-170
王磊,教授,博士生導師,國家杰出青年科學基金獲得者,國家重點研發(fā)計劃首席科學家(2021),獲科學探索獎(2023)、中國青年科技獎特別獎(2022)、談家楨生命科學創(chuàng)新獎(2019)等。研究方向為生殖遺傳學,重點關注人類卵子、受精及早期胚胎發(fā)育的生理與病理機制。以通訊作者在、、、、、等發(fā)表多篇論文。揭示了人卵母細胞啟動紡錘體組裝的獨特生理機制(, 2022);發(fā)現(xiàn)了首個基因突變導致人類卵子成熟障礙并揭示了致病機制(, 2016),雜志同期配發(fā)了編者按,認為這是認識卵子成熟障礙機理邁出的第一步;陸續(xù)發(fā)現(xiàn)了卵子及胚胎發(fā)育異常的4種新遺傳病,16個致病基因(國際國內(nèi)已知致病基因為24個),明確了致病機制并探索了干預策略(, 2023;, 2019;, 2016, 2017, 2018, 2020)。所發(fā)現(xiàn)的系列新遺傳病及致病基因被國際人類孟德爾疾病數(shù)據(jù)庫OMIM收錄,相應基因作為分子指標已被國際國內(nèi)用于臨床患者的疾病診斷。主持國家重點研發(fā)計劃(項目首席)、國家自然科學基金重點項目和面上項目等。
(責任編委: 史慶華)