国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

食品和臨床環(huán)境中大腸埃希菌耐藥現(xiàn)狀及健康風險研究

2024-01-01 08:55:49李夢涵汪慶楊光李思敏劉長振張曉婷齊麗英李書唱申芷瑜
中國抗生素雜志 2023年7期
關鍵詞:耐藥性

李夢涵 汪慶 楊光 李思敏 劉長振 張曉婷 齊麗英 李書唱 申芷瑜

摘要:抗生素的濫用,導致大量殘留的抗生素及抗生素耐藥基因在食品環(huán)境和臨床環(huán)境中被檢出。大腸埃希菌(Escherichia coli)作為食源性致病菌之一,極易獲得和傳播耐藥基因,對多種抗生素產生耐藥性。耐藥性大腸埃希菌可以在食品環(huán)境和臨床環(huán)境間傳播,使人體內菌群的耐藥性增強。大腸埃希菌作為抗生素耐藥基因的儲存庫,其抗生素耐藥性已嚴重威脅到食品安全和人類健康,食品環(huán)境與臨床環(huán)境中耐藥菌株的出現(xiàn)成為全球關注的公共衛(wèi)生問題。本文結合國內外研究進展,綜述了食品和臨床環(huán)境中大腸埃希菌的耐藥現(xiàn)狀,闡述了食品貿易對耐藥性大腸埃希菌全球性傳播的推動作用以及臨床環(huán)境中耐藥性大腸埃希菌的驅動因素,探討了耐藥性大腸埃希菌在食品與臨床環(huán)境間的傳播途徑以及對人體的健康風險,以期為未來耐藥性大腸埃希菌的研究和治理提供參考。

關鍵詞:大腸埃希菌;耐藥性;食品環(huán)境;臨床環(huán)境;多重耐藥

中圖分類號:R978文獻標志碼:A

Research progress on antibiotic resistance and health risk of Escherichia coli in food and clinical environment

Li Menghan, Wang Qing, Yang Guang, Li Simin, Liu Changzhen,

Zhang Xiaoting, Qi Liying, Li Shuchang, and Shen Zhiyu

(College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038)

Abstract The abuse of antibiotics leads to the detection of many residual antibiotics and antibiotic resistance genes in food environment and clinical environment. As one of the foodborne pathogenic bacteria, Escherichia coli can easily acquire and spread antibiotic resistance genes and develop resistance to many antibiotics. Antibiotic resistance in Escherichia coli can spread between the food environment and the clinical environment, increasing the resistance of the bacterial community in the human body. As a repository of antibiotic resistance genes, antibiotic-resistant Escherichia coli has seriously threatened food safety and human health, and the emergence of antibiotic resistance strains in food environment and clinical environment have become a global public health concern. Based on the research progress both at home and abroad, this paper introduced the present situation of antibiotic-resistant Escherichia coli in food and clinical environment, elaborated the food trade to promote the spread of antibiotic-resistant Escherichia coli in global clinical environment and the driving factors of antibiotic-resistant strains of Escherichia coli. Escherichia coli resistance in the route of transmission between food and clinical environment and the risk to the health of human body are discussed, in order to provide a reference for future research and management of antibiotic-resistant Escherichia coli.

Key words Escherichia coli; Antibiotic resistance; Food environment; Clinical environment; Multiple

antibiotic resistance

抗生素自問世以來,被廣泛應用于臨床治療、動物養(yǎng)殖、農業(yè)生產等領域[1-3]??股氐倪^度使用及濫用,導致大量殘留的抗生素及抗生素耐藥基因在環(huán)境中被檢出[4-6],加快了耐藥性產生和傳播的速度[7-8]。耐藥菌在世界各地不斷出現(xiàn)并蔓延,呈現(xiàn)出耐藥水平高,耐藥模式復雜的特點[9-11]。

大腸埃希菌是人類和動物腸道中最常見的共生菌,也是重要的病原體之一,可引發(fā)多種人畜共患病[12]。同時大腸埃希菌作為抗生素耐藥基因的儲存庫,極易獲得和傳播耐藥基因,從而對多種抗生素產生耐藥性[13-15]。耐藥性大腸埃希菌可通過水平基因轉移隨食物鏈進入人體,對食品安全與人類健康構成嚴重威脅[16]。因此,加強抗生素的管控,遏制耐藥性的發(fā)展迫在眉睫。本文結合國內外研究,綜述了食品與臨床環(huán)境中大腸埃希菌的耐藥現(xiàn)狀,闡述了食品及臨床環(huán)境中大腸埃希菌耐藥性的傳播及對人體的健康風險,同時對未來耐藥性大腸埃希菌的研究和防治進行了展望。

1 食品環(huán)境中大腸埃希菌的耐藥現(xiàn)狀

大腸埃希菌極易獲得耐藥性[17],在抗生素廣泛使用的驅動下,耐藥性大腸埃希菌普遍存在于肉制品、水產品、農產品等食品環(huán)境。如表1所示,各個國家和地區(qū)的食品環(huán)境中均檢測出耐藥性大腸埃希菌,檢出菌株均具有耐藥水平高、范圍廣、形式復雜等特點[18-20]。

1.1 畜禽養(yǎng)殖及肉制品

畜禽養(yǎng)殖及肉制品中檢測出大腸埃希菌耐藥的現(xiàn)象十分普遍[21-22]。在美國、巴西、中國等全球主要的雞肉出口國家,從雞肉中檢測到的大腸埃希菌對四環(huán)素、磺胺甲惡唑、鏈霉素和氨芐西林等抗生素的耐藥率均高于40%[23]。中國是全球畜牧業(yè)中抗生素的主要使用者[24]。周玲等[25]采用Mate分析對中國2005—2020年豬源大腸埃希菌的耐藥性數(shù)據(jù)進行研究,發(fā)現(xiàn)大腸埃希菌對四環(huán)素類的耐藥率在2005—2010年(94.5%)、2011—2015年(92.3%)、2016—2020年(96.3%)3個時間段均高于90%。中國作為抗生素使用大國,所檢出的豬源大腸埃希菌對四環(huán)素類抗生素表現(xiàn)出較高的耐藥性,這與Abdelgader等[26]的研究結果一致。有研究發(fā)現(xiàn)孟加拉[27]和突尼斯[19]肉制品中的大腸埃希菌對土霉素、氨芐西林具有較高耐藥率,原因之一是土霉素、氨芐西林在畜禽養(yǎng)殖中被大量用于治療或預防動物疾病。隨著集約化養(yǎng)殖業(yè)的興起與發(fā)展,全球各個國家在畜禽養(yǎng)殖中大量使用抗生素,使得動物在聚集性的養(yǎng)殖環(huán)境中反復高頻率的接觸抗生素,最終導致肉制品成為耐藥基因傳播的媒介,給人類健康帶來潛在風險[28-30]。因此,在畜禽養(yǎng)殖中應加強抗生素使用的管控,緩解畜禽養(yǎng)殖及肉制品中大腸埃希菌的耐藥現(xiàn)象。

1.2 水產養(yǎng)殖及水產品

四環(huán)素、阿莫西林和喹諾酮類等一系列用于提高水產養(yǎng)殖產量的抗生素正在世界范圍內被廣泛使用[31-33]。水產養(yǎng)殖業(yè)不恰當?shù)厥褂每股貙е滤a品中檢測出大量殘留的抗生素,加劇了大腸埃希菌耐藥性的傳播[34]。在中國[18]、韓國[35]采集的水產品中均檢測出耐藥性大腸埃希菌,分離株對頭孢唑林、頭孢菌素和哌拉西林等不同種類抗生素表現(xiàn)出不同程度的耐藥性。Said等[36]對從食用魚類和貝類中分離的大腸埃希菌進行耐藥性檢測,結果表明大腸埃希菌對四環(huán)素表現(xiàn)出較高的耐藥性,這與李景云等[37]的研究結果一致。Noor等[38]通過對水產品中分離的大腸埃希菌進行研究,發(fā)現(xiàn)分離株對頭孢克肟(67%)、阿莫西林(33%)、氨芐西林(20%)等抗生素具有耐藥性,其中對喹諾酮類抗生素如環(huán)丙沙星(67%)、萘啶酸(80%)的耐藥率較高。Dib等[39]在阿爾及利亞采集的水產品中發(fā)現(xiàn)了多重耐藥大腸埃希菌。從世界各地水產養(yǎng)殖及水產品中大腸埃希菌的分離鑒定及耐藥性分析來看,耐藥性大腸埃希菌在水產品中普遍存在[40-41]。人類食用含有耐藥性大腸埃希菌的水產品極易發(fā)生耐藥菌感染[42],因此應對水產品中耐藥性大腸埃希菌的傳播機制進行深入研究,保障食品安全,降低人類的感染風險。

1.3 農業(yè)生產及農產品

農業(yè)生產及農產品中的耐藥性大腸埃希菌是威脅人類健康的潛在風險[43-46]。近些年,與新鮮農產品相關的食源性疾病數(shù)量一直在增加,其中大腸埃希菌是最常見的病原體[47-48]。Araujo等[49]發(fā)現(xiàn)耐藥性大腸埃希菌可通過食用蔬菜傳播給人類。姚旭等[50]對在印度、越南等發(fā)展中國家的蔬菜中分離出的60株大腸埃希菌進行藥敏分析,結果表明大腸埃希菌對復方磺胺甲惡唑的耐藥率最高為65.0%,對頭孢噻肟(20.0%)、氨芐西林(53.3%)、四環(huán)素(50.0%)等抗生素表現(xiàn)出不同程度的耐藥。Shah等[51]在蔬菜沙拉樣品中分離出50株大腸埃希菌,對其進行耐藥性研究同樣發(fā)現(xiàn)大腸埃希菌對β-內酰胺類、四環(huán)素類和氯霉素類等抗生素表現(xiàn)出不同程度的耐藥。Nawas等[52]從孟加拉國采集的沙拉中分離得到34株大腸埃希菌,發(fā)現(xiàn)大腸埃希菌對阿莫西林、頭孢拉定和頭孢氨芐的耐藥率分別為74%、44%和48%。據(jù)報道,在加拿大[20]的植物性食品和中國[53]的涼拌菜樣品中均分離出耐藥性大腸埃希菌,此外,在尼泊爾[54]的蔬菜沙拉樣品中檢出的大腸埃希菌表現(xiàn)出多重耐藥。農產品中大腸埃希菌的耐藥及多重耐藥問題不容忽視,因此要加強對大腸埃希菌耐藥機制的研究,以遏制細菌耐藥性的傳播擴散。

1.4 食品貿易加速耐藥性大腸埃希菌的全球性傳播

隨著國際貿易規(guī)模的擴大,進口食品中的耐藥性大腸埃希菌在全球范圍內被頻繁檢出[55-56]。Boss等[41]在瑞士進口海產品中檢測到大腸埃希菌對環(huán)丙沙星(22%)、四環(huán)素(17%)等抗生素耐藥。Bergenholtz等[57]在丹麥本地肉制品中未分離到對頭孢噻呋耐藥的大腸埃希菌,而進口肉類中對其耐藥的大腸埃希菌具有較高的流行率。由于食品貿易的全球化,耐藥性很容易通過食物鏈在全球范圍內進行傳播[58]。產超廣譜β-內酰胺酶(extended-spectrum beta-lactamases,ESBLs)大腸埃希菌能水解第三代頭孢菌素類藥物,對頭孢他啶、頭孢曲松等多種抗生素產生耐藥,并且可經(jīng)食物鏈直接或間接傳播給人類[59]。產ESBLs大腸埃希菌從全球各地的進口食品中分離出來,成為威脅人類健康的全球性問題。多項研究在瑞典[60]、日本[61]等多個國家的進口食品中檢測到產ESBLs大腸埃希菌。Jung等[20]從進口產品中檢測出對氨芐西林、頭孢曲松耐藥的產ESBLs大腸埃希菌,并從中發(fā)現(xiàn)一種與多重耐藥性相關的可移動遺傳元件。Egervarn等[60]在瑞典的進口肉制品中發(fā)現(xiàn)攜帶產ESBLs和對映異構體的大腸埃希菌,此前在丹麥的進口肉類中發(fā)現(xiàn)過同樣的情況[62]。Muller等[56]研究發(fā)現(xiàn)進口食品成為德國本土多重耐藥和產ESBLs大腸埃希菌的重要來源。食物中攜帶的耐藥菌及耐藥基因會隨著食品的進出口貿易傳播到全球各個國家和地區(qū),加劇耐藥性大腸埃希菌的全球性傳播[63]。

2 臨床環(huán)境中大腸埃希菌的耐藥現(xiàn)狀

2.1 臨床環(huán)境中大腸埃希菌耐藥性的驅動因素

致病性大腸埃希菌是食源性疾病的主要病原體之一[64],也是臨床感染最常見的病原菌[65],藥物不合理的使用是多重耐藥菌感染的主要因素[66]。Browne等[67]分析了2000年至2018年間人類抗生素消費報告,發(fā)現(xiàn)自2000年以來全球人類對抗生素的消費量增加了46%。臨床醫(yī)學中抗生素的廣泛使用使人體微生物暴露在高濃度藥物下,這對大腸埃希菌施加了選擇性壓力,從而增加了耐藥性大腸埃希菌 數(shù)量增多的風險[58],抗生素的大量消耗是臨床環(huán)境中大腸埃希菌耐藥性增長的主要驅動力。β-內酰胺類抗生素被大量用于臨床治療嚴重的細菌感染,由大腸埃希菌攜帶的ESBLs是β-內酰胺類抗生素耐藥的重要介體[68-69]。不僅如此,ESBLs基因作為耐藥性的決定因素之一,常與其他耐藥基因整合在一起,借助可移動遺傳元件在不同菌株和菌種間傳播,加劇了多重耐藥菌株的擴散[70]。大腸埃希菌攜帶的ESBLs是驅動耐藥性增長的重要原因。此外,有研究發(fā)現(xiàn)在臨床上長期使用低劑量抗生素進行預防性治療會對大腸埃希菌形成選擇性壓力[71],誘導耐藥菌進行繁殖或者耐藥基因發(fā)生突變,這是導致大腸埃希菌耐藥性增加的潛在驅動因素[72]。臨床環(huán)境中大腸埃希菌耐藥性的增加是不同驅動因素相互作用的結果[73]。

2.2 臨床環(huán)境中大腸埃希菌耐藥性的嚴峻形勢

臨床環(huán)境中的大腸埃希菌對多種常用抗生素具有不同程度的耐藥性(表2)。國內外學者在臨床樣本中均分離得到耐藥性大腸埃希菌,并對這些大腸埃希菌進行了藥敏分析。劉潔等[74]和朱文杰等[75]對中國臨床樣本進行了檢測,發(fā)現(xiàn)大腸埃希菌對氨芐西林、頭孢呋辛、米諾環(huán)素和環(huán)丙沙星等抗生素的耐藥率較高,這與沙特阿拉伯[76]臨床樣本中的一項大腸埃希菌的研究結果一致。Lee等[77]研究了采集自韓國臨床樣本的1414株大腸埃希菌,發(fā)現(xiàn)大腸埃希菌對頭孢唑啉(86.0%)、頭孢呋辛(93.6%)、頭孢泊肟(99.5%)等多種抗生素具有較高的耐藥性。有研究對來自伊朗的臨床樣本進行分析時發(fā)現(xiàn)大腸埃希菌對青霉素的耐藥率達到了100%[78]。由此看來,臨床環(huán)境中的大腸埃希菌耐藥形勢十分嚴峻。

大腸埃希菌對臨床上常用的一些抗生素的耐藥性有所增加,臨床上檢出的耐藥菌株的數(shù)量不斷攀升。Badura等[79]分離了來自臨床患者的12萬余株大腸埃希菌,檢出耐藥菌株的比例隨著時間的推移而增加,最突出的是氨芐西林(1998年的25.4%—2013年的40%)、頭孢噻肟(0.1%~6.7%)、頭孢他啶(0.3%~14.2%)、環(huán)丙沙星(4.3%~16.7%)。從2005年開始,ESBLs陽性分離株的數(shù)量顯著增加(0.1%~6.3%)。孟祥紅等[80]對2008年至2010年中國某醫(yī)院分離的大腸埃希菌進行了藥敏分析,研究發(fā)現(xiàn)大腸埃希菌對亞胺培南、哌拉西林/他唑巴坦、阿米卡星3種抗生素的耐藥率逐年上升。東歐的一項研究中報告了2011—2016年[81]產ESBLs大腸埃希菌(20.1%)的比例高于在2004—2010年[82]報告的比例(15.3%),產ESBLs大腸埃希菌的檢出率在東歐呈上升的趨勢。這與在伊朗的食品[83]和臨床[78]環(huán)境中發(fā)現(xiàn)的產ESBLs大腸埃希菌的流行趨勢一致。

迄今為止,臨床環(huán)境中多重耐藥、泛耐藥甚至是全耐藥細菌不斷被發(fā)現(xiàn),耐藥菌通常表現(xiàn)為交叉耐藥和多重耐藥的特性。Jafri等[84]對巴基斯坦臨床樣本中的大腸埃希菌進行藥敏分析,發(fā)現(xiàn)約65%的大腸埃希菌為多重耐藥菌株,即對3種或3種以上抗生素耐藥,多重耐藥的情況十分明顯。Mukherjee等[85]分析了來自印度住院患者樣品中的大腸埃希菌,發(fā)現(xiàn)菌株對呋喃妥因(72.5%)、阿米卡星(70%)、氨芐西林(97.5%)、萘啶酸和頭孢氨芐(95%)、阿莫西林(92.5%)、復方磺胺甲惡唑(82.5%)和環(huán)丙沙星(80%)耐藥率較高,并且?guī)缀跛械木甓急憩F(xiàn)出多重耐藥性。

臨床環(huán)境中大腸埃希菌對常用抗生素的耐藥性在全球范圍內呈上升趨勢,尤其是多重耐藥菌株的出現(xiàn)增加了臨床治療的難度,嚴重危害人類健康[86]。因此,應充分了解臨床中大腸埃希菌的耐藥趨勢,合理使用抗生素,積極探索新的治療方案。

3 耐藥性大腸埃希菌在食品與臨床環(huán)境間的傳播

耐藥性大腸埃希菌可以在食品環(huán)境和臨床環(huán)境間傳播[87]。blaCMY-2和incK是歐洲肉雞分離出的大腸埃希菌中常見的ESBLs的基因組合[60],這種基因組合已經(jīng)在瑞典[88]和加拿大[89]的臨床環(huán)境中傳播。Eshrati等[90]研究了產ESBLs大腸埃希菌在食物鏈(雞肉樣品)和敗血癥人群之間的傳播關系,結果表明雞肉樣品在食物鏈中的污染是敗血癥人群存在產ESBLs大腸埃希菌感染的主要原因之一。大腸埃希菌的耐藥性面臨從食品環(huán)境向人類擴散的風險[63]。此外,在人類臨床樣本和食物來源的大腸埃希菌中發(fā)現(xiàn)諸多可移動遺傳元件。荷蘭一項研究發(fā)現(xiàn),從肉雞中分離的大腸埃希菌所攜帶的ESBLs基因和質粒同樣存在于臨床分離菌株中[91-92]。Sunde等[93]分別對來自 挪威肉類和血液感染的耐藥大腸埃希菌進行進一步檢測,發(fā)現(xiàn)整合子在臨床大腸埃希菌中的出現(xiàn)頻率顯著高于肉源大腸埃希菌。大腸埃希菌可以通過質粒、整合子等可移動遺傳元件的水平傳播獲得耐藥基因,耐藥性可通過這些可移動遺傳元件在各種環(huán)境中發(fā)生轉移[14, 94-96]。

抗生素耐藥性是一個生態(tài)系統(tǒng)問題,耐藥性可以通過水循環(huán)[97]、空氣[98]和土壤[99]等多種直接和間接的途徑在動物、環(huán)境和人類等不同的環(huán)境中進行傳播[100]。大腸埃希菌的耐藥性可以通過水循環(huán)在臨床環(huán)境和污水處理廠之間進行傳播[97]。有研究在污水處理廠的末端出水中檢測到含有攜帶耐藥基因的細菌分離株,這些耐藥基因會隨著出水被釋放到環(huán)境中,導致耐藥菌的進一步傳播[101]。Girijan等[102]在醫(yī)院污水直接排放點附近的沉積物樣本中檢測到耐藥性大腸埃希菌。醫(yī)院污水的排放加劇了耐藥菌和耐藥基因的傳播,使得耐藥性通過水生生態(tài)系統(tǒng)進入食品環(huán)境,人類通過食用受污染的食物而獲得耐藥性。在畜禽養(yǎng)殖、果蔬種植和人類疾病治療中使用的抗生素大量重疊,這可能導致由大腸埃希菌引起的腹瀉、感染等疾病發(fā)病率的增加[103]。黏菌素在臨床上被廣泛用于治療大腸埃希菌引發(fā)的疾病,同時在各種肉類和蔬菜中經(jīng)常檢測出攜帶黏菌素耐藥編碼基因的大腸埃希菌[104]。此外,Wang等[105]研究發(fā)現(xiàn)由于黏菌素在畜禽養(yǎng)殖和人類醫(yī)療中的廣泛使用,導致黏菌素耐藥基因從環(huán)境轉移到臨床環(huán)境中,臨床中耐藥性分離株的數(shù)量不斷增加。耐藥性大腸埃希菌可通過多種途徑在食品與臨床環(huán)境間進行傳播,同時也給人類健康帶來潛在的風險[106-107]。因此,應優(yōu)化食品生產流程,管控臨床治療中抗生素的使用,加強對大腸埃希菌耐藥數(shù)據(jù)的監(jiān)測,對耐藥性傳播途徑進行深入研究,減少耐藥性大腸埃希菌在環(huán)境間的傳播,遏制大腸埃希菌耐藥性不斷攀升的局面。

4 人體健康風險

大腸埃希菌是引起腹瀉、敗血癥和尿路感染等疾病的主要病原體[108]。大量的抗生素被用于治療由大腸埃希菌引起的疾病[109],在減輕了傳染病負擔的同時導致耐藥性大腸埃希菌的出現(xiàn)。在臨床上抗生素對疾病的治療逐漸喪失效力,耐藥性大腸埃希菌的傳播導致其引起的疾病不能得到有效的治療,患者會出現(xiàn)嚴重的并發(fā)癥從而引發(fā)身體機能的損害[24]??股卮罅坑糜卺t(yī)療領域的同時,還被廣泛用于食品生產的不同環(huán)節(jié),多種類、大劑量的抗生素被添加到飼料中用作食用動物的生長促進劑以提高產量,在果蔬種植中用作農藥噴灑以預防蟲害等[110-111]。在生產活動中使用的抗生素殘留將會擴散到周圍水體或者滲入地下水造成水污染,有研究在尼日利亞的魚塘里檢測出耐藥性大腸埃希菌,發(fā)現(xiàn)大腸埃希菌對呋喃妥因、慶大霉素等抗生素耐藥率較高[112],水環(huán)境將成為龐大的耐藥基因儲藏庫[97]。同時,在畜禽養(yǎng)殖中動物不能有效地代謝體內的抗生素,含有抗生素殘留物的動物糞便通常作為肥料與土壤進行混合用于農業(yè)生產,長期施用將會導致土壤中細菌的耐藥水平增加[113-114]。大腸埃希菌的耐藥性將會通過被污染的水、土壤、食物鏈等多種途徑進行傳播,最終傳播給人類,耐藥基因隨之轉移到人體腸道內的 細菌,使人體內菌群的耐藥性增強[115-116]。

大腸埃希菌是耐藥基因在環(huán)境和人體間轉移的重要媒介[117-118]??股卦谂R床和食品中的大規(guī)模使用,對人類的危害表現(xiàn)在多個方面[119],增強了人體內大腸埃希菌的耐藥性[115-116],增加了大腸埃希菌感染類疾病的治療難度[24],提高了臨床治療成本[120]。食品貿易的流通加速了耐藥性大腸埃希菌的全球性傳播[121],加劇了對人體健康的威脅[47]。人類現(xiàn)代生產和生活方式驅動了細菌耐藥性的產生,而人類對抗生素的過度使用及監(jiān)管的缺失進一步加速了抗生素耐藥性在環(huán)境中的擴散和傳播。在這種嚴峻的形勢下,如何在臨床治療上合理用藥,如何在生產活動中有效預防和控制動植物疾病,如何控制耐藥菌不斷增加、耐藥模式愈發(fā)復雜的窘境是當今亟待解決的問題。

5 展望

耐藥性大腸埃希菌已經(jīng)嚴重威脅到了食品安全和人體健康。在經(jīng)濟發(fā)展全球化推動下,抗生素耐藥性通過食物鏈以及食品貿易在世界各個國家間傳播,其中耐藥性在蔬菜、水果等農產品中的傳播是一個被低估的耐藥來源。食品和臨床環(huán)境中頻繁檢測出耐藥性大腸埃希菌,特別是多重耐藥性大腸埃希菌的出現(xiàn)頻率急劇增加,導致臨床用藥困難,對現(xiàn)有的醫(yī)療條件提出了極大的挑戰(zhàn)。因此在“后抗生素”時代,對未來耐藥性大腸埃希菌的研究和治理進行了一些展望,包括:

(1)應全面加強國際合作,加快構建和完善全球耐藥性監(jiān)測系統(tǒng),利用大數(shù)據(jù)對耐藥數(shù)據(jù)進行分析利用,整合資源,共同治理。

(2)要加強對食品生產中抗生素使用的管控,并對大腸埃希菌通過食物鏈進入人體的傳播機制以及其耐藥性在環(huán)境中的傳播途徑進行深入探究。

(3)在臨床上面對細菌感染,應逐步減少對抗生素的依賴,規(guī)范用藥的同時積極探索新的治療方案,加強探索毒力基因與大腸埃希菌耐藥性之間的關系,為臨床合理用藥提供理論依據(jù)。

參 考 文 獻

Hughes L, Hermans P, Morgan K. Risk factors for the use of prescription antibiotics on UK broiler farms[J]. J Antimicrob Chemother, 2008, 61(4): 947-952.

俞慎, 王敏, 洪有為. 環(huán)境介質中的抗生素及其微生物生態(tài)效應[J]. 生態(tài)學報, 2011, 31(15): 4437-4446.

王冉, 劉鐵錚, 王恬. 抗生素在環(huán)境中的轉歸及其生態(tài)毒性[J]. 生態(tài)學報, 2006, 26(1): 265-270.

張俊華, 陳睿華, 劉吉利, 等. 寧夏養(yǎng)牛場糞污和周邊土壤中抗生素及抗生素抗性基因分布特征[J]. 環(huán)境科學, 2021, 42(6): 2981-2991.

程森, 路平, 馮啟言. 漁業(yè)復墾塌陷地抗生素抗性基因與微生物群落[J]. 環(huán)境科學, 2021, 42(5): 2541-2549.

付星宇, 汪慶, 畢聰聰, 等. 大氣環(huán)境中抗生素耐藥菌的來源與傳播擴散研究進展[J]. 中國抗生素雜志, 2021, 46(9): 821-828.

Goossens H, Ferech M, Vander S R, et al. Outpatient antibiotic use in Europe and association with resistance: A cross-national database study[J]. Lancet, 2005, 365(9459): 579-587.

Aminov R I. The role of antibiotics and antibiotic resistance in nature[J]. Environ Microbiol, 2009, 11(12): 2970-2988.

Sáenz Y, Zarazaga M, Bri?as L, et al. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain[J]. Int J Antimicrob Agents, 2001, 18(4): 353-358.

Thorsteinsdottir T R, Haraldsson G, Fridriksdottir V, et al. Prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli isolated from animals, foods and humans in Iceland[J]. Zoonoses Public Health, 2010, 57(3): 189-196.

Belotindos L, Villanueva M, Miguel J, Jr., et al. Prevalence and characterization of quinolone-resistance determinants in Escherichia coli isolated from food-producing animals and animal-derived food in the philippines[J]. Antibiotics, ?2021, 10(4): 413-428.

Rafique M, Potter R F, Ferreiro A, et al. Genomic characterization of antibiotic resistant Escherichia coli isolated from domestic chickens in Pakistan[J]. Front Microbiol, 2020, 10: 3052-3061.

Wright, Gerard D. The antibiotic resistome: the nexus of chemical and genetic diversity[J]. Nat Rev Microbiol, 2007, 5(3): 175-186.

Carattoli A. Importance of integrons in the diffusion of resistance[J]. Vet Res, 2001, 32(3): 243-259.

Farshad S, Japoni A, Hosseini M. Low distribution of integrons among multidrug resistant E. coli strains isolated from children with community-acquired urinary tract infections in Shiraz, Iran[J]. Pol J Microbiol, 2008, 57(3): 193-198.

Frye J G, Jackson C R. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals[J]. Front Microbiol, 2013, 4: 135-156.

李德喜, 李新生, 杜向黨, 等. 氨基糖苷類藥物高水平耐藥16S rRNA甲基化酶基因在動物源大腸埃希菌中的檢測[J]. 江西農業(yè)學報, 2009, 21(8): 4-6.

紀雪, 邢新月, 梁冰, 等. 淡水養(yǎng)殖魚大腸埃希菌分離鑒定與耐藥性研究[J]. 動物醫(yī)學進展, 2018, 39(12): 80-84.

Soufi L, Abbassi M S, Sáenz Y, et al. Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia[J]. Foodborne Pathog Dis, 2009, 6(9): 1067-1073.

Jung D, Rubin J E. Identification of antimicrobial resistant bacteria from plant-based food products imported into Canada[J]. Int J Food Microbiol, 2020, 319: 1-27.

Mayrhofer S, Paulsen P, Smulders F J, et al. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry[J]. Int J Food Microbiol, 2004, 97(1): 23-29.

Hagos Y, Gugsa G, Awol N, et al. Isolation, identification, and antimicrobial susceptibility pattern of Campylobacter jejuni and Campylobacter coli from cattle, goat, and chicken meats in Mekelle, Ethiopia[J]. PLoS One, 2021, 16(2): 1-13.

Roth N, Kasbohrer A, Mayrhofer S, et al. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview[J]. Poult Sci, 2019, 98(4): 1791-1804.

Talebi Bezmin Abadi A, Rizvanov A A, Haertlé T, et al. World health organization report: Current crisis of antibiotic resistance[J]. J Bionanosci, 2019, 9(4): 778-788.

周玲, 猶銀俊, 龔才偉, 等. 我國健康豬源大腸埃希菌對四環(huán)素類藥物耐藥性的Meta分析[J]. 畜牧與獸醫(yī), 2021, 53(4): 61-68.

Abdelgader S A, Shi D, Chen M, et al. Antibiotics resistance genes screening and comparative genomics analysis of commensal Escherichia coli isolated from poultry farms between China and Sudan[J]. Biomed Res Int, 2018, 2018: 1-9.

Parvin M S, Talukder S, Ali M Y, et al. Antimicrobial resistance pattern of Escherichia coli isolated from frozen chicken meat in Bangladesh[J]. Pathogens, 2020, 9(6): 1-17.

Johnson J R, Kuskowski M A, Kirk S, et al. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods[J]. J Infect Dis, 2005, 191(7): 1040-1049.

Caruso G. Antibiotic resistance in Escherichia coli from farm livestock and related analytical methods: A review[J]. J AOAC Int, 2018, 101(4): 916-922.

Thakali A, Macrae J D. A review of chemical and microbial contamination in food: What are the threats to a circular food system?[J]. Environ Res, 2021, 194: 1-16.

Heuer O, Kruse H, Grave K, et al. Human health consequences of use of antimicrobial agents in aquaculture[J]. Clin Infect Dis, 2009, 49(8): 1248-1253.

Cabello F C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment[J]. Environ Microbiol, 2006, 8(7): 1137-1144.

Akinbowale O L, Peng H, Barton M D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia[J]. J Appl Microbiol, 2010, 100(5): 1103-1113.

Lihan S, Lee S Y, Seng C T, et al. Plasmid-mediated antibiotic resistant Escherichia coli in sarawak rivers and aquaculture farms, northwest of Borneo[J]. Antibiotics, 2021, 10(7): 776-791.

Koo H J, Woo G J. Characterization of antimicrobial resistance of Escherichia coli recovered from foods of animal and fish origin in Korea[J]. J Food Prot, 2012, 75(5): 966-972.

Said L B, Hamdaoui M, Jouini A, et al. First detection of CTX-M-1 in extended-spectrum beta-lactamase-producing Escherichia coli in seafood from Tunisia[J]. J Food Prot, 2017, 80(11): 1877-1881.

李景云, 崔生輝, 馬越, 等. 動物及健康人腸道共生的大腸埃希菌耐藥性及產生原因分析[J]. 中國抗生素雜志, 2008, 33(9): 552-556.

Noor R, Hasan M F, Rahman M M. Molecular characterization of the virulent microorganisms along with their drug-resistance traits associated with the export quality frozen shrimps in Bangladesh[J]. Springerplus, 2014, 3(1): 1-7.

Dib A L, Agabou A, Chahed A, et al. Isolation, molecular characterization and antimicrobial resistance of Enterobacteriaceae isolated from fish and seafood[J]. Food Control, 2018, 88: 54-60.

Le Q P, Ueda S, Nguyen T N, et al. Characteristics of extended-spectrum beta-lactamase-producing Escherichia coli in retail meats and shrimp at a local market in Vietnam[J]. Foodborne Pathog Dis, 2015, 12(8): 719-725.

Boss R, Overesch G, Baumgartner A. Antimicrobial resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood imported into Switzerland[J]. J Food Prot, 2016, 79(7): 1240-1246.

Nadimpalli M, Vuthy Y, De Lauzanne A, et al. Meat and fish as sources of extended-spectrum beta-lactamase-producing Escherichia coli, Cambodia[J]. Emerg Infect Dis, 2019, 25(1): 126-131.

Romyasamit C, Sornsenee P, Chimplee S, et al. Prevalence and characterization of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from raw vegetables retailed in Southern Thailand[J]. Peer J, 2021, 9: 1-21.

Richter L, Du Plessis E M, Duvenage S, et al. Occurrence, identification, and antimicrobial resistance profiles of extended-spectrum and AmpC beta-lactamase-producing enterobacteriaceae from fresh vegetables retailed in Gauteng Province, South Africa[J]. Foodborne Pathog Dis, 2019, 16(6): 421-427.

Song J, Oh S S, Kim J, et al. Extended-spectrum beta-lactamase-producing Escherichia coli isolated from raw vegetables in South Korea[J]. Sci Rep, 2020, 10(1): 1-7.

Blaak H, Van Hoek A H, Veenman C, et al. Extended spectrum ss-lactamase- and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment[J]. Int J Food Microbiol, 2014, 168: 8-16.

Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria[J]. Infect Drug Resist, 2015: 49-61.

Newitt S, Macgregor V, Robbins V, et al. Two linked enteroinvasive Escherichia coli outbreaks, Nottingham, UK, June 2014[J]. Emerg Infect Dis, 2016, 22(7): 1178-1184.

Araujo S, Silva I, Tacao M, et al. Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms[J]. Int J Food Microbiol, 2017, 257: 192-200.

姚旭. 市售肉菜產ESBLs和碳青霉烯酶腸桿菌的分子流行病學研究[D]. 廣州: 華南農業(yè)大學, 2016.

Shah M S, Eppinger M, Ahmed S, et al. Multidrug-resistant diarrheagenic E. coli pathotypes are associated with ready-to-eat salad and vegetables in Pakistan[J]. J Korean Soc Appl Biol Chem, 2015, 58(2): 267-273.

Nawas T, Mazumdar R, Das S, et al. Microbiological quality and antibiogram of E. coli, Salmonella and Vibrio of salad and water from restaurants of chittagong[J]. J Environ Sci Nat Res, 2012, 5(1): 159-166.

周臣清, 張娟, 黃寶瑩,等. 廣州市蔬菜類涼拌菜中微生物污染狀況調查及大腸埃希氏菌耐藥現(xiàn)象研究[J]. 食品安全質量檢測學報, 2021, 12(6): 2485-2490.

Sapkota S, Adhikari S, Pandey A, et al. Multi-drug resistant extended-spectrum beta-lactamase producing E. coli and Salmonella on raw vegetable salads served at hotels and restaurants in Bharatpur, Nepal[J]. BMC Res Notes, 2019, 12(1): 516-521.

Jansen W, Grabowski N, Gerulat B, et al. Food safety hazards and microbiological zoonoses in European meat imports detected in border inspection in the period 2008–2013[J]. Zoonoses Public Health, 2016, 63(1): 53-61.

Muller A, Jansen W, Grabowski N T, et al. ESBL- and AmpC-producing Escherichia coli from legally and illegally imported meat: Characterization of isolates brought into the EU from third countries[J]. Int J Food Microbiol, 2018, 283: 52-58.

Bergenholtz R D, Jorgensen M S, Hansen L H, et al. Characterization of genetic determinants of extended-spectrum cephalosporinases (ESCs) in Escherichia coli isolates from Danish and imported poultry meat[J]. J Antimicrob Chemother, 2009, 64(1): 207-209.

Holmes A H, Moore L S P, Sundsfjord A, et al. Understanding the mechanisms and drivers of antimicrobial resistance[J]. Lancet, 2016, 387(10014): 176-187.

Worku W, Desta M, Menjetta T. High prevalence and antimicrobial susceptibility pattern of Salmonella species and extended-spectrum beta-lactamase producing Escherichia coli from raw cattle meat at butcher houses in Hawassa city, Sidama regional state, Ethiopia[J]. PLoS One, 2022, 17(1): 262-308.

Egervarn M, Borjesson S, Byfors S, et al. Escherichia coli with extended-spectrum beta-lactamases or transferable AmpC beta-lactamases and Salmonella on meat imported into Sweden[J]. Int J Food Microbiol, 2014, 171: 8-14.

Nahar A, Awasthi S P, Hatanaka N, et al. Prevalence and characteristics of extended-spectrum beta-lactamase-producing Escherichia coli in domestic and imported chicken meats in Japan[J]. J Vet Med Sci, 2018, 80(3): 510-517.

Agers Y, Hald T, Hg B B, et al. DANMAP 2010 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark[R], 2011.

Elbediwi M, Li Y, Paudyal N, et al. Global burden of colistin-resistant bacteria: Mobilized colistinresistance genes study (1980—2018)[J]. Microorganisms, 2019, 7(10): 461-478.

Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, et al. Drug resistance and the prevention strategies in food borne bacteria: An update review[J]. Adv Pharm Bull, 2019, 9(3): 335-347.

Johnson J R, Urban C, Weissman S J, et al. Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-beta-lactamase-producing E. coli from the United States, 2000 to 2009[J]. Antimicrob Agents Chemother, 2012, 56(5): 2364-2370.

Laxminarayan R, Heymann D L. Challenges of drug resistance in the developing world[J]. BMJ, 2012, 344: 1567-1570.

Browne A J, Chipeta M G, Haines-Woodhouse G, et al. Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study[J]. Lancet Planet Health, 2021, 5(12): 893-904.

Kumar D, Singh A K, Ali M R, et al. Antimicrobial susceptibility profile of extended spectrum beta-lactamase (ESBL) producing Escherichia coli from various clinical samples[J]. Infect Dis, 2014, 7: 1-8.

Flament-Simon S C, Garcia V, Duprilot M, et al. High prevalence of ST131 subclades C2-H30Rx and C1-M27 among extended-spectrum beta-lactamase-producing Escherichia coli causing human extraintestinal infections in patients from two hospitals of Spain and France during 2015[J]. Front Cell Infect Microbiol, 2020, 10: 125-133.

Teklu D S, Negeri A A, Legese M H, et al. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia[J]. Antimicrob Resist Infect Control, 2019, 8: 39-50.

Ching C, Zaman M H. Development and selection of low-level multi-drug resistance over an extended range of sub-inhibitory ciprofloxacin concentrations in Escherichia coli[J]. Sci Rep, 2020, 10(1): 8754-8582.

Projahn M, Daehre K, Semmler T, et al. Environmental adaptation and vertical dissemination of ESBL-/pAmpC-producing Escherichia coli in an integrated broiler production chain in the absence of an antibiotic treatment[J]. Microb Biotechnol, 2018, 11(6): 1017-1026.

王磊, 曹巍. 全球抗生素耐藥性現(xiàn)狀分析及對策建議[J]. 軍事醫(yī)學, 2017, 41(5): 329-333.

劉潔, 楊晶, 高立芳, 等. 862例醫(yī)院感染患者病原菌菌種及其耐藥性分析[J]. 山東醫(yī)藥, 2019, 59(27): 33-37.

朱文杰, 張翔, 黃友, 等. 2018年江蘇省某三甲醫(yī)院臨床細菌分布及耐藥性分析[J]. 醫(yī)學動物防制, 2020, 36(11): 1105-1108.

Azim N S A, Al-Harbi M A, Al-Zaban M I, et al. Prevalence and antibiotic susceptibility among gram negative bacteria isolated from intensive care units at a tertiary care hospital in Riyadh, Saudi Arabia[J]. J Pure Appl Microbiol, 2019, 13(1): 201-208.

Lee S J, Lee D S, Choe H S, et al. Antimicrobial resistance in community-acquired urinary tract infections: Results from the korean antimicrobial resistance monitoring system[J]. J Infect Chemother, 2011, 17(3): 440-446.

Momtaz H, Karimian A, Madani M, et al. Uropathogenic Escherichia coli in Iran: Serogroup distributions, virulence factors and antimicrobial resistance properties[J]. Ann Clin Microbiol Antimicrob, 2013, 12(8): 1-12.

Badura A, Feierl G, Pregartner G, et al. Antibiotic resistance patterns of more than 120 000 clinical Escherichia coli isolates in Southeast Austria, 1998—2013[J]. Clin Microbiol Infect, 2015, 21(6): 569-575.

孟祥紅, 孫紅寧, 孫敏霞, 等. 2008—2010年我院下呼吸道感染革蘭氏陰性桿菌的耐藥分析[J]. 標記免疫分析與臨床, 2011, 18(6): 353-356.

Dowzicky M J, Chmelarova E. Antimicrobial susceptibility of Gram-negative and gram-positive bacteria collected from Eastern Europe: Results from the tigecycline evaluation and surveillance trial (T.E.S.T.), 2011-2016[J]. J Glob Antimicrob Resist, 2019, 17: 44-52.

Balode A, Punda-Polic V, Dowzicky M J. Antimicrobial susceptibility of Gram-negative and Gram-positive bacteria collected from countries in Eastern Europe: Results from the tigecycline evaluation and surveillance Trial (T.E.S.T.) 2004-2010[J]. Int J Antimicrob Agents, 2013, 41(6): 527-535.

Jahantigh M, Samadi K, Dizaji R E, et al. Antimicrobial resistance and prevalence of tetracycline resistance genes in Escherichia coli isolated from lesions of colibacillosis in broiler chickens in Sistan, Iran[J]. BMC Vet Res, 2020, 16(1): 267-272.

Jafri S A, Qasim M, Masoud M S, et al. Antibiotic resistance of E. coli isolates from urine samples of Urinary Tract Infection (UTI) patients in Pakistan[J]. Bioinformation, 2014, 10(7): 419-422.

Mukherjee M, Basu S, Mukherjee S K, et al. Multidrug-resistance and extended spectrum beta-lactamase production in uropathogenic E. coli which were isolated from hospitalized patients in Kolkata, India[J]. J Clin Diagn Res, 2013, 7(3): 449-453.

Murray C J L, Ikuta K S, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis[J]. The Lancet, 2022, 399(10325): 629-655.

Aminov R I, Mackie R I. Evolution and ecology of antibiotic resistance genes[J]. FEMS Microbiol Lett, 2010, (2): 147-161.

Borjesson S, Jernberg C, Brolund A, et al. Characterization of plasmid-mediated AmpC-producing E. coli from Swedish broilers and association with human clinical isolates[J]. Clin Microbiol Infect, 2013, 19(7): 309-311.

Baudry P J, Mataseje L, Zhanel G G, et al. Characterization of plasmids encoding CMY-2 AmpC beta-lactamases from Escherichia coli in Canadian intensive care units[J]. Diagn Microbiol Infect Dis, 2009, 65(4): 379-383.

Eshrati B, Baradaran H R, Motevalian S A, et al. Investigating the relationship between extended spectrum beta-lactamase producing Escherichia coli in the environment and food chains with the presence of this infection in people suspected of septicemia: Using the fuzzy set qualitative comparative analysis[J]. J Environ Health Sci Eng, 2020, 18(2): 1509-1520.

Hall L V, Dierikx C M, Stuart J C, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains[J]. Clin Microbiol Infect, 2011, 17(6): 873-880.

Overdevest, Ilse. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands[J]. Emerg Infect Dis, 2011, 17(7): 1216-1222.

Sunde M, Simonsen G S, Slettemeas J S, et al. Integron, plasmid and host strain characteristics of Escherichia coli from humans and food included in the Norwegian antimicrobial resistance monitoring programs[J]. PLoS One, 2015, 10(6): 1-14.

Solberg O D, Ajiboye R M, Riley L W. Origin of class 1 and 2 integrons and gene cassettes in a population-based sample of uropathogenic Escherichia coli[J]. J Clin Microbiol, 2006, 44(4): 1347-1351.

Blahna M T, Zalewski C A, Reuer J, et al. The role of horizontal gene transfer in the spread of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada[J]. J Antimicrob Chemother, 2006, 57(4): 666-672.

Mazel D. Integrons: agents of bacterial evolution[J]. Nat Rev Microbiol, 2006, 4(8): 608-620.

Perez-Etayo L, Gonzalez D, Vitas A I. The aquatic ecosystem, a good environment for the horizontal transfer of antimicrobial resistance and virulence-associated factors among extended spectrum beta-lactamases producing E. coli[J]. Microorganisms, 2020, 8(4): 568-580.

Sanz S, Olarte C, Martinez-Olarte R, et al. Airborne dissemination of Escherichia coli in a dairy cattle farm and its environment[J]. Int J Food Microbiol, 2015, 197: 40-44.

Chen C, Pankow C A, Oh M, et al. Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments[J]. Environ Int, 2019, 128: 233-243.

Dorado-Garcia A, Smid J H, Van Pelt W, et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis[J]. J Antimicrob Chemother, 2018, 73(2): 339-347.

Szczepanowski R, Linke B, Krahn I, et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics[J]. Microbiology, 2009, 155(7): 2306-2319.

Girijan S K, Paul R, V J R, et al. Investigating the impact of hospital antibiotic usage on aquatic environment and aquaculture systems: A molecular study of quinolone resistance in Escherichia coli[J]. Sci Total Environ, 2020, 748: 1-62.

Szmolka A, Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health[J]. Front Microbiol, 2013, 4: 258-270.

Clemente L, Leao C, Moura L, et al. Prevalence and characterization of ESBL/AmpC producing Escherichia coli from fresh meat in Portugal[J]. Antibiotics, 2021, 10(11): 1333-1348.

Wang Z, Koirala B, Hernandez Y, et al. A naturally inspired antibiotic to target multidrug-resistant pathogens[J]. Nature, 2022, 601(7894): 606-611

Ben Y, Fu C, Hu M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review[J]. Environ Res, 2019, 169: 483-493.

Pormohammad A, Nasiri M J, Azimi T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis[J]. Infect Drug Resist, 2019, 12: 1181-1197.

Allocati N, Masulli M, Alexeyev M F, et al. Escherichia coli in Europe: An overview[J]. Int J Environ Res Public Health, 2013, 10(12): 6235-6254.

Boeckel T V, Gandra S, Ashok A, et al. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data[J]. Lancet Infect Dis, 2014, 14(8): 742-750.

Bengtsson-Palme J. Antibiotic resistance in the food supply chain: Where can sequencing and metagenomics aid risk assessment?[J]. Curr Opin Food Sci, 2017, 14: 66-71.

Van T T H, Yidana Z, Smooker P M, et al. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses[J]. J Glob Antimicrob Resist, 2020, 20: 170-177.

Njoku O, Agwa O, Ibiene A. Antibiotic susceptibility profile of bacteria isolates from some fishponds in Niger delta region of Nigeria[J]. Br Microbiol Res J, 2015, 7(4): 167-173.

Ghosh S, Lapara T M. The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria[J]. ISME J, 2007, 1(3): 191-203.

Rahube T O, Yost C K. Characterization of a mobile and multiple resistance plasmid isolated from swine manure and its detection in soil after manure application[J]. J Appl Microbiol, 2012, 112(6): 1123-1133.

Day M J, Hopkins K L, Wareham D W, et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: An epidemiological surveillance and typing study[J]. Lancet Infect Dis, 2019, 19(12): 1325-1335.

White D G, Zhao S, Simjee S, et al. Antimicrobial resistance of foodborne pathogens[J]. Microbes Infect, 2002, 4(4): 405-412.

Angulo F J, Baker N L, Olsen S J, et al. Antimicrobial use in agriculture: Controlling the transfer of antimicrobial resistance to humans[J]. Semin Pediatr Infect Dis, 2004, 15(2): 78-85.

Guanghui W, Day M J, Mafura M T, et al. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, the Netherlands and Germany[J]. PLoS One, 2013, 8(9): 1-10.

Pakbin B, Allahyari S, Amani Z, et al. Prevalence, phylogroups and antimicrobial susceptibility of Escherichia coli isolates from food products[J]. Antibiotics, 2021, 10(11): 1291-1301.

Livermore D M. Current epidemiology and growing resistance of gram-negative pathogens[J]. Korean J Intern Med, 2012, 27(2): 128-142.

Davies J, Davies D. Origins and evolution of antibiotic resistance[J]. Microbiol Mol Biol Rev, 2010, 74(3): 417-433.

Dong P, Xiao T, Nychas G E, et al. Occurrence and characterization of Shiga toxin-producing Escherichia coli (STEC) isolated from chinese beef processing plants[J]. Meat Sci, 2020, 168: 1-6.

Abo-Amer A E, Shobrak M Y, Altalhi A D. Isolation and antimicrobial resistance of Escherichia coli isolated from farm chickens in Taif, Saudi Arabia[J]. J Glob Antimicrob Resist, 2018, 15: 65-68.

Kim S M, Oh T, Kim H J. Antimicrobial resistance, molecular, and phenotypic diversity of Escherichia coli isolates from fresh vegetable products in Korea[J]. J Korean Soc Appl Biol Chem, 2015, 58(5): 745-750.

Najwa D, Salah A M, Yolanda S, et al. Low antibiotic resistance rates and high genetic heterogeneity of Escherichia coliisolates from urinary tract infections of diabetic patients in Tunisia[J]. J Chemother, 2016, 28(2): 89-94.

Mollick S, Dasgupta T, Hasnain M, et al. Isolation and characterization of pathogens responsible for urinary tract infection in bangladesh and determination of their antibiotic susceptibility pattern[J]. J Appl Pharm Sci, 2016: 72-76.

猜你喜歡
耐藥性
長絲鱸潰爛癥病原分離鑒定和耐藥性分析
當代水產(2021年8期)2021-11-04 08:48:54
嬰幼兒感染中的耐藥菌分布及耐藥性分析
WHO:HIV耐藥性危機升級,普及耐藥性檢測意義重大
溶血葡萄球菌臨床分布及耐藥性分析
燒傷整形外科醫(yī)院感染的病原菌分布及耐藥性分析
分析下呼吸道感染病原菌的分布及對抗生素的耐藥性
尿路感染病原菌的分布及耐藥性分析
美洲大蠊逆轉肝癌多藥耐藥性的研究
2014年我院細菌耐藥性分析
2527株臨床分離病原菌的耐藥性分析
乌鲁木齐市| 察隅县| 怀化市| 南靖县| 红桥区| 思南县| 甘孜| 武宁县| 德保县| 四会市| 蒲城县| 灌云县| 长子县| 邯郸市| 布拖县| 大邑县| 英山县| 扬中市| 喜德县| 通河县| 施秉县| 招远市| 淮南市| 广西| 萍乡市| 东乡族自治县| 安岳县| 尚义县| 绍兴县| 黄梅县| 平利县| 张家口市| 宣城市| 腾冲县| 武乡县| 合肥市| 上思县| 营山县| 弋阳县| 涞水县| 黔江区|