摘 要:【目的】研究施肥對(duì)福建青岡幼苗生長(zhǎng)及生理特性的影響,旨在篩選出最適宜福建青岡苗木生長(zhǎng)的施肥配方,為福建青岡優(yōu)質(zhì)壯苗培育提供科學(xué)依據(jù)?!痉椒ā恳?年生福建青岡幼苗為研究對(duì)象,基于二次通用旋轉(zhuǎn)回歸組合設(shè)計(jì),設(shè)置3(N、P、K)因子5(-1.682、-1、0、1、1.682)水平,21(包括對(duì)照)組處理進(jìn)行配方施肥試驗(yàn),測(cè)定各處理福建青岡幼苗生長(zhǎng)(苗高、地徑、總根長(zhǎng)、根平均直徑、根尖數(shù)、總生物量)及生理(總?cè)~綠素、可溶性糖、可溶性蛋白)指標(biāo),比較其生長(zhǎng)和生理特性差異,構(gòu)建N、P、K三因子與各參數(shù)指標(biāo)的回歸方程,并進(jìn)行效應(yīng)分析?!窘Y(jié)果】相較于對(duì)照,合理施肥可促進(jìn)福建青岡幼苗生長(zhǎng)、提高葉片生理活性。主效應(yīng)分析表明3種肥料因子對(duì)苗高、地徑、總生物量、可溶性蛋白、總?cè)~綠素的影響主次為N>K>P,對(duì)總根長(zhǎng)、根平均直徑、根尖數(shù)影響則是N>P>K,對(duì)可溶性糖的影響為K>N>P;單因子效應(yīng)分析發(fā)現(xiàn),適量施用N、K對(duì)苗高、地徑、總生物量生長(zhǎng)及總?cè)~綠素、可溶性蛋白、可溶性糖的積累均具有明顯的促進(jìn)和調(diào)控作用,而P的效應(yīng)不明顯。N、P對(duì)總根長(zhǎng)、根尖數(shù)的影響顯著,而根平均直徑僅N肥響應(yīng)顯著;在NPK的耦合效應(yīng)中,NK互作對(duì)苗高、根尖數(shù)、可溶性蛋白的影響顯著,NP互作對(duì)地徑和總根長(zhǎng)的影響顯著。PK互作對(duì)總?cè)~綠素、可溶性糖的影響顯著;各項(xiàng)生長(zhǎng)及生理特性指標(biāo)在單、雙因子顯著效應(yīng)下,均隨著N、P、K施肥量的增加呈先上升后下降趨勢(shì),符合“報(bào)酬遞減”規(guī)律?!窘Y(jié)論】福建青岡優(yōu)質(zhì)壯苗培育需輔以合理的NPK配施,合理施肥促進(jìn)了福建青岡幼苗生長(zhǎng)及生理特性指標(biāo)積累,使得生長(zhǎng)、生理抗性增強(qiáng)。利用主成分分析及頻率分析法,以總生物量≥27.66 g為目標(biāo),確定福建青岡最優(yōu)施肥區(qū)間為N肥(尿素)2.12~3.71 g·株-1、P肥(過(guò)磷酸鈣)5.16~7.34 g·株-1、K肥(氯化鉀)1.56~2.75 g·株-1。
關(guān)鍵詞:福建青岡;配方施肥;通用旋轉(zhuǎn)回歸組合設(shè)計(jì);生長(zhǎng);生理
中圖分類號(hào):S725.5 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2024)06-0069-12
基金項(xiàng)目:湖南省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020NK2017);湖南省林業(yè)科技攻關(guān)與創(chuàng)新項(xiàng)目(XLKY202324)。
Effects of different formula fertilization on the growth and physiological characteristics of Quercus chungii seedlings
PAN Yanfei1a,2, YANG Mohua1a-c,2, LIU Weidong1a,2, XIA Yang1a,2, ZENG Siqi1a,2, HE Ruiyu1a,2, WANG Wei1a,2, YAN Binghu1a,2
(1.a. College of Forestry; b. Key Laboratory of Forestry Biotechnology; c. National Science and Technology Innovation Cooperation Base of Forest Resources Biotechnology, Central South University of Forestry Technology, Changsha 410004, Hunan, China; 2. National Long-term Research Base of Subtropical Forestry, Pingjiang 410400, Hunan, China)
Abstract:【Objective】This study investigated the effects of fertilization on the growth and physiological characteristics of Quercus chungi seedlings to screen out a set of suitable fertilization formula for the growth of Quercus chungis seedlings, and provided a scientific theoretical basis for the cultivation of high-quality and strong Quercus chungi seedlings.【Method】This paper applied the quadratic generalized rotary regression design on three fertilization factors (N,P, K) with five levels (-1.682, -1, 0, 1, 1.682) using one-year-old container seedlings of Q. chungii, resulting in a total of 21 treatments (including the CK ), to investigate the seedlings responses on the parameters of the growth and physiological characteristics under different fertilization treatments based on the measurement on the indicators of growth (seedling height, ground diameter, total root length, average root diameter, number of root tips, total biomass) and physiological indexes (total chlorophyll, soluble sugar, soluble protein) of the Quercus chungi seedlings in each treatment, and then established regression equations between the effects of N, P, K factors and each indicator of the growth and physiological parameters for effect analysis.【Result】Compared to the no-fertilizer treatment of CK, a reasonable fertilization could promote the growth of Quercus chungi seedlings and improve the physiological activity of leaves. The main effects among the three fertilizer factors were in order of N>K>P on the seedling height, diameter, total biomass, soluble protein and total chlorophyll, while the main effects were in order of N>P>K on total root length, average root diameter and number of root tips, and the main effect was in order of K>N>P on soluble sugar, based on the main effect analysis results. The one-way effect analysis results revealed that there were significant promoting and regulating effects with the application of moderate N and K fertilization on seedling height, ground diameter, total biomass growth, as well as the accumulation of total chlorophyll, soluble protein, and soluble sugar, while there was no significant effect with P fertilization on the above indicators. There were significant effects of N and P fertilization on total root length and root tip number, while the average root diameter was only significantly responded to N fertilization. Among the coupling effects of NPK, there were significant effects in NK interactions fertilization on seedling height, root tip number, and soluble protein, while there were significant effects in NP interactions fertilization on ground diameter and total root length, as well as there were significant effects in PK interactions fertilization on total chlorophyll and soluble sugar. There were significant effects with moderate levels of N, K fertilization on seedling height, ground diameter, total biomass growth, and total chlorophyll, soluble protein, and soluble sugar accumulation, while there was no significant effect with P fertilization, based on the single-factor effects analysis results. There was a trend of increasing firstly and then decreasing on the single and two-factor significant effects of the growth and physiological indicators with the increase of N, P and K fertilization, in which it was in line with the law of “diminishing returns”.【Conclusion】Reasonable NPK formula fertilization was beneficial to the cultivation of high-quality and strong Q. chungii seedlings and promoted the growth of Quercus chungi seedlings and the accumulation of physiological characteristics indicators, enhancing the growth and physiological resistance. Using principal component analysis and frequency analysis, with a total biomass of≥27.66 g as the thresh goal, the optimal fertilization interval for Q. chungi was determined as N fertilizer (urea) 2.12-3.71 g per plant, P fertilizer (superphosphate) 5.16-7.34 g per plant, and K fertilizer(potassium chloride) 1.56-2.75 g per plant.
Keywords: Quercus chungi; formula fertilizer; universal rotary regression combination design; growth index; physiological characteristics
福建青岡Quercus chungii F.P.Metcalf為殼斗科Fagaceae櫟屬Q(mào)uercus常綠高大喬木,其生態(tài)適應(yīng)性廣,在福建、廣西、湖南等均有分布,木材密度高達(dá)0.95 g·cm-3,呈紅褐色,具有耐磨、耐腐、耐水濕等特性,是我國(guó)特有的珍貴硬木用材樹種,經(jīng)濟(jì)價(jià)值高、造林需求大[1-3]。然而,其天然分布面積較小,種子產(chǎn)量低,成苗率低,苗木生長(zhǎng)緩慢[3],難以滿足市場(chǎng)及造林需求,為促進(jìn)福建青岡森林資源增長(zhǎng),需加大苗木培育力度,通過(guò)施肥等方式培育出福建青岡優(yōu)質(zhì)壯苗。
合理施肥可促進(jìn)植物的生長(zhǎng)發(fā)育,對(duì)提高苗木質(zhì)量具有重要意義[4],而植物的生長(zhǎng)和生理特性指標(biāo)變化與其養(yǎng)分供需密切相關(guān),能有效地反映植物生長(zhǎng)狀況。養(yǎng)分供應(yīng)充足,可促進(jìn)苗木生長(zhǎng),相關(guān)研究發(fā)現(xiàn),合理的氮磷鉀配施對(duì)閩楠Phoebe bournei幼苗育苗效果影響顯著,其中氮效應(yīng)最高,鉀和磷次之[5]。養(yǎng)分虧缺,對(duì)苗木生長(zhǎng)不利,缺鉀使得油橄欖Olea europaea[6]根長(zhǎng)、根表面積、根體積和根尖數(shù)生長(zhǎng)受限,使得苗高、地徑和地上干物質(zhì)累積下降,滲透調(diào)節(jié)物質(zhì)降低。還有研究發(fā)現(xiàn),施肥可促進(jìn)瀕危樹木幼苗的生長(zhǎng)和生物量積累,對(duì)植物生長(zhǎng)的影響可持續(xù)數(shù)年[7-8]。對(duì)枸杞Lycium barbarum[9]的研究表明,施肥能顯著提高葉片葉綠素含量;對(duì)黃梔子Gardenia gasminoides[10]的研究認(rèn)為,合理施肥可提高可溶性糖、可溶性蛋白含量,增強(qiáng)植物抗性生理。近年來(lái),關(guān)于福建青岡的研究主要集中于植物組織培養(yǎng)[11]、種子生理[12]、群落物種多樣性[13]群落特征[14]等方面,而關(guān)于福建青岡施肥效益影響研究仍存在空缺。本研究基于三因子五水平二次通用旋轉(zhuǎn)回歸組合設(shè)計(jì),對(duì)湖南種源1年生福建青岡幼苗進(jìn)行施肥試驗(yàn),探究不同NPK施肥對(duì)福建青岡苗高、地徑及各項(xiàng)根系生長(zhǎng)指標(biāo)的影響,了解葉片可溶性糖、可溶性蛋白、總?cè)~綠素等生理指標(biāo)在施肥條件下的響應(yīng)情況,通過(guò)分析其影響因素和機(jī)制,確定適宜的NPK施肥區(qū)間,為福建青岡壯苗培育工作和科學(xué)制定施肥方案提供參考和依據(jù)。
1 材料與方法
1.1 材 料
試驗(yàn)于中南林業(yè)科技大學(xué)西園(112°58′59″E,28°08′09″N)溫室大棚內(nèi)進(jìn)行,選用瀏陽(yáng)市林木種苗服務(wù)中心牛嶺苗圃基地培育的湖南資興種源一年生福建青岡苗,于2022年3月挑選長(zhǎng)勢(shì)健康、大小一致(苗高=29.31±3.34 cm,地徑=3.34±0.54 mm)的幼苗,以5∶1∶1的黃土、泥炭和珍珠巖為培養(yǎng)基質(zhì),移栽至上、下口徑及高為20 cm×30 cm×25 cm的育苗塑料盆,置于大棚內(nèi)緩苗,底置托盤以防止水肥流失;測(cè)得混合基質(zhì)的初始理化性質(zhì):pH值(5.57)、全N(8.17 mg·g-1)、全P(0.80 mg·g-1)、全K(5.17 mg·g-1)。供試肥料為尿素(含N素為46.40%)、過(guò)磷酸鈣(含P2O512.00%)和氯化鉀(含K2O 60.00%)。
1.2 方 法
1.2.1 試驗(yàn)設(shè)計(jì)
試驗(yàn)采用三因子五水平二次通用旋轉(zhuǎn)回歸組合設(shè)計(jì)。通過(guò)預(yù)試驗(yàn)確定施肥區(qū)間(表1),共設(shè)置21組處理,以不施肥處理為對(duì)照(CK),每組 10株3次重復(fù),共630株幼苗。于2022年5月初開始施肥試驗(yàn),因P肥具有一定緩釋性,分2次(5、7月)埋施,同時(shí)結(jié)合苗木生長(zhǎng)狀況,于5—8月采用水溶淋施的方式按各處理施肥總量的25%施入N和K肥。
1.2.2 測(cè)定指標(biāo)與方法
1)苗木生長(zhǎng)指標(biāo)測(cè)定
2022年10下旬,分別在每個(gè)施肥處理組東、西、南、北各個(gè)方向選取福建青岡15株采用卷尺(精度0.10 cm)測(cè)定苗高、數(shù)顯游標(biāo)卡尺(精度0.01 mm)測(cè)定地徑;每組隨機(jī)選取3株植株取樣,用蒸餾水洗凈、晾干后分根、莖、葉稱鮮質(zhì)量;使用根系掃描儀(Epson expressionl 1000 XL)掃描根系并運(yùn)用根系分析儀(Win-Rhizo)分析總根長(zhǎng)、根平均直徑、根尖數(shù);將植物根、莖、葉用信封置于105 ℃烘箱中殺青20 min,然后在75 ℃下烘干至恒質(zhì)量,用電子天平稱干質(zhì)量(精度為0.01 g)。
2)葉片生理特性指標(biāo)測(cè)定
2022年10月下旬,分別在每個(gè)施肥處理組東、西、南、北各個(gè)方向選取中上部成熟且無(wú)病蟲害的完整葉片置于采樣箱中帶回于4 ℃冰箱中存儲(chǔ),測(cè)定時(shí)去掉葉脈制成混合樣品。采用丙酮-乙醇法測(cè)定總?cè)~綠素含量[15];采用蒽酮比色法測(cè)定可溶性糖含量[16],采用考馬斯亮藍(lán)G-250法測(cè)定可溶性蛋白含量[17],每處理3個(gè)重復(fù)。
1.3 數(shù)據(jù)處理
采用Excel 2016軟件整理數(shù)據(jù)繪制表格;利用DPS 7.05軟件進(jìn)行建模分析;SPSS 20.0軟件進(jìn)行主成分分析;利用Origin 2022軟件作圖。
2 結(jié)果與分析
2.1 施肥對(duì)福建青岡苗高、地徑的影響
由表2可知,在正常供水條件下,不同施肥處理間苗高、地徑均存在顯著差異(P<0.05),各施肥處理苗高(45.03~69.12 cm)、地徑(6.23~8.86 mm)均大于CK(43.33 cm、6.14 mm),施肥對(duì)福建青岡苗高、地徑生長(zhǎng)具有一定的促進(jìn)作用。根據(jù)試驗(yàn)結(jié)果(表2)建立苗高、地徑與3種肥料因子的回歸方程,結(jié)果如表3所示。苗高、地徑兩組回歸方程F檢驗(yàn)的P<0.01(0.001 1~0.002 6),失擬項(xiàng)(P>0.05)不顯著,方程擬合較好。對(duì)方程進(jìn)行分析,當(dāng)N、P、K施用量分別在-0.44、0.14、-0.52;-0.58、-0.10、-0.29水平,即純N、P、K用量為1.48 g·株-1、0.81 g·株-1、1.21 g·株-1;1.31 g·株-1、0.71 g·株-1、1.45 g·株-1時(shí),苗高、地徑擁有最大值65.58 cm、8.53 mm,大于單因素缺素組(T9、T11、T13)與過(guò)施組(T10、T12、T14),與CK相比提高了51.35%及38.93%。由回歸方程的特點(diǎn),回歸系數(shù)絕對(duì)值大小可比較各因素一次項(xiàng)對(duì)各生長(zhǎng)指標(biāo)的影響大小[18],3種肥料因子對(duì)苗高、地徑的影響主次表現(xiàn)為N>K>P,說(shuō)明福建青岡苗木對(duì)N肥的施用量比較敏感。利用降維分析法發(fā)現(xiàn),單因素N(0.004 5)、K(0.015 8)及NK(0.043 8)兩因子互作對(duì)福建青岡苗高生長(zhǎng)影響顯著;單因素N(0.002 0)、K(0.033 3)及NP(0.042 2)兩因子互作對(duì)地徑生長(zhǎng)影響顯著。如圖1A、C,單因素N、K在-1.682~1.682之間苗高、地徑生長(zhǎng)呈先上升后下降的趨勢(shì)。從N與K的互作效應(yīng)(圖1B)可知,苗高生長(zhǎng)隨著N、K用量增加呈先上升后下降的趨勢(shì),而N、P互作(圖1D)對(duì)地徑的影響趨勢(shì)與之相似,說(shuō)明適量施用N、K肥及合理進(jìn)行NPK配施對(duì)促進(jìn)苗高、地徑生長(zhǎng)的效果明顯。
2.2 施肥對(duì)福建青岡根系指標(biāo)生長(zhǎng)的影響
由表2可知,通用旋轉(zhuǎn)回歸施肥處理下福建青岡各施肥處理組間總根長(zhǎng)、根平均直徑、根尖數(shù)存在顯著差異(P<0.05),其中T1、T3、T10、T12、T13(456~500.40 cm)的總根長(zhǎng)小于CK(514.98 cm);各施肥處理組根平均直徑(0.66~1.39 mm)均大于CK(0.63 mm);根尖數(shù)(1 955.67~3 514.67)除T1、T3、T4、T10、T12、T13外均大于CK(2 493)??梢姡┓士梢源龠M(jìn)植物根系生長(zhǎng),但過(guò)量施肥不利于根系對(duì)肥料的吸收。建立總根長(zhǎng)、根平均直徑、根尖數(shù)與3種肥料因子的回歸方程,結(jié)果見表3。經(jīng)檢驗(yàn)方程(3)~(5)F檢驗(yàn)的P<0.01(0.001 1~0.003 0),失擬項(xiàng)(P>0.05)不顯著,方程擬合較好。對(duì)方程進(jìn)行分析,當(dāng)N、P、K分別在-0.96、-0.73、0.34;-0.18、-0.16、-0.02;-1.03、-0.63、0.40水平,即純N、P、K用量分別在0.86 g·株-1、0.42 g·株-1、2.10 g·株-1;1.79 g·株-1、0.68 g·株-1、1.73 g·株-1;0.78 g·株-1、0.47 g·株-1、2.17 g·株-1時(shí),總根長(zhǎng)(908.59 cm)、根平均直徑(1.29 cm)、根尖數(shù)(3 433.32)達(dá)到最大,與CK相比分別提高了76.43%、104.76%及37.72%。主效應(yīng)分析結(jié)果表明,N、P、K對(duì)根系3種指標(biāo)的影響均為N>P>K。對(duì)方程降維分析發(fā)現(xiàn),單因素N(0.000 8)、P(0.011 8)及NP(0.027 4)兩因子互作對(duì)總根長(zhǎng)影響顯著;單因素N(0.041 4)對(duì)根平均直徑影響顯著,3種肥料因子的交互作用對(duì)根平均直徑的影響不顯著;單因素N(0.000 3)、P(0.018 7)及NK兩因子互作(0.038 7)對(duì)根尖數(shù)影響顯著。如圖2A、C、E可知,隨著顯著因子施用量的增加,總根長(zhǎng)、根平均直徑、根尖數(shù)均表現(xiàn)出先上升后下降的趨勢(shì);如圖2B、D所示,NP對(duì)總根長(zhǎng)及NK對(duì)根尖數(shù)的互作效應(yīng)均呈開口向下的馬鞍形,隨著施肥量增加,總根長(zhǎng)及根尖數(shù)呈先上升后下降的趨勢(shì)。
2.3 施肥對(duì)福建青岡總生物量的影響
由表4可知,在二次通用旋轉(zhuǎn)回歸組合施肥處理下,福建青岡各施肥處理總生物量(20.07~36.10 g)均大于CK(17.93 g)且各處理間存在差異顯著(P<0.05),不同施肥量對(duì)福建青岡總生物量的促進(jìn)效果不同,施肥總體上促進(jìn)了福建青岡總生物量的積累。建立總生物量與3種肥料因子的回歸方程,結(jié)果如表3所示。方程(6)F檢驗(yàn)的P<0.01(0.003 1),失擬項(xiàng)(P>0.05)不顯著,方程擬合較好。對(duì)方程進(jìn)行分析,當(dāng)N、P、K施用量分別在-0.42、0.04、-0.50水平,即純N、P、K施用量分別為1.50 g·株-1、0.77 g·株-1、1.23 g·株-1時(shí),總生物量達(dá)到最大(34.63 g),與CK相比提高了93.14%。由回歸方程可知,3種肥料因子對(duì)總生物量的影響主次為N>K>P。分析結(jié)果表明,單因素N(0.006 5)、K(0.013 4)對(duì)總生物量的影響顯著,單因素P及NPK的交互作用對(duì)總生物量的影響不顯著。如圖2F所示,隨著N、K施用量增加,總生物量呈先上升后下降的趨勢(shì),可知,合理施用N、K對(duì)福建青岡總生物量積累具有明顯的促進(jìn)作用,而P肥及3種肥料因子配施對(duì)總生物量積累促進(jìn)不明顯。
2.4 施肥對(duì)福建青岡葉片生理的影響
由表4可知,通用旋轉(zhuǎn)回歸施肥處理下福建青岡葉片可溶性蛋白含量在7.96~11.92 mg·g-1,大于CK(5.10 mg·g-1);可溶性糖含量(18.23~32.5 mg·g-1)除T1、T5、T11、T14外均大于CK(21.88 mg·g-1);總?cè)~綠素含量(2.44~4.39 mg·g-1)均大于CK(2.36 mg·g-1),各施肥處理組間存在顯著差異(P<0.05)。建立可溶性蛋白、可溶性糖、總?cè)~綠素與3種肥料因子的回歸方程,結(jié)果如表5所示。
經(jīng)檢驗(yàn),方程(7)~(9)F檢驗(yàn)的P<0.01(0.000 3~0.001 6),失擬項(xiàng)(P>0.05)不顯著,通過(guò)對(duì)方程進(jìn)行分析,當(dāng)N、P、K分別在-0.44、0.22、-0.44;-0.33、0.18、-0.51;-0.38、0.44、-0.47水平,即純N、P、K分別在1.48 g·株-1、0.85 g·株-1、1.29 g·株-1;1.61 g·株-1、0.83 g·株-1、1.22 g·株-1;1.55 g·株-1、0.95 g·株-1、1.26 g·株-1時(shí),可溶性蛋白(10.78 mg·g-1)、可溶性糖(31.53 mg·g-1)、總?cè)~綠素(4.33 mg·g-1)含量達(dá)到最大,與CK相比分別提高了111.37%、44.10%、83.47%。主效應(yīng)分析結(jié)果表明,N、P、K對(duì)可溶性蛋白和總?cè)~綠素的影響為N>K>P,而對(duì)可溶性糖的影響為K>N>P。
對(duì)方程降維分析發(fā)現(xiàn),單因素N(0.003 0)、K(0.011 4)及NK互作(0.040 1)對(duì)可溶性蛋白含量影響顯著;單因素N(0.031 2)、K(0.001 9)及PK(0.024 6)互作對(duì)可溶性糖含量影響顯著;單因素N(0.009 1)、K(0.032 2)及PK(0.033 8)互作對(duì)總?cè)~綠素含量影響顯著。如圖3A、C、E,隨著N、K施肥量增加,3種生理特性指標(biāo)含量呈先上升后下降的趨勢(shì)。如圖3B所示,NK對(duì)可溶性蛋白的影響為正效應(yīng),隨著N、K用量增加表現(xiàn)出先升后降的變化趨勢(shì);PK互作對(duì)可溶性糖和總?cè)~綠素的影響為負(fù)效應(yīng),由圖3D、F可知,當(dāng) P施用量較低時(shí)施用適量K有利于促進(jìn)可溶性糖及總?cè)~綠素含量的積累,但當(dāng)P達(dá)到一定量后繼續(xù)施加K肥則產(chǎn)生抑制作用。
2.5 模型尋優(yōu)
主成分分析法可以較為全面地反映出福建青岡幼苗生長(zhǎng)、生理指標(biāo)在不同施肥條件下的響應(yīng)情況。利用SPSS 20.0軟件對(duì)上述9個(gè)因子數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理后進(jìn)行主成分分析。由表6可知,數(shù)據(jù)服從主成分分析。按照特征值大于1的原則,共提取1個(gè)公因子,累計(jì)方差貢獻(xiàn)率為79.54%,可較為完整地反映上述9個(gè)指標(biāo)之間的關(guān)系。主成分中貢獻(xiàn)最大的為總生物量。結(jié)合主成分分析結(jié)果,通過(guò)統(tǒng)計(jì)頻數(shù)法分析結(jié)果(表7)。對(duì)95%的置信區(qū)間分布進(jìn)行計(jì)算,可優(yōu)化出穩(wěn)定的施肥范圍。當(dāng)施用肥料區(qū)間為:N肥-0.855~-0.236、 P肥-0.292~0.292、K肥-0.782~-0.098,即施用N肥(尿素)2.12~3.71 g·株-1、P肥(過(guò)磷酸鈣)5.16~7.34 g·株-1、K肥(氯化鉀)1.56~2.75 g·株-1時(shí)福建青岡總生物量大于27.66 g。
3 結(jié)論與討論
3.1 討 論
苗高、地徑是衡量植物生長(zhǎng)狀況的重要指標(biāo),對(duì)評(píng)價(jià)植物生長(zhǎng)情況具有重要意義[19]。本研究發(fā)現(xiàn)施肥對(duì)福建青岡苗高、地徑生長(zhǎng)有明顯的促進(jìn)作用,當(dāng)?shù)⒘?、鉀處于較低水平時(shí)苗高、地徑生長(zhǎng)較慢,隨著施肥量增加,苗高、地徑生長(zhǎng)呈先上升后下降的趨勢(shì),在美國(guó)木豆樹Catalpa bignonioides、平榛Corylus heterophylla的研究中也得出了類似的結(jié)論[20-21]。說(shuō)明過(guò)高的肥料供應(yīng)會(huì)抑制苗高、地徑的生長(zhǎng),肥料供應(yīng)不足則不能提供苗木生長(zhǎng)需求的基礎(chǔ)養(yǎng)分。綜合分析N、P、K對(duì)苗高、地徑的影響均發(fā)現(xiàn)N的影響最大,其次是K,而P的影響最小?;プ餍?yīng)中NK對(duì)苗高影響較大,而地徑則對(duì)NP效應(yīng)更加敏感,這與長(zhǎng)柄水青岡Fagus longipetiolata[22]、紫金牛Ardisia japonica[23]的研究報(bào)道有所不同。原因可能是,不同植物苗高、地徑生長(zhǎng)對(duì)N、P、K肥的需求不同,要根據(jù)植物生長(zhǎng)情況,合理地施用N、P、K肥,同時(shí)做好NPK肥的協(xié)同配施。
植物根系通過(guò)吸收土壤水肥來(lái)供給植株生長(zhǎng)所需的營(yíng)養(yǎng)物質(zhì),其供給能力受根系生長(zhǎng)狀況制約[24]??偢L(zhǎng)、根平均直徑和根尖數(shù)是評(píng)價(jià)根系生長(zhǎng)狀況的關(guān)鍵因素。對(duì)貴州金花茶Camellia huana的施肥研究發(fā)現(xiàn),當(dāng)P、K供給充足時(shí),施入過(guò)量的N肥會(huì)抑制幼苗根系生長(zhǎng)[25]。崔子佳[26]在櫸樹Zelkova schneideriana的研究中發(fā)現(xiàn)低氮處理有利于根系指標(biāo)生長(zhǎng)。本研究發(fā)現(xiàn),部分施肥處理組的總根長(zhǎng)、根尖數(shù)小于CK。究其原因,過(guò)量施用肥料會(huì)對(duì)根系生長(zhǎng)造成毒害,合理的NPK配施能夠在一定程度上促進(jìn)根系生長(zhǎng),該結(jié)果與付曉鳳等[27]和王妍等[28]的研究相似,一定程度驗(yàn)證了前人的研究結(jié)果。通過(guò)構(gòu)建施肥效應(yīng)數(shù)學(xué)模型并綜合考慮主效應(yīng)、單因子、雙因子效應(yīng)分析結(jié)果發(fā)現(xiàn),N對(duì)根系3種指標(biāo)的影響最大,其次是P、K,說(shuō)明N、P對(duì)福建青岡幼苗根長(zhǎng)、根直徑和根尖數(shù)生長(zhǎng)起主要作用,在福建青岡幼苗培育過(guò)程中應(yīng)該保證N、P供應(yīng),輔以適量的K肥配施。
植物生物量可以反映其利用自然潛力的能力,在一定程度上和植物的生產(chǎn)力有著密切聯(lián)系,生物量大小可以反映該種植物生產(chǎn)力的高低[29]。本研究通過(guò)探究不同NPK施肥配方對(duì)福建青岡幼苗總生物量的影響發(fā)現(xiàn),不同施肥處理對(duì)總生物量的影響不同,施肥顯著提高了福建青岡生物量,這與云曼紅豆杉Taxus madia× Taxus yunnanensis ‘Yunman’的施肥研究相似[30]。通過(guò)建立回歸方程發(fā)現(xiàn)單因素N、K對(duì)總生物量的影響呈先上升后下降的“拋物線”趨勢(shì)。由此可知,N、K對(duì)總生物量的影響大于P,且N、K在-1.682水平到其擁有最大值(N=-0.42、K=-0.50)水平之間增施N、K肥利于總生物量的積累,超過(guò)該區(qū)間后隨著施肥量增加,總生物量的積累開始下降。
植物細(xì)胞滲透調(diào)節(jié)的生理機(jī)能一方面可維持細(xì)胞膨壓,有利于其他生理生化過(guò)程進(jìn)行。另一方面可在水分脅迫下維持氣孔開放及光合作用的正常進(jìn)行[31]。施肥水平直接影響植物的氮素利用及干物質(zhì)積累,間接對(duì)可溶性蛋白和可溶性糖含量產(chǎn)生影響[32]。本研究發(fā)現(xiàn),與CK相比,施肥條件下福建青岡葉片可溶性蛋白均得到了提高,這同楊晴等[33]對(duì)小麥Triticum aestivum的研究相似,施肥可以增加可溶性蛋白含量,提高細(xì)胞保水性能,對(duì)細(xì)胞膜的保護(hù)作用增強(qiáng)。而存在部分過(guò)量施肥處理可溶性糖含量小于CK的情況,可能是過(guò)量施肥會(huì)影響葉片的滲透調(diào)節(jié)機(jī)制,進(jìn)而影響可溶性糖的合成。施肥條件下植物會(huì)通過(guò)增加可溶性糖含量來(lái)幫助自己維持水分平衡,提高細(xì)胞滲透,但施肥過(guò)量反而會(huì)打破植物體內(nèi)水分平衡,使得其合成可溶性糖的能力降低。黃蘭清等[34]對(duì)紫薇Lagerstroemia indica的研究也證明了這一點(diǎn)。
葉綠素是植物進(jìn)行光合作用的主要色素,受植物體和葉片生長(zhǎng)發(fā)育狀況影響。葉綠素含量增加可提高葉片對(duì)光能的利用[35],施肥可以調(diào)節(jié)植物的光合能力,但不同肥料種類及用量對(duì)植物光合生理特性的影響不同。對(duì)云南松Pinus yunnanensis的施肥研究認(rèn)為中氮低磷能有效促進(jìn)葉綠素合成[36]。在本研究中,施肥提高了福建青岡葉片總?cè)~綠素含量,且不同施肥處理間總?cè)~綠素含量差異顯著,施肥對(duì)葉綠素合成有促進(jìn)作用。單因素N、K對(duì)總?cè)~綠素含量影響顯著,為總?cè)~綠素的合成提供了物質(zhì)基礎(chǔ)。PK兩因子互作對(duì)總?cè)~綠素含量影響顯著,可見在合理的N環(huán)境下輔以適量PK配施對(duì)葉綠素合成有重要影響。
本研究基于三因子五水平二次通用旋轉(zhuǎn)回歸組合設(shè)計(jì),初步確定了福建青岡幼苗適宜的N、P、K施肥區(qū)間范圍,揭示了不同氮磷鉀施肥對(duì)福建青岡幼苗生長(zhǎng)及生理特性指標(biāo)的影響效應(yīng),但因?yàn)榈赜颉夂驐l件及苗木初始生長(zhǎng)狀況等因素的不同,所得到的最佳施肥處理及配方研究結(jié)果并不能簡(jiǎn)單、機(jī)械地應(yīng)用于福建青岡或其他樹種的生產(chǎn)實(shí)踐,若要精準(zhǔn)把握福建青岡幼苗的需肥機(jī)制,需合理開展多種源試驗(yàn),并輔以大田試驗(yàn)檢驗(yàn)或驗(yàn)證使理論與實(shí)踐相結(jié)合,以期為福建青岡優(yōu)質(zhì)壯苗培育提供參考和依據(jù)。
3.2 結(jié) 論
通過(guò)對(duì)一年生福建青岡幼苗進(jìn)行施肥研究發(fā)現(xiàn),各施肥處理組間存在顯著差異。以各項(xiàng)生長(zhǎng)(苗高、地徑、總根長(zhǎng)、根平均直徑、根尖數(shù)、總生物量)、生理(可溶性糖、可溶性蛋白、總?cè)~綠素)指標(biāo)通過(guò)模型模擬分析所得最大值與不施肥對(duì)照組(CK)相比,分別提高了51.35%、38.93%、76.43%、104.76%、37.72%、93.14%、111.37%、44.10%、83.47%。可見,施肥促進(jìn)了福建青岡幼苗生長(zhǎng),使得福建青岡的生長(zhǎng)、生理抗性增強(qiáng)。3種肥料因子對(duì)福建青岡生長(zhǎng)和生理指標(biāo)均有不同程度的顯著單因子或雙因子互作效應(yīng)并隨著施肥量的增加呈先上升后下降的變化規(guī)律,揭示了不同氮磷鉀配方施肥下福建青岡的響應(yīng)機(jī)制,施入肥料過(guò)量或不足均會(huì)對(duì)苗木的生長(zhǎng)、生理指標(biāo)產(chǎn)生毒害和抑制。綜合分析結(jié)果表明,福建青岡優(yōu)質(zhì)壯苗的培育需要輔以合理的NPK配施。利用主成分分析及頻數(shù)分析法,以總生物量≥27.66 g為目標(biāo),確定福建青岡最優(yōu)施肥區(qū)間為:N肥(尿素)2.12~3.71 g·株-1、P肥(過(guò)磷酸鈣)5.16~7.34 g·株-1、K肥(氯化鉀)1.56~2.75 g·株-1。
參考文獻(xiàn):
[1] 李建民,潘標(biāo)志,陳存及,等.福建珍貴闊葉用材樹種的篩選研究[J].林業(yè)科學(xué),2003,39(增刊1):93-99. LI J M, PAN B Z, CHEN C J, et al. The selection of excellent broad-leaved timber species in Fujian province[J]. Scientia Silvae Sinicae,2003,39(Suppl.1):93-99.
[2] 李志輝,李柏海,祁承經(jīng),等.我國(guó)南方珍貴用材樹種資源的重要性及其發(fā)展策略[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2012,32(11): 1-8. LI Z H, LI B H, QI C J, et al. Studies on importance of valuable wood species resources and its development strategy[J]. Journal of Central South University of Forestry Technology, 2012,32(11):1-8.
[3] 劉標(biāo),江希鈿,胡宗慶,等.3種青岡的空間分布格局研究[J].福建林學(xué)院學(xué)報(bào),2013,33(3):225-229. LIU B, JIANG X D, HU Z Q, et al. Study on the spatial pattern of three Cyclobalanopsis’ broad-leaved forest in subtropical zone[J]. Journal of Fujian College of Forestry,2013,33(3): 225-229.
[4] 劉耀璽,胡志卿,李晗,等.施肥對(duì)核桃林間種牡丹生長(zhǎng)和丹皮質(zhì)量的影響[J].經(jīng)濟(jì)林研究,2023,41(3):82-90. LIU Y X, HU Z Q, LI H, et al. Effects of fertilization on growth and Cortex moutan quality of Paeonia suffruticosa in walnut forest[J]. Non-wood Forest Research,2023,41(3):82-90.
[5] YANG Z J, WU X H, GROSSNICKLE S C, et al. Formula fertilization promotes Phoebe bournei robust seedling cultivation[J]. Forests,2020,11(7):781.
[6] 王天,宋佳承,閆士朋,等.鉀肥施用量對(duì)油橄欖根系發(fā)育及根際土壤微環(huán)境的影響[J].經(jīng)濟(jì)林研究,2020,38(3):153-163. WANG T, SONG J C, YAN S P, et al. Effect of different potassium fertilizer application mass on olive root development and rhizospheric soil microenvironment[J]. Non-wood Forest Research,2020,38(3):153-163.
[7] CHU X L, WANG X H, ZHANG D B, et al. Effects of fertilization and container-type on nutrient uptake and utilization by four subtropical tree seedlings[J]. Journal of Forestry Research, 2020,31(4):1201-1213.
[8] SONG S Y, CHENG S Q, ZHEN J, et al. Selection and optimum fertilization of Betula platyphylla hybrid clones for growth[J]. Trees,2021,35(2):469-478.
[9] 林治國(guó).施肥對(duì)黑果枸杞苗木生長(zhǎng)影響的技術(shù)研究[J].林業(yè)勘查設(shè)計(jì),2020,49(3):37-39. LIN Z G. Study on the effect of fertilization on the growth of Lycium ruthenicum Murr. seedlings[J]. Forest Investigation Design,2020,49(3):37-39.
[10] 尹夢(mèng)雅,楊艷,湯玉喜,等.配方施肥對(duì)黃梔子幼苗生長(zhǎng)和生理特性的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2022,42(5): 83-90,100. YIN M Y, YANG Y, TANG Y X, et al. Effects of formula fertilization on the growth and physiological characteristics of Gardenia jasminoides seedlings[J]. Journal of Central South University of Forestry Technology,2022,42(5):83-90,100.
[11] 賴士淦,巫智斌,陳劍勇,等.福建青岡組織培養(yǎng)過(guò)程中的外植體褐變機(jī)理與調(diào)控技術(shù)[J].林業(yè)科技通訊,2023(8):75-78. LAl S J, WU Z B, CHEN J Y, et al. Mechanism and regulation of explants browning in tissue culture of Cyclobalanopsis chungii[J]. Forest Science and Technology,2023(8):75-78.
[12] 黃雍容,莊凱,吳鵬飛,等.福建青岡種子萌發(fā)與生長(zhǎng)特性[J].生態(tài)學(xué)雜志,2017,36(5):1251-1258. HUANG Y R, ZHUANG K, WU P F, et al. Seed germination and growth characteristics of Qinggang[J]. Chinese Journal of Ecology,2017,36(5):1251-1258.
[13] 魏宏通.福建青岡群落物種多樣性和喬木層空間分布特征研究[J].福建林業(yè),2019(5):32-35. WEI H T. Species diversity and spatial distribution characteristics of arbor layer in Cyclobalanopsis chungii community[J]. Fujian Forestry,2019(5):32-35.
[14] 黃雍容,馬祥慶,葉功富,等.福建省云中山福建青岡天然林群落特征分析[J].福建林學(xué)院學(xué)報(bào),2011,31(4):304-308. HUANG Y R, MA X Q, YE G F, et al. Community characteristics of natural forest of Cyclobalanopsis chungii on Yunzhong mountain[J]. Journal of Forest and Environment,2011,31(4): 304-308.
[15] 劉萍,李明軍.植物生理學(xué)實(shí)驗(yàn)[M].2版.北京.科學(xué)出版社, 2016. LIU P, LI M J. Plant physiology experiments[M]. 2nd ed. Beijing: Science Press,2016.
[16] 王學(xué)奎.植物生理生化實(shí)驗(yàn)原理和技術(shù)[M].北京:高等教育出版社,2006. WANG X K. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press,2006.
[17] 李合生.植物生理生化實(shí)驗(yàn)原理和技術(shù)[M].北京:高等教育出版社,2000. LI H S. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press,2000.
[18] 于金鑫,張宏,潘泰臣,等.基于回歸旋轉(zhuǎn)分析的秦嶺北坡華山松容器育苗基質(zhì)配比和施肥技術(shù)[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2021,41(1):109-116. YU J X, ZHANG H, PAN T C, et al. Study on the container seedling substrate ratio and fertilization of Pinus armandii on the north slope of the Qinling mountains based on regression rotation analysis[J]. Journal of Central South University of Forestry Technology,2021,41(1):109-116.
[19] 陳金玲,謝健,孫燕,等.基質(zhì)配比對(duì)培忠杉容器苗生長(zhǎng)的影響[J/OL].分子植物育種,https://kns.cnki.net/kcms/detail/46.1068. S.20230505.1318.010.html. CHEN J L, XIE J, SUN Y, et al. Effects of substrate compositions on growth of container seedlings of ×Taxodiomera peizhongii[J/OL].Molecular Plant Breeding,https://kns.cnki.net/ kcms/detail/46.1068.S.20230505.1318.010.html.
[20] 逄宏揚(yáng),李雪,夏善智,等.不同施肥對(duì)平榛幼苗生長(zhǎng)的影響[J].中國(guó)林副特產(chǎn),2023(1):15-17,20. PANG H Y, LI X, XIA S Z, et al. Effect of different fertilization on the growth of Corylus heterophylla seedlings[J]. Forest ByProduct and Speciality in China,2023(1):15-17,20.
[21] 李志,周慧娜,王言歌,等.不同施肥措施對(duì)美國(guó)木豆樹苗木生長(zhǎng)特性的影響[J].林業(yè)資源管理,2023(1):94-103. LI Z, ZHOU H N, WANG Y G, et al. Effects of different fertilization measures on the growth characteristics of Catalpa bignonioides[J]. Forest Resources Management,2023(1):94-103.
[22] 李洪忠,王德爐.配方施肥對(duì)長(zhǎng)柄水青岡容器苗生長(zhǎng)及葉片元素質(zhì)量分?jǐn)?shù)的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2023,51(3): 13-17. LI H Z, WANG D L. Effect of formula fertilization on seedling growth and blade element content of Fagus longipetiolata[J]. Journal of Northeast Forestry University,2023,51(3):13-17.
[23] 何金金,鄧甜甜,劉倩鈺,等.不同施肥處理對(duì)紫金牛Ardisia japonica生長(zhǎng)和生理特性的影響[J].生態(tài)科學(xué),2023,42(4): 92-97. HE J J, DENG T T, LIU Q Y, et al. Effects of different fertilization treatments on growth and physiological characteristics of Ardisia iaponica[J]. Ecological Science,2023,42(4):92-97.
[24] MEIER I C, TIMO T, HEITKTTER J, et al. Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity[J]. New Phytologist, 2020,226(2):583-594.
[25] 龍海燕,鄧倫秀,徐超然,等.氮磷鉀配方施肥對(duì)貴州金花茶生長(zhǎng)及根系形態(tài)的影響[J].貴州農(nóng)業(yè)科學(xué),2022,50(8):25-33.LONG H Y, DENG L X, XU C R, et al. Effects of NPK formula fertilization on growth and root morphology of Camellia huana[J]. Guizhou Agricultural Sciences,2022,50(8):25-33.
[26] 崔子佳.氮素指數(shù)施肥對(duì)櫸樹容器幼苗根系生長(zhǎng)的影響[J].林業(yè)勘查設(shè)計(jì),2023,52(2):81-85. CUI Z J. Effect of nitrogen index fertilization on root growth of beech container seedlings[J]. Forest Investigation Design, 2023,52(2):81-85.
[27] 付曉鳳,朱原,黃杰,等.氮磷鉀配比施肥對(duì)扁桃幼苗生長(zhǎng)及葉片養(yǎng)分含量的影響[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,37(5): 629-635. FU X F, ZHU Y, HUANG J, et al. Effects of N, P and K fertilization treatments on the growth and nutrient contents in leaves of Manaifera persiciformis C. seedlings[J]. Journal of Sichuan Agricultural University,2019,37(5):629-635.
[28] 王妍,馮金玲,吳小慧,等.施肥對(duì)閩楠根系形態(tài)及苗木質(zhì)量的調(diào)控作用[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022,50(10):44-56. WANG Y, FENG J L, WU X H, et al. Effects of fertilization on root morphology and seedling quality of Phoebe bournei[J]. Journal of Northwest A F University (Natural Science Edition), 2022,50(10):44-56.
[29] 王東,龔偉,胡庭興,等.施肥對(duì)巨桉幼樹生長(zhǎng)及生物固碳量的影響[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2011,28(2):207-213. WANG D, GONG W, HU T X, et al. Growth and biomass carbon sequestration of young Eucalyptus grandis with fertilization[J]. Journal of Zhejiang A F University,2011,28(2):207-213.
[30] 孫志鵬,王剛,武華衛(wèi),等.指數(shù)施肥對(duì)云曼紅豆杉幼苗活性成分10-DAB及養(yǎng)分累積的影響[J].西北植物學(xué)報(bào),2022, 42(9):1561-1569. SUN Z P, WANG G, WU H W, et al. Effect of exponential fertilization on active component 10-DAB and nutrient accumulation of Taxus madia×Taxus yunnanensis ‘Yunman’seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(9): 1561-1569.
[31] 王建林,關(guān)法春.高級(jí)作物生理學(xué)[M].北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2013. WANG J L, GUAN F C. Advanced crop physiology[M]. Beijing: China Agricultural University Press,2013.
[32] 孫常青,楊艷君,郭志利,等.施肥和密度對(duì)雜交谷可溶性糖、可溶性蛋白及硝酸還原酶的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(5):1169-1177. SUN C Q, YANG Y J, GUO Z L, et al. Effects of fertilization and density on soluble sugar and protein and nitrate reductase of hybrid foxtail millet[J]. Journal of Plant Nutrition and Fertilizers, 2015,21(5):1169-1177.
[33] 楊晴,劉奇勇,白巖,等.冬小麥不同葉層葉綠素和可溶性蛋白對(duì)氮磷肥的響應(yīng)[J].麥類作物學(xué)報(bào),2009,29(1):128-133. YANG Q, LIU Q Y, BAI Y, et al. Responses of cholorophyll and soluble protein in different leaf layers of winter wheat to N and P nutrients[J]. Journal of Triticeae Crops,2009,29(1):128-133.
[34] 黃蘭清,吳麗君,王曉明,等.配方施肥對(duì)‘紫精靈’紫薇容器苗生長(zhǎng)、開花及生理的影響[J].植物生理學(xué)報(bào),2022,58(9): 1735-1746. HUANG L Q, WU L J, WANG X M, et al. Effects of formula fertilization on growth, flowering and physiology of container seedlings of Lagerstroemia indica ‘Zi Jing Ling’[J]. Plant Physiology Journal,2022,58(9):1735-1746.
[35] 王秀英,房磊,戴亮.不同肥料配施對(duì)玉竹光合特性及品質(zhì)的影響[J].北方園藝,2019(18):128-133. WANG X Y, FANG L, DAI L. Effects of different fertilizer ratios on photosynthetic characteristics and quality of Polygonatum odoratum[J]. Northern Horticulture,2019(18):128-133.
[36] 黃鍵,王德新,楊松,等.氮磷葉面噴施對(duì)云南松苗木葉綠素含量及其異速生長(zhǎng)關(guān)系的影響[J].西南林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2023,43(3):33-41. HUANG J, WANG D X, YANG S, et al. Effect on chlorophyll content and allometric growth relationship of Pinus yunnanensis seedlings by foliar spraying of nitrogen and phosphorus[J]. Journal of Southwest Forestry University (Natural Sciences),2023,43(3): 33-41.
[本文編校:吳 彬]