盧錦明 林心悅 廖永林
摘? ? 要:【目的】明確鷹嘴桃果實組織海綿化的分子機制?!痉椒ā繉椬焯也『>d組織、非病害組織和健康果實組織進行轉(zhuǎn)錄組測序?!窘Y(jié)果】在病害果海綿組織vs健康果實組織、非病害組織vs健康果實組織、病害果海綿組織vs非病害組織的轉(zhuǎn)錄組比較中,分別鑒定到4557、4446、672個差異表達基因。病害果海綿組織與健康果的差異表達基因主要富集在新陳代謝、碳水化合物代謝、能量代謝、光合作用等通路。與健康果或病害果非病變組織相比,鑒定出12個與細(xì)胞壁代謝相關(guān)的差異表達基因(PG-At1g48100、PG-QRT3、PG、6個XET2、BXL7、2個EXP-A4)在鷹嘴桃病害果海綿組織表達上調(diào);此外,3個鈣轉(zhuǎn)運基因(ACA13)和2個鈣傳感器基因(CaM11、CML18)在鷹嘴桃病害果海綿組織表達上調(diào)。其他鈣傳感器相關(guān)基因的表達水平在病害果中出現(xiàn)不同程度的上調(diào)和下調(diào)。【結(jié)論】鑒定出12個與細(xì)胞壁代謝、3個與鈣轉(zhuǎn)運和23個與鈣傳感器相關(guān)的差異表達基因,推測鈣代謝以及細(xì)胞壁代謝異常在果實組織海綿化過程中發(fā)揮關(guān)鍵作用。
關(guān)鍵詞:鷹嘴桃;海綿組織;生理性病害;轉(zhuǎn)錄組;基因分析
中圖分類號:S662.1 文獻標(biāo)志碼:A 文章編號:1009-9980(2023)12-2524-12
收稿日期:2023-08-10 接受日期:2023-11-03
基金項目:連平縣鷹嘴蜜桃產(chǎn)業(yè)園專家工作站(2021工作站09);2021年廣東省農(nóng)村科技特派員駐鎮(zhèn)幫鎮(zhèn)扶村項目(KTP20210015)
作者簡介:盧錦明,男,博士,研究方向為生物入侵。E-mail:67698321@qq.com
*通信作者 Author for correspondence. E-mail:liaoyonglin@gdppri.com
Transcriptome sequencing analysis of differentially-expressed genes involved in the spongy tissue of Olecranon peach (Prunus persica L.)
LU Jinming1, 2, LIN Xinyue3, LIAO Yonglin1*
(1Institute of Plant Protection, Guangdong Academy of Agricultural Sciences/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou 510640, Guangdong, China; 2College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China; 3Guangdong Yueke Plant Protection Agricultural Technology Co., Ltd, Guangzhou 510640, Guangdong, China)
Abstract: 【Objective】Spongy tissue is a serious physiological disorder in Olecranon peach (Prunus persica L.). The symptom occurs about 10 days before fruit ripening, and the pulp becomes spongy in texture and brown in colour, causing significant economic losses in peach production. However, little has been known about the underlying mechanism causing spongy tissue up to now. Here, the comparative transcriptomics was used to explore the molecular mechanism of spongy tissue formation. 【Methods】 Samples from spongy tissue (BGHM) and non-spongy tissue (BGFB) in unhealthy flesh, and tissue in healthy fruit flesh (JKG) of Olecranon peach were collected and used for total RNA extraction. The high-throughput sequencing (HTS) data of transcriptome was generated with HiSeq 6000 platform. The published genome of P. persica (GenBank accession: GCF_000346465.2) was used as a reference. The HTS reads were mapped to the reference genome and the expression level of each transcript was determined by calculating transcript per million (TPM) with FADU. Differentially-expressed genes (DEGs) were identified using DESeq with the screening criteria of p<0.01 and |log2FC|>1.0. For functional analyses, GO and KEGG enrichment analyses were performed to investigate the major pathways of DEGs. 【Results】 Clean reads per sample generated by RNA-seq ranged from 18.4 to 30.5 million reads, and the mapping rate ranged from 95.08% to 95.67%. A total of 4557 DEGs were identified between spongy tissue and healthy fruit flesh (BGHM vs JKG), 2410 genes were up-regulated and 2127 genes were down-regulated. 672 DEGs were identified between spongy tissue and non-spongy tissue (BGHM vs BGFB), including 539 up-regulated genes and 133 down-regulated genes. 4446 DEGs were identified between non-spongy tissue and healthy fruit flesh (BGFB vs JKG), with 2121 up-regulated and 2323 down-regulated genes. The GO terms enriched for DEGs of BGHM vs JKG were 190. In molecular function, ion binding, oxidoreductase activity, and inorganic molecular entity transmembrane transporter activity were significantly enriched. In biological process, the responses to stimulus, chemicals and organic substance were significantly enriched. In cellular component, cytoplasm, obsolete cytoplasmic part and membrane were significantly enriched. The 4557 DEGs were significantly enriched in the 11 pathways through the KEGG analysis. Most of the DEGs were significantly enriched in metabolism, carbohydrate metabolism, and energy metabolism. In the comparison between spongy tissue and non-spongy tissue (BGHM vs BGFB), 21 GO terms were enriched from 672 DEGs. The top three GO terms of molecular function were glycosyltransferase activity, hexosyltransferase activity and glucosyltransferase activity. In biological process, most of the DEGs were classified into the response to stimulus, organic substance and oxygen-containing compound. In cellular component, the DEGs were mainly annotated into cell periphery, endoplasmic reticulum and external encapsulating structure. The KEGG results revealed that most of the DEGs were significantly enriched in metabolism, biosynthesis of other secondary metabolites and phenylpropanoid biosynthesis. In this study, 33 DEGs related to cell wall metabolism were identified in BGHM vs JKG, of which 25 genes were up-regulated and 8 genes were down-regulated. 17 DEGs related to cell wall metabolism were found in BGHM vs BGFB, with 17 genes up-regulated and 1 gene down-regulated. These genes included polygalacturonase, pectin methylesterase, β-galactosidase, xyloglucan endotransglucosylase, β-D-xylosidase and expansin. Among them, 12 DEGs (PG-At1g48100, PG-QRT3, PG, 6 XET2, BXL7 and 2 EXP-A4) were found at a higher expression level in BGHM than BGFB or JKM. Furthermore, the expression level of genes associated with calcium transport showed that 5 DEGs were up-regulated in BGHM vs JKG, including calcium-transporting ATPase 1, 3 calcium-transporting ATPase 13 and cation/calcium exchanger 5 and 6 DEGs were down-regulated including 5 calcium-transporting ATPase and cation/calcium exchanger 2. Only 3 up-regulated DEGs were found in BGHM vs BGFB, and they belonged to calcium-transporting ATPase 13. In the transcriptome, genes involved in calcium sensors were detected in the DEGs: Calcineurin-B-like protein, Calmodulin protein and Calmodulin-like protein. Among them, 15 up-regulated and 13 down-regulated DEGs were found in BGHM vs JKG, while 13 up-regulated and 13 down-regulated DEGs were detected in BGHM vs BGFB. 【Conclusion】In the present study, our data provided the most comprehensive transcriptomic resource of spongy tissue and non-spongy tissue in unhealthy flesh, and tissue in healthy fruit flesh of Olecranon peach. A set of DEGs were identified through comparative transcriptome analyses, which were potentially involved in the metabolism, carbohydrate metabolism and energy metabolism process. Furthermore, 12 genes associated with cell wall modifying enzymes were found up-regulated in the spongy tissue and the expression level of 3 genes associated with calcium transport and 23 genes associated with calcium sensor increased or decreased in the spongy tissue. It is speculated that the calcium metabolism disorder caused by the up-regulation and down-regulation of calcium transport and calcium sensor genes might result in the reduction of the stress resistance in Olecranon peach. The calcium metabolism disorder and accelerated degradation of the cell wall would lead to the occurrence of spongy tissue. The results provide a reference for the molecular mechanism of spongy tissue of Olecranon peach from the transcriptional level.
Key words: Olecranon peach; Spongy tissue; Physiological disorder; Transcriptome; Gene analysis
鷹嘴桃又名鷹嘴蜜桃,是薔薇科(Rosaceae)李屬(Prunus)桃(Prunus persica L.)下的一個品種。連平鷹嘴桃是廣東省河源市連平縣特產(chǎn),該縣鷹嘴桃于2015年被評為中國國家地理標(biāo)志產(chǎn)品[1]。經(jīng)過30多年的發(fā)展,當(dāng)?shù)叵嚓P(guān)種植技術(shù)已形成一套較成熟的體系。然而,近年來不少果園常常受到果肉組織海綿化病害的危害。據(jù)筆者前期研究發(fā)現(xiàn),這是發(fā)生危害較重的一種生理性病害,果實成熟前10 d左右開始出現(xiàn)病害,病變果肉顏色變褐,呈海綿狀,表皮甚至出現(xiàn)開裂癥狀[2]。果實海綿組織病害不僅降低了鷹嘴桃的營養(yǎng)價值,而且外部難以鑒別病害癥狀,導(dǎo)致果實分級困難,嚴(yán)重影響鷹嘴桃食用價值和商品價值。盡管對鷹嘴桃海綿果實組織病害的認(rèn)識已經(jīng)取得一些進展,但是鷹嘴桃海綿果實組織病害的發(fā)生原因及機制尚不明確。曾有調(diào)查者發(fā)現(xiàn)鷹嘴桃海綿組織病害的發(fā)生與太陽直射存在相關(guān)性,陽面果的發(fā)病率明顯高于陰面果[2]。
細(xì)胞壁的分解、修飾等代謝作用會影響果肉的力學(xué)性能,有研究者發(fā)現(xiàn)果實發(fā)生海綿組織、裂果均與細(xì)胞壁代謝有關(guān)[3-6]。細(xì)胞壁代謝主要由植物細(xì)胞降解酶參與進行,包括多聚半乳糖醛酸酶(polygalacturonase,PG)、果膠甲基酯酶(pectin methylesterase,PME)、β-半乳糖苷酶(β-galactosidase,β-Gal)、木聚糖內(nèi)切糖苷酶(xyloglucan endotransglucosylase,XET)、β-D-木糖苷酶(β-D-xylosidase,BXL)和膨脹素(expansin,EXP)[7]。先前研究報道杧果海綿組織中PG、PME的表達水平顯著上調(diào),PG和PME的過表達導(dǎo)致果膠降解,從而減少細(xì)胞黏附,可能是杧果海綿組織發(fā)生的主要原因之一[3-4]。另外,有研究者發(fā)現(xiàn)多果實開裂與PG、PME、β-Gal、BXL、XET、EXP等細(xì)胞壁代謝酶的過量表達密切相關(guān)[5-6,8-9]。
此外,許多研究者發(fā)現(xiàn)果肉分解常常是一種或多種礦物質(zhì)營養(yǎng)缺乏導(dǎo)致的,其中,缺鈣是導(dǎo)致水果生理障礙相關(guān)的最常見因素之一[10]。鈣是植物生長發(fā)育過程中的重要營養(yǎng)元素,在構(gòu)建細(xì)胞壁、保持細(xì)胞膜完整性、信號轉(zhuǎn)導(dǎo)和維持細(xì)胞離子平衡等過程中發(fā)揮關(guān)鍵作用[11]。果樹缺鈣能引起水心、苦果或內(nèi)部崩潰等癥狀[4,12-14],其中,缺鈣便是引發(fā)杧果海綿化的關(guān)鍵因素[4,15]。植物體內(nèi)鈣離子含量主要受鈣離子運轉(zhuǎn)蛋白和鈣傳感器調(diào)控[16]。植物調(diào)節(jié)鈣離子跨膜運轉(zhuǎn)的基因包括鈣運轉(zhuǎn)ATP酶(calcium-transporting ATPase,ACA)、鈣通道(calcium channel,TPC)、鈣離子/陽離子交換蛋白(cation/calcium exchanger,CAX)和植物V型ATP酶(V-type ATPase,AVP)基因[17]。另外,鈣離子傳感器主要分為4類,包括鈣調(diào)蛋白(calmodulin protein,CaM)、類鈣調(diào)蛋白(calmodulin-like protein,CML)、類鈣調(diào)磷酸酶B蛋白(calcineurin-B-like protein,CBL)和鈣依賴蛋白激酶(calmodulin-dependent protein kinase,CDPK)基因[16]。鈣離子運轉(zhuǎn)蛋白和鈣傳感器對維持植物的正常生長發(fā)育有重要作用[17],鈣離子運轉(zhuǎn)蛋白和鈣傳感器表達異常會導(dǎo)致鈣離子代謝紊亂,誘發(fā)植物生理病害[14,18]。Ma等[4]研究發(fā)現(xiàn)鈣運轉(zhuǎn)ATP酶、鈣離子/陽離子交換蛋白促進鈣離子流向液泡,從而破壞細(xì)胞鈣離子穩(wěn)態(tài),是杧果海綿組織發(fā)生的重要原因。
隨著高通量測序技術(shù)的發(fā)展,轉(zhuǎn)錄組測序已成為探討果樹病害致病機制的有效途徑[4,14,19]。轉(zhuǎn)錄組是指特定細(xì)胞或組織在某一階段轉(zhuǎn)錄出的所有信使RNA(mRNA)的總和,能夠揭示特定生物學(xué)過程中的分子機制。筆者在本研究中擬對鷹嘴桃海綿果實組織、非病害組織和健康果實組織進行轉(zhuǎn)錄組測序,比較分析差異表達基因,為進一步了解鷹嘴桃果肉海綿組織發(fā)生的分子機制以及采取相應(yīng)的防治措施提供參考。
1 材料和方法
1.1 試驗材料
2021年7月16日在廣東省河源市連平縣內(nèi),選取樹齡相同的鷹嘴蜜桃樹,分別采摘已成熟健康果實和發(fā)病果實,帶回室內(nèi)去皮后分別取健康果實組織(JKG)、病害果海綿組織(BGHM)和病害果非病變組織(BGFB),每種處理取3組重復(fù)(圖1)。
1.2 鷹嘴桃果實總RNA提取
將鷹嘴桃樣本加液氮進行研磨,采用Trizol法提取總RNA[20]。利用1.5%瓊脂糖凝膠電泳以及超微量分光光度計分別檢測總RNA的完整性、質(zhì)量與濃度。測序文庫的構(gòu)建以及轉(zhuǎn)錄組測序委托北京貝瑞和康生物技術(shù)有限公司完成。利用HiSeq 6000測序儀以配對末端模式(PE150)對構(gòu)建的文庫進行測序。
1.3 轉(zhuǎn)錄組數(shù)據(jù)分析
使用FastQC v0.12.1(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)對下機原始數(shù)據(jù)進行評估,且使用Trimmomatic v0.39[21]去除接頭,以及對低質(zhì)量序列(序列質(zhì)量值低于25或序列長度小于50 bp)進行過濾。使用Hisat2 v2.2.1[22]將過濾后的序列與桃參考基因組(GenBank登錄號:GCF_000346465.2)進行比對。利用FADU v1.8.3[23]對鷹嘴桃轉(zhuǎn)錄本進行定量,計算TPM(Transcript per million),使用DESeq v1.34.0[24]進行差異基因表達分析,差異表達基因(differentially expressed genes,DEG)的篩選條件為p<0.01以及|log2FC|>1.0。利用eggNOG-mapper v2.1.10[25]篩選到的差異基因進行GO功能注釋和KEGG通路注釋。使用TBtools v.1.112[26]進行GO功能富集分析和KEGG通路富集分析。
2 結(jié)果與分析
2.1 鷹嘴桃轉(zhuǎn)錄組數(shù)據(jù)比對
對下機數(shù)據(jù)進行過濾后,鷹嘴桃病害果海綿組織、病害果非病變組織和健康果實組織所獲得的轉(zhuǎn)錄組序列在18 425 897~30 543 093條之間。轉(zhuǎn)錄組序列與桃參考基因組進行比對,結(jié)果顯示比對率均在95%以上(表1)。
2.2 差異表達分析
根據(jù)差異倍數(shù)篩選,BGHM vs JKG共篩選到4537個基因差異表達顯著(圖2-A~B),其中2127個基因表達下調(diào),2410個基因表達上調(diào)(圖2-C)。BGFB vs JKG共篩選到4446個基因差異表達顯著,其中2323個基因表達下調(diào),2123個基因表達上調(diào)(圖2-D)。根據(jù)差異倍數(shù)篩選,BGHM vs BGFB共篩選到672個基因差異表達顯著,其中133個基因表達下調(diào),539個基因表達上調(diào)(圖2-E)。
2.3 差異表達基因功能分析
經(jīng)過GO功能分析,BGHM vs JKG差異表達基因注釋到35條分子功能術(shù)語、50條細(xì)胞組分術(shù)語以及105條生物過程的術(shù)語(圖3)。其中,差異表達基因執(zhí)行的分子功能前3位是離子結(jié)合、氧化還原酶活性、無極分子實體跨膜轉(zhuǎn)運蛋白活性,所處細(xì)胞組分前3位是細(xì)胞質(zhì)、陳舊的細(xì)胞質(zhì)部分、膜,參與的生物學(xué)過程前3位是對刺激的應(yīng)答、對化學(xué)物質(zhì)的應(yīng)答、對有機物的應(yīng)答(圖3-A)。BGFB vs JKG差異表達基因注釋到34條分子功能術(shù)語、44條細(xì)胞組分術(shù)語以及161條生物過程的術(shù)語,其GO富集結(jié)果與BGHM vs JKG差異表達基因GO富集結(jié)果相似(圖3-B)。BGHM vs BGFB差異表達基因注釋到9條分子功能術(shù)語、4條細(xì)胞組分術(shù)語以及8條生物過程的術(shù)語。其中,差異表達基因執(zhí)行的分子功能前3位是糖基轉(zhuǎn)移酶活性、已糖基轉(zhuǎn)移酶活性、葡糖轉(zhuǎn)移酶,所處細(xì)胞組分前3位是細(xì)胞外圍、內(nèi)質(zhì)網(wǎng)、外部封裝結(jié)構(gòu),參與的生物學(xué)過程前3位是對刺激的應(yīng)答、對有機物的應(yīng)答、對含氧化合物的應(yīng)答(圖3-C)。
KEGG通路富集分析結(jié)果顯示,BGHM vs JKG差異表達基因共注釋到11條通路,其中主要富集在新陳代謝、碳水化合物代謝、能量代謝、光合作用相關(guān)通路(圖4-A)。BGFB vs JKG差異表達基因的KEGG通路富集結(jié)果與BGHM vs JKG差異表達基因KEGG通路相似(圖4-B)。BGHM vs BGFB差異表達基因注釋到9條通路,主要富集于新陳代謝、次生產(chǎn)物合成、次生產(chǎn)物代謝等通路(圖4-C)。
2.4 細(xì)胞壁代謝相關(guān)差異表達基因
本研究中,選擇了細(xì)胞壁代謝相關(guān)的PG、PME、β-Gal、XET、BXL和EXP基因。BGHM vs JKG中發(fā)現(xiàn)33個與細(xì)胞壁代謝相關(guān)的差異表達基因,其中8個基因下調(diào),25個基因上調(diào);BGHM vs BGFB中共鑒定出17個與細(xì)胞壁代謝相關(guān)的差異表達基因,其中1個基因下調(diào),16個基因上調(diào)(圖5)。多聚半乳糖醛酸酶(XP_007217288、XP_007215246、XP_007213880)、β-D-木糖苷酶7(XP_007225247)、木聚糖內(nèi)切糖苷酶2(XP_007215773、XP_007215791、XP_07215793、XP_007217276、XP_007217342、XP_020409478)、膨脹素A4(XP_007205762、XP_007218834)在BGHM中表達均高于JKG和BGFB。其中,4個木聚糖內(nèi)切糖苷酶2基因(XP_007215773、XP_007215793、XP_007217276、XP_007217342)在BGHM vs JKG、BGFB vs JKG、BGHM vs BGFB中均顯著上調(diào)。
2.5 鈣離子運轉(zhuǎn)和鈣傳感相關(guān)差異表達基因
植物調(diào)節(jié)鈣離子跨膜運轉(zhuǎn)的基因包括鈣運轉(zhuǎn)ATP酶、鈣通道、鈣離子/陽離子交換蛋白、植物V型ATP酶基因。BGHM vs JKG中發(fā)現(xiàn)鈣離子運轉(zhuǎn)相關(guān)差異表達基因有11個,其中5個上調(diào),6個下調(diào);BGFB vs JKG中鈣離子中運轉(zhuǎn)相關(guān)差異表達基因有4個,皆為上調(diào)基因;BGHM vs BGFB中,鈣離子相關(guān)差異表達基因有3個,皆為上調(diào)基因(圖6)。這些差異表達基因主要是鈣運轉(zhuǎn)ATP酶與鈣離子/陽離子交換蛋白基因。3個質(zhì)膜型鈣運轉(zhuǎn)ATP酶13基因(XP_007225391、XP_007225392、XP_007225393),在BGHM中表達均高于JKG和BGFB。其中XP_007225391在BGHM vs JKG、BGFB vs JKG、BGHM vs BGFB中均顯著上調(diào)。
鈣離子傳感器主要分為4類,包括鈣調(diào)蛋白、類鈣調(diào)蛋白、類鈣調(diào)磷酸酶B蛋白和鈣依賴蛋白激酶基因。轉(zhuǎn)錄組比較分析結(jié)果顯示,BGHM vs JKG鈣傳感相關(guān)差異表達基因有28個,其中15個基因上調(diào),13個基因下調(diào);BGFB vs JKG鈣傳感相關(guān)差異表達基因有26個,其中13個基因上調(diào),13個基因下調(diào);BGHM vs BGFB鈣傳感相關(guān)差異表達基因僅有6個(圖7)。這些差異表達基因包括鈣調(diào)蛋白、類鈣調(diào)蛋白和類鈣調(diào)磷酸酶B蛋白基因。筆者在本研究中發(fā)現(xiàn)鈣調(diào)蛋白11(XP_007200520)、鈣調(diào)蛋白18(XP_020419982)在BGHM中表達量顯著高于JKG、BGFB。其他鈣傳感器蛋白在BGHM和BGFB中出現(xiàn)不同程度的上調(diào)與下調(diào):2個類鈣調(diào)磷酸B蛋白1、3個鈣調(diào)蛋白3、鈣調(diào)蛋白24、鈣調(diào)蛋白25、鈣調(diào)蛋白27、鈣調(diào)蛋白31、鈣調(diào)蛋白45、鈣調(diào)蛋白48基因在BGHM和BGFB均表現(xiàn)上調(diào)表達,而8個類鈣調(diào)磷酸B蛋白7、2個鈣調(diào)蛋白1、鈣調(diào)蛋白23、鈣調(diào)蛋白29在BGHM和BGFB中均表現(xiàn)下調(diào)表達。
3 討 論
果肉海綿組織的形成是一個復(fù)雜的過程,而該過程受到內(nèi)部發(fā)育和外界環(huán)境因素共同影響。鷹嘴桃果肉海綿組織是發(fā)生危害較重的一種生理性病害,然而其發(fā)生機制尚不明確[2]。筆者在本研究中通過對病變鷹嘴桃病害組織、非病害組織,以及健康鷹嘴桃進行轉(zhuǎn)錄組測序和比較分析,初步探討了不同果實組織之間基因表達差異。
鷹嘴桃果實組織海綿化,甚至出現(xiàn)開裂,可能是細(xì)胞壁的降解、修飾影響果肉的機械性能所導(dǎo)致。細(xì)胞壁降解涉及一系列細(xì)胞壁修飾酶、水解酶的調(diào)控作用,包括PG、PME、β-Gal、XET和EXP[7]。筆者在本研究中通過比較轉(zhuǎn)錄組,發(fā)現(xiàn)多聚半乳糖醛酸酶At1g4810、多聚半乳糖醛酸酶QRT3、木聚糖內(nèi)切糖苷酶2、β-D-木糖苷酶7、膨脹素A4在病害果海綿組織中的表達量高于健康果和病害果實非病變組織中的表達量。PG是植物細(xì)胞壁降解的關(guān)鍵酶,主要促進果膠的水解[27],譬如獼猴桃軟化過程中多聚半乳糖醛酸酶At1g48100呈上調(diào)表達[28]。此外,XET主要參與細(xì)胞壁降解和重塑的過程,水解木聚糖并重新連接至其他多糖[29-30]。研究表明木聚糖內(nèi)切糖苷酶2、木聚糖內(nèi)切糖苷酶5的高表達水平會導(dǎo)致果肉快速軟化[31-32]。BXL是細(xì)胞壁修飾酶,與XET功能類似,主要參與分解細(xì)胞壁中木聚糖和阿拉伯木聚糖殘基[33-34]。EXP是一種引起植物細(xì)胞壁松弛的蛋白,是細(xì)胞壁的關(guān)鍵調(diào)節(jié)劑[35],而膨脹素A4表達量上升被證實與木瓜軟化有關(guān)[36]。因此,筆者推測鷹嘴桃果實組織海綿化可能與PG、XET、β-Gal、BXT、EXP等一系列細(xì)胞壁水解酶基因的上調(diào)表達有關(guān)。
鈣是調(diào)節(jié)水果質(zhì)量的重要礦物質(zhì)元素,特別是維持水果的硬度,減少腐爛和生理紊亂的發(fā)生[16]。鈣代謝失衡是導(dǎo)致水果生理紊亂最常見因素之一,其中,杧果果實海綿組織便是缺鈣引起的[4]。植物體內(nèi)的鈣離子主要存在于細(xì)胞壁,含量高,為60%~75%[37],鈣離子可以與細(xì)胞壁成分結(jié)合、交聯(lián)果膠殘基增強細(xì)胞壁結(jié)構(gòu)和通過降低細(xì)胞壁降解酶對其底物的可及性來穩(wěn)定細(xì)胞膜[38-39]。調(diào)控細(xì)胞內(nèi)和細(xì)胞間鈣離子運轉(zhuǎn)分布,對植物細(xì)胞的生長和代謝至關(guān)重要,水果鈣代謝失衡可能是細(xì)胞水平上鈣離子的異常分布導(dǎo)致局部缺乏所引起的[4,40-41]。植物可以通過一系列的鈣離子跨膜蛋白酶以及鈣離子感受器來調(diào)節(jié)細(xì)胞內(nèi)鈣離子含量,包括鈣運轉(zhuǎn)ATP酶、鈣通道、鈣離子/陽離子交換蛋白等鈣轉(zhuǎn)運跨膜蛋白,以及鈣調(diào)蛋白、類鈣調(diào)蛋白、類鈣調(diào)磷酸酶B蛋白和鈣依賴蛋白激酶等鈣離子傳感器[19,40,42]。鈣轉(zhuǎn)運ATP酶主要催化ATP水解,并且將鈣從胞質(zhì)溶膠流出到液泡、內(nèi)質(zhì)網(wǎng)、質(zhì)體和細(xì)胞外部分[43]。筆者在本研究中發(fā)現(xiàn),與健康果以及病害果非病變組織相比,3個細(xì)胞質(zhì)膜型鈣運轉(zhuǎn)ATP酶13基因在病害果海綿組織均表現(xiàn)上調(diào)表達。運轉(zhuǎn)ATP酶13主要表達于質(zhì)膜上,上調(diào)時調(diào)控鈣離子流出,與植物缺鈣緊密相關(guān)[44]。此外,筆者在本研究中發(fā)現(xiàn)類鈣調(diào)磷酸酶B蛋白11、類鈣調(diào)蛋白18表達量在病害果海綿組織中顯著高于健康果和病害果非病變組織。其他類鈣調(diào)磷酸酶B蛋白、鈣調(diào)蛋白、類鈣調(diào)蛋白等鈣傳感器基因在病害果中出現(xiàn)不同程度的上調(diào)和下調(diào)。鈣調(diào)蛋白、類鈣調(diào)蛋白和類鈣調(diào)磷酸酶B蛋白是真核細(xì)胞中主要的鈣離子傳感器,將鈣離子信號轉(zhuǎn)化為轉(zhuǎn)錄反應(yīng)、蛋白磷酸化和代謝變化等,在調(diào)節(jié)植物生長發(fā)育和非生物脅迫抗性方面發(fā)揮重要作用[45-47]。因此,筆者推測鈣運轉(zhuǎn)與鈣傳感器基因的上調(diào)或者下調(diào)致使鈣代謝紊亂,從而降低鷹嘴桃的抗逆性,最終導(dǎo)致果實組織海綿化的發(fā)生。
4 結(jié) 論
筆者在本研究中對鷹嘴桃病害果海綿組織、非病害組織和健康果實組織進行轉(zhuǎn)錄組測序,在病害果海綿組織與非病害組織,以及與健康果實組織的比較中,鑒定出12個與細(xì)胞壁代謝、3個鈣轉(zhuǎn)運和23個鈣傳感器相關(guān)的差異表達基因,推測鈣代謝以及細(xì)胞壁代謝異常在果實組織海綿化過程中發(fā)揮關(guān)鍵作用。
參考文獻 References:
[1] 質(zhì)檢總局關(guān)于批準(zhǔn)對西山焦棗等產(chǎn)品實施地理標(biāo)志產(chǎn)品保護的公告(2015年第96號)[EB]. 2015-8-10 [2023-9-17]. http://cpgi.org.cn/?c=i&a=detail&cataid=3&id=973.
Announcement of the General Administration of Quality Supervision,Inspection and Quarantine on approving the protection of geographical indication products for Xishan jujube and other products (2015 No. 96). 2015-8-10 [2023-9-17]. http://cpgi.org.cn/?c=i&a=detail&cataid=3&id=973.
[2] 廖永林,王龍江,章玉蘋,黃少華,李傳瑛,劉偉玲. 鷹嘴蜜桃果肉海綿組織病害調(diào)查[J]. 安徽農(nóng)業(yè)科學(xué),2016,44(33):123-124.
LIAO Yonglin,WANG Longjiang,ZHANG Yuping,HUANG Shaohua,LI Chuanying,LIU Weiling. Investigation on disease condition of spongy tissue in Yingzui peach[J]. Journal of Anhui Agricultural Sciences,2016,44(33):123-124.
[3] OAK P,JHA V,DESHPANDE A,TANPURE R,DAWKAR V,MUNDHE S,GHUGE S,PRABHUDESAI S,KRISHANPAL A,JERE A,GIRI A,GUPTA V. Transcriptional and translational perturbation in abiotic stress induced physiological activities and metabolic pathway networks in spongy tissue disorder of mango fruit[J]. Postharvest Biology and Technology,2022,188:111880.
[4] MA X W,LIU B,ZHANG Y H,SU M Q,ZHENG B,WANG S B,WU H X. Unraveling correlations between calcium deficiency and spongy tissue in mango fruit flesh[J]. Scientia Horticulturae,2023,309:111694.
[5] WANG Y Y,GUO L H,ZHAO X Q,ZHAO Y J,HAO Z X,LUO H,YUAN Z H. Advances in mechanisms and omics pertaining to fruit cracking in horticultural plants[J]. Agronomy,2021,11(6):1045.
[6] YU J,ZHU M T,BAI M,XU Y S,F(xiàn)AN S G,YANG G S. Effect of calcium on relieving berry cracking in grape (Vitis vinifera L.) ‘Xiangfei[J]. PeerJ,2020,8:e9896.
[7] SHI Y N,LI B J,GRIERSON D,CHEN K S. Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants[J]. Plant Physiology,2023,192(3):1671-1683.
[8] CHEN J J,DUAN Y J,HU Y L,LI W M,SUN D Q,HU H G,XIE J H. Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest[J]. BMC Plant Biology,2019,19(1):219.
[9] FAN J,DU W,YANG X P,ZHANG J G,CHEN Q L,HU H J. Changes in calcium content and expression of calcium sensor-related genes during sand pear (Pyrus prifolia) fruit cracking[J]. Scientia Horticulturae,2023,313:111911.
[10] DE BANG T C,HUSTED S,LAURSEN K H,PERSSON D P,SCHJOERRING J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants[J]. New Phytologist,2021,229(5):2446-2469.
[11] THOR K. Calcium-nutrient and messenger[J]. Frontiers in Plant Science,2019,10:440.
[12] GRIFFITH C,EINHORN T C. The effect of plant growth regulators on xylem differentiation,water and nutrient transport,and bitter pit susceptibility of apple[J]. Scientia Horticulturae,2023,310:111709.
[13] SINGH A,SHUKLA A K,MEGHWAL P R. Fruit cracking in pomegranate:Extent,cause,and management:A review[J]. International Journal of Fruit Science,2020,20(Suppl. 3):S1234-S1253.
[14] YAO Y L,LI M W,LIN W Q,LIU S H,WU Q S,F(xiàn)U Q,ZHU Z Y,GAO Y Y,ZHANG X M. Transcriptome analysis of watercore in pineapple[J]. Horticulturae,2022,8(12):1175.
[15] SHARMA R R,SINGH R. The fruit pitting disorder:A physiological anomaly in mango (Mangifera indica L.) due to deficiency of calcium and boron[J]. Scientia Horticulturae,2009,119(4):388-391.
[16] GAO Q Y,XIONG T T,LI X P,CHEN W X,ZHU X Y. Calcium and calcium sensors in fruit development and ripening[J]. Scientia Horticulturae,2019,253:412-421.
[17] DE FREITAS S T,JIANG C Z,MITCHAM E J. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins[J]. Journal of Plant Growth Regulation,2012,31(2):221-234.
[18] KURONUMA T,WATANABE H. Identification of the causative genes of calcium deficiency disorders in horticulture crops:A systematic review[J]. Agriculture,2021,11(10):906.
[19] 余賢美,王金政,薛曉敏,陳汝,聶佩顯,王貴平,韓雪平. 基于全轉(zhuǎn)錄組分析的蘋果苦痘病發(fā)生機制初步研究[J]. 植物病理學(xué)報,2020,50(4):405-419.
YU Xianmei,WANG Jinzheng,XUE Xiaomin,CHEN Ru,NIE Peixian,WANG Guiping,HAN Xueping. Preliminary studies on the mechanism of bitter pit in apple based on whole-transcriptomic sequencing analysis[J]. Acta Phytopathologica Sinica,2020,50(4):405-419.
[20] SIMMS D,CIZDZIEL P,CHOMCZY?SKI P. TRIzol:A new reagent for optimal single-step isolation of RNA[J]. Focus,1993,15(4):532-535.
[21] BOLGER A M,LOHSE M,USADEL B. Trimmomatic:A flexible trimmer for Illumina sequence data[J]. Bioinformatics,2014,30(15):2114-2120.
[22] KIM D,PAGGI J M,PARK C,BENNETT C,SALZBERG S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature Biotechnology,2019,37(8):907-915.
[23] CHUNG M,ADKINS R S,MATTICK J S A,BRADWELL K R,SHETTY A C,SADZEWICZ L,TALLON L J,F(xiàn)RASER C M,RASKO D A,MAHURKAR A,DUNNING HOTOPP J C. FADU:A quantification tool for prokaryotic transcriptomic analyses[J]. mSystems,2021,6(1):e00917-e00920.
[24] LOVE M I,HUBER W,ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology,2014,15(12):550.
[25] CANTALAPIEDRA C P,HERN?NDEZ-PLAZA A,LETUNIC I,BORK P,HUERTA-CEPAS J. eggNOG-mapper v2:functional annotation,orthology assignments,and domain prediction at the metagenomic scale[J]. Molecular Biology and Evolution,2021,38(12):5825-5829.
[26] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,F(xiàn)RANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[27] ZHAI Z F,F(xiàn)ENG C,WANG Y Y,SUN Y T,PENG X,XIAO Y Q,ZHANG X,ZHOU X,JIAO J L,WANG W L,DU B Y,WANG C,LIU Y,LI T H. Genome-wide identification of the Xyloglucan endotransglucosylase/Hydrolase (XTH) and Polygalacturonase (PG) genes and characterization of their role in fruit softening of sweet cherry[J]. International Journal of Molecular Sciences,2021,22(22):12331.
[28] CHOI H R,BAEK M W,JEONG C S,TILAHUN S. Comparative transcriptome analysis of softening and ripening-related genes in kiwifruit cultivars treated with ethylene[J]. Current Issues in Molecular Biology,2022,44(6):2593-2613.
[29] STRATILOV? B,KOZMON S,STRATILOV? E,HRMOVA M. Plant xyloglucan xyloglucosyl transferases and the cell wall structure:Subtle but significant[J]. Molecules,2020,25(23):5619.
[30] LI X L,SU Q F,F(xiàn)ENG Y C,GAO X H,WANG B C,TAHIR M M,YANG H J,ZHAO Z Y. Identification and analysis of the xyloglucan endotransferase/hydrolase (XTH) family genes in apple[J]. Scientia Horticulturae,2023,315:111990.
[31] WANG Y W,NAMBEESAN S U. Full-length fruit transcriptomes of southern highbush (Vaccinium sp.) and rabbiteye (V. virgatum Ait ) blueberry[J]. BMC Genomics,2022,23(1):733.
[32] SANTOS M,EGEA-CORTINES M,GON?ALVES B,MATOS M. Molecular mechanisms involved in fruit cracking:A review[J]. Frontiers in Plant Science,2023,14:1130857.
[33] 蘇菁,莊軍平,陳維信. 香蕉果實成熟軟化過程中β-D-木聚糖苷酶活性變化[J]. 西北植物學(xué)報,2007,27(7):1394-1398.
SU Jing,ZHUANG Junping,CHEN Weixin. β-D-xylosidase activity in banana (Musa spp.) fruits during ripening and softening[J]. Acta Botanica Boreali-Occidentalia Sinica,2007,27(7):1394-1398.
[34] CHEN Y H,XIE B,AN X H,MA R P,ZHAO D Y,CHENG C G,LI E M,ZHOU J T,KANG G D,ZHANG Y Z. Overexpression of the apple expansin-like gene MdEXLB1 accelerates the softening of fruit texture in tomato[J]. Journal of Integrative Agriculture,2022,21(12):3578-3588.
[35] ZHANG T,TANG H S,VAVYLONIS D,COSGROVE D J. Disentangling loosening from softening:Insights into primary cell wall structure[J]. The Plant Journal,2019,100(6):1101-1117.
[36] ZHU Q N,ZHANG K Y,CHEN W X,LI X P,ZHU X Y. Transcriptomic and metabolomic analyses reveal key factors regulating chilling stress-induced softening disorder in papaya fruit[J]. Postharvest Biology and Technology,2023,205:112534.
[37] AGHDAM M S,HASSANPOURAGHDAM M B,PALIYATH G,F(xiàn)ARMANI B. The language of calcium in postharvest life of fruits,vegetables and flowers[J]. Scientia Horticulturae,2012,144:102-115.
[38] LU K S,YAN L,RIAZ M,BABAR S,HOU J Y,ZHANG Y L,JIANG C C. Exogenous boron alleviates salt stress in cotton by maintaining cell wall structure and ion homeostasis[J]. Plant Physiology and Biochemistry,2023,201:107858.
[39] HUANG W N,SHI Y N,YAN H,WANG H,WU D,GRIERSON D,CHEN K S. The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage[J]. Journal of Advanced Research,2023,49:47-62.
[40] LIU J,JIANG Z T,QI Y W,LIU Y F,DING Y D,TIAN X N,REN X L. MdCAX affects the development of the ‘Honeycrisp bitter pit by influencing abnormal Ca distribution[J]. Postharvest Biology and Technology,2021,171:111341.
[41] DE FREITAS S T,MCELRONE A J,SHACKEL K A,MITCHAM E J. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments[J]. Journal of Experimental Botany,2014,65(1):235-247.
[42] TIAN W,WANG C,GAO Q F,LI L G,LUAN S. Calcium spikes,waves and oscillations in plant development and biotic interactions[J]. Nature Plants,2020,6(7):750-759.
[43] SEIFIKALHOR M,ALINIAEIFARD S,SHOMALI A,AZAD N,HASSANI B,LASTOCHKINA O,LI T. Calcium signaling and salt tolerance are diversely entwined in plants[J]. Plant Signaling & Behavior,2019,14(11):1665455.
[44] CHEN H,YANG Q,F(xiàn)U H W,CHEN K,ZHAO S S,ZHANG C,CAI T C,WANG L H,LU W Z,DANG H,GAO M J,LI H Q,YUAN X Y,VARSHNEY R K,ZHUANG W J. Identification of key gene networks and deciphering transcriptional regulators associated with peanut embryo abortion mediated by calcium deficiency[J]. Frontiers in Plant Science,2022,13:814015.
[45] KLEIST T J,SPENCLEY A L,LUAN S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella,Arabidopsis,and other green lineages[J]. Frontiers in Plant Science,2014,5:187.
[46] ZHU X Y,DUNAND C,SNEDDEN W,GALAUD J P. CaM and CML emergence in the green lineage[J]. Trends in Plant Science,2015,20(8):483-489.
[47] TANG M F,XU C,CAO H H,SHI Y,CHEN J,CHAI Y,LI Z G. Tomato calmodulin-like protein SlCML37 is a calcium (Ca2+) sensor that interacts with proteasome maturation factor SlUMP1 and plays a role in tomato fruit chilling stress tolerance[J]. Journal of Plant Physiology,2021,258/259:153373.