摘""要:探究荔枝園間作柱花草對(duì)土壤理化性質(zhì)和土壤細(xì)菌群落結(jié)構(gòu)的影響,為荔枝園間作柱花草提供理論依據(jù)。以荔枝園間作柱花草和荔枝單作2種模式的土壤樣品進(jìn)行土壤理化性質(zhì)的測(cè)定,并進(jìn)行細(xì)菌擴(kuò)增子16S測(cè)序分析。結(jié)果顯示:在荔枝園間作柱花草后,0~20"cm土層中,硝態(tài)氮含量顯著提高47.52%,有效磷含量極顯著提高141.53%,速效鉀含量極顯著降低125.59%;20~40"cm的土層深度,硝態(tài)氮含量極顯著提高76.02%,有效磷含量顯著提高48.52%,速效鉀含量極顯著降低188.57%。Alpha細(xì)菌多樣性方面,在荔枝園間作柱花草后,0~20"cm土層和20~40"cm土層中,Chao1指數(shù)、AEC指數(shù)、Simpson指數(shù)和Shannon指數(shù)并無(wú)顯著變化。在土壤細(xì)菌群落結(jié)構(gòu)方面,土壤樣品中主要的優(yōu)勢(shì)菌門(mén)均為Acidobacteriota、Proteobacteria、Firmicutes、Chloroflexi、Bacteroidota、Verrucomicrobiota、Actinobacteriota、Gemmatimonadota、Myxococcota,Crenarchaeota為0~20"cm土層深度下間作柱花草后土壤特有相對(duì)豐度大于1%菌門(mén),Proteobacteria、Verrucomicrobiota、Gemmatimonadota的相對(duì)豐度在間作柱花草后的各土層深度均有提高;在屬水平上,在0~20"cm土層,Candidatus_Nitrosotalea為間作柱花草后土壤特有相對(duì)豐度大于1%菌屬,在0~40"cm土層,Nitrospira為間作柱花草后土壤特有相對(duì)豐度大于1%菌屬;冗余分析結(jié)果表明,土壤細(xì)菌群落主要受有效磷、硝態(tài)氮和有機(jī)質(zhì)的影響。綜上所述,荔枝園間作柱花草會(huì)改善荔枝園土壤的理化性質(zhì)和改變土壤細(xì)菌群落結(jié)構(gòu),對(duì)荔枝園土壤的環(huán)境條件起到一定的優(yōu)化作用。
關(guān)鍵詞:荔枝;間作;柱花草;土壤養(yǎng)分;土壤細(xì)菌群落結(jié)構(gòu)中圖分類(lèi)號(hào):S667.1;S551""""""文獻(xiàn)標(biāo)志碼:A
Effects"of"Intercropping"Stylosanthes"guianensis"on"Soil"Physicochemical"Properties"and"Bacterial"Community"Structure"in"a"Litchi"Orchard
LI"Chengzhen1,3,"YUAN"Bingchen1,3,"WANG"Yanru2,3,"LAN"Jun1,3,"LUO"Lijuan1,"YU"Daogeng3*
1."College"of"Tropical"Crops,"Hainan"University,"Haikou,"Hainan"570228,"China;"2."College"of"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China;"3."Tropical"Crops"Genetic"Resources"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences,"Haikou,"Hainan"571101,"China
Abstract:"The"study"was"aimed"to"investigate"the"effects"of"litchi"orchard"intercropping"Stylosanthes"guianensis"on"soil"physicochemical"properties"and"soil"bacterial"community"structure,"and"to"provide"theoretical"basis"for"litchi"orchard"intercropping"S."guianensis."Soil"samples"from"litchi"orchard"intercropped"with"S."guianensis"and"litchi"monocropping"modes"were"used"to"determine"soil"physicochemical"properties"and"analyzed"by"bacterial"amplicon"sequencing."After"intercropping"S."guianensis"in"litchi"orchard,"in"the"soil"layer"depth"of"0-20"cm,"nitrate"nitrogen"content"significantly"increased"by"47.52%,nbsp;available"phosphorus"content"highly"significantly"increased"by"141.53%"and"available"potassium"content"highly"significantly"reduced"by"125.59%;"in"the"soil"layer"depth"of"20-40"cm,"nitrate"nitrogen"content"highly"significantly"increased"by"76.02%,"available"phosphorus"content"highly"significantly"increased"by"48.52%,"and"available"potassium"content"highly"significantly"reduced"by"188.57%."In"terms"of"alpha"bacterial"diversity,"there"were"no"significant"changes"in"Chao1"index,"AEC"index,"Simpson"index"and"Shannon"index"in"0-20"cm"soil"layer"and"20-40"cm"soil"layer"after"intercropping"S."guianensis"in"litchi"orchard."In"terms"of"soil"bacterial"community"structure,"the"main"dominant"phyla"in"the"soil"samples"were"all"Acidobacteriota,"Proteobacteria,"Firmicutes,"Chloroflexi,"Bacteroidota,"Verrucomicrobiota,"Actinobacteriota,"Gemmatimonadota,"Myxococcota,"Crenarchaeota,"and"Crenarchaeota"were"soil-specific"relative"abundances"greater"than"1%"of"the"phyla"after"intercropping"S."guianensis"at"0-20"cm"soil"depth;"at"the"genus"level,"in"the"0-20"cm"soil"layer,"Candidatus_Nitrosotalea"was"the"genus"with"soil-specific"relative"abundance"greater"than"1%"after"intercropping"S."guianensis,"and"at"the"0-40"cm"soil"level,"Nitrospira"was"the"genus"with"soil-specific"relative"abundance"greater"than"1%"after"intercropping"S."guianensis,"Proteobacteria,"Verrucomicrobiota,"and"Gemmatimonadota"increased"at"all"soil"depths"after"intercropping"S."guianensis;"the"results"of"the"redundancy"analysis"showed"that"the"soil"bacterial"community"was"mainly"affected"by"effective"phosphorus,"nitrate"nitrogen,"and"organic"matter."In"summary,"intercropping"litchi"orchard"with"S."guianensis"would"improve"the"physicochemical"properties"and"change"the"structure"of"soil"bacterial"community"in"litchi"orchard"soil,"and"play"a"certain"role"in"optimizing"the"environmental"conditions"of"litchi"orchard"soil.
Keywords:"litchi;"intercropping;"Stylosanthes"guianensis;"soil"nutrients;"soil"bacterial"community"structure
DOI:"10.3969/j.issn.1000-2561.2024.06.011
荔枝(Litchi"chinensis"Sonn.)為無(wú)患子科,荔枝屬常綠喬木,起源于中國(guó)[1]。在中國(guó),荔枝有著非常悠久的栽培歷史,具有良好的食用價(jià)值、藥用價(jià)值和經(jīng)濟(jì)價(jià)值[2-4]。妃子笑是海南栽培十分廣泛的荔枝品種,但此品種在成花過(guò)程中產(chǎn)生的花量較多,當(dāng)土壤中的養(yǎng)分和水分不足時(shí),其花、葉的生長(zhǎng)發(fā)育就會(huì)受到嚴(yán)重影響[5-6]。目前我國(guó)荔枝主要栽培于酸性較強(qiáng)的赤紅壤和紅壤山地地區(qū),這些土壤的有機(jī)質(zhì)含量和土壤中的陽(yáng)離子交換量較低,在農(nóng)戶(hù)缺乏正確的田間管理技術(shù)的情況下,經(jīng)常發(fā)生過(guò)量施肥,導(dǎo)致植物生長(zhǎng)發(fā)育受到影響、土壤肥力下降、造成環(huán)境污染等情況,抑制了荔枝產(chǎn)業(yè)的發(fā)展[7-8]。在果園中間作綠肥作物能有效改善土壤質(zhì)量、提高果樹(shù)產(chǎn)量和果實(shí)品質(zhì),是一種經(jīng)濟(jì)效益和生態(tài)效益同時(shí)兼顧的種植模式[9]。間作綠肥也會(huì)改變土壤細(xì)菌的群落結(jié)構(gòu),而土壤細(xì)菌在土壤生態(tài)系統(tǒng)中扮演著至關(guān)重要的角色,其對(duì)于改善土壤肥力和維護(hù)生態(tài)系統(tǒng)結(jié)構(gòu)的平衡具有重要的作用,研究特定功能的土壤細(xì)菌種群的數(shù)量和分布,是了解間作對(duì)土壤生態(tài)系統(tǒng)的有效方式之一[10-11]。柱花草(Stylosanthes"guianensias)作為熱帶地區(qū)普遍種植的豆科綠肥,能顯著改善土壤質(zhì)量、提高作物的產(chǎn)量[12]。目前已有許多關(guān)于間作柱花草對(duì)果園土壤的改良影響的研究,但關(guān)于荔枝園間作柱花草對(duì)土壤理化性質(zhì)和土壤細(xì)菌群落結(jié)構(gòu)的影響研究尚無(wú)報(bào)道[13-14]。為此,本研究以荔枝單作為對(duì)照,間作柱花草為處理,對(duì)土壤理化性質(zhì)和土壤細(xì)菌群落進(jìn)行測(cè)定和分析,為荔枝間作柱花草的栽培模式提供參考依據(jù)。
1.1""材料
本研究所用材料妃子笑荔枝(Litchi"chinensis"cv"feizhixiao)、柱花草(Stylosanthes"guianensias)均來(lái)自中國(guó)熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所。
試驗(yàn)地位于中國(guó)海南省儋州市那大鎮(zhèn)中國(guó)熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所十隊(duì)試驗(yàn)基地(19°53′N(xiāo),109°57′E,海拔121.87"m),屬熱帶季風(fēng)氣候,年平均溫度21"℃,年平均最低溫度7"℃,年平均最高溫度29"℃,年平均降水量1757"mm,土壤為紅壤土,理化性質(zhì)見(jiàn)表1。
1.2""方法
1.2.1""試驗(yàn)設(shè)計(jì)""間作試驗(yàn)開(kāi)始于2020年3月,采用隨機(jī)區(qū)組設(shè)計(jì),以荔枝單作為對(duì)照(CK),荔枝間作柱花草為處理(T),設(shè)3個(gè)重復(fù)。荔枝樹(shù)于2018年定植,種植規(guī)格為4"m×5"m。柱花草于2020年3月定植于荔枝樹(shù)莖基部1.5"m處的荔枝行間,株間距為0.5"m×0.5"m,小區(qū)面積為6"m×"18"m。柱花草長(zhǎng)期種植于小區(qū)內(nèi),當(dāng)柱花草株高達(dá)80"cm以上時(shí)進(jìn)行刈割,刈割高度30"cm,刈割后的柱花草在小區(qū)內(nèi)進(jìn)行覆蓋,并使刈割后剩余的柱花草能夠繼續(xù)生長(zhǎng)。于2023年3月,測(cè)量荔枝樹(shù)株高、冠幅大小、地徑(離地20"cm);在試驗(yàn)小區(qū)內(nèi)使用土鉆采用五點(diǎn)取樣法,分別采集0~20"cm和20~40"cm土層的土壤(CK1:?jiǎn)巫?~20"cm土層,CK2:?jiǎn)巫?0~40"cm土層,T1:間作0~20"cm土層深度,T2:間作20~40"cm土層深度)。每份土樣分成2份,一份用液氮速凍后置于–80"℃冰箱保存,用于土壤細(xì)菌群落測(cè)定;另一份風(fēng)干后過(guò)1"mm篩,用于土壤理化性質(zhì)測(cè)定。
1.2.2""土壤理化因子分析和土壤微細(xì)菌DNA提取""土壤基礎(chǔ)養(yǎng)分測(cè)定參照鮑士旦[15]、ABDALLA等[16]、魯如坤[17]的測(cè)定方法。采用凱氏定氮法測(cè)定全氮;采用重鉻酸鉀氧化法測(cè)定有機(jī)碳;采用連續(xù)流動(dòng)分析儀測(cè)定銨態(tài)氮、硝態(tài)氮和有效磷;采用NaOH熔融-鉬銻抗比色法測(cè)定全磷;采用NaOH熔融-火焰光度法測(cè)定全鉀;采用醋酸銨浸提-火焰光度法測(cè)定速效鉀;采用電位法測(cè)定土壤pH。將土壤放入離心管中,并使用干冰保存運(yùn)輸至深圳微科盟科技有限公司,對(duì)土壤中的細(xì)菌進(jìn)行16S擴(kuò)增子測(cè)序,使用磁珠法土壤和糞便基因組DNA提取試劑盒提取DNA;用341F(5′-CCTAYGGGRBGCASCAG-3′)和806R(5′-GGACTACNNGGGTATCTAAT-3′)引物對(duì)V3+V4可變區(qū)進(jìn)行PCR擴(kuò)增。
1.3""數(shù)據(jù)處理
使用Qiime"2軟件中的DADA2插件對(duì)所有樣品的全部原始序列進(jìn)行質(zhì)量控制、去噪、拼接、去嵌合體,形成ASVs。Alpha多樣性指數(shù)利用QIIME2"core-diversity插件計(jì)算;用R語(yǔ)言microeco包進(jìn)行LEfSe分析,閾值Plt;0.05、LDA≥2;采用SPSS"26.0獨(dú)立t檢驗(yàn)分析土壤理化因子差異性;用R語(yǔ)言vegan軟件包構(gòu)建微生物菌門(mén)與土壤理化因子的相關(guān)性;用R語(yǔ)言psych包和pheatmap包,繪制相關(guān)性heatmap圖,分析細(xì)菌菌屬和土壤理化因子的相關(guān)性。
2.1""間作柱花草對(duì)土壤理化性質(zhì)的影響
由表2可知,T1相比于CK1土壤硝態(tài)氮含量提高了47.52%,差異顯著(Plt;0.05);有效磷含量提高了141.53%,差異極顯著(Plt;0.05);速效鉀含量降低了125.59%(Plt;0.05);有機(jī)碳、全氮、全磷、全鉀、銨態(tài)氮和pH均無(wú)顯著差異。T2土壤的硝態(tài)氮含量比CK2提高76.02%(Plt;0.05);有效磷含量比CK2提高48.52%(Plt;0.05);速效鉀含量比CK2降低188.57%(Plt;0.05);有機(jī)碳、全氮、全磷、全鉀、銨態(tài)氮和pH均無(wú)顯著差異。
2.2""間作柱花草對(duì)土壤細(xì)菌群落多樣性變化的影響
Alpha多樣性分析結(jié)果表明,ACE指數(shù)和Chao1指數(shù)能夠體現(xiàn)土壤細(xì)菌群落的豐富程度,Simpson指數(shù)和Shannon指數(shù)能夠體現(xiàn)土壤細(xì)菌群落的多樣性和均勻程度。由表3可知,T1與CK1相比、T2與CK2相比土壤的ACE指數(shù)、Chao1指數(shù)、Shannon指數(shù)、Simpson指數(shù)均無(wú)顯著差異。
2.3""間作柱花草對(duì)土壤細(xì)菌群落結(jié)構(gòu)的影響
2.3.1""門(mén)水平結(jié)構(gòu)分析""由圖1可知,T1土壤細(xì)菌群落結(jié)構(gòu)相對(duì)豐度大于1%的菌門(mén)有10個(gè),CK1土壤細(xì)菌群落結(jié)構(gòu)相對(duì)豐度大于1%的菌門(mén)有9個(gè),Crenarchaeota為間作柱花草后土壤特有相對(duì)豐度大于1%菌門(mén)。T1與CK1相比,Proteobacteria、Bacteroidota、Verrucomicrobiota和Gemmatimo nadota的相對(duì)豐度分別提高15.69%、80.10%、13.12%和27.45%;Acidobacteriota、Firmicutes、Chloroflexi、Actinobacteriota和Crenarchaeota的相對(duì)豐度分別降低了17.05%、13.98%、7.09%、13.30%和4.50%。
T2和CK2土壤細(xì)菌群落結(jié)構(gòu)相對(duì)豐度大于1%的菌門(mén)共有10個(gè)。T2與CK2相比,Proteobacteria、Chloroflexi、Verrucomicrobiota、Actinobacteriota、Gemmatimonadota和Crenarchaeota的相對(duì)豐度分別提高12.29%、17.39%、4.96%、15.06%、41.86%和13.07%;Acidobacteriota、Firmicutes、Bacteroidota和Myxococcota的相對(duì)豐度分別降低9.43%、13.80%、19.27%和9.66%。
2.3.2""屬水平結(jié)構(gòu)分析""由圖2可知,T1土壤細(xì)菌群落結(jié)構(gòu)相對(duì)豐度大于1%的屬有9個(gè),CK1土壤細(xì)菌群落結(jié)構(gòu)相對(duì)豐度大于1"%的屬有8個(gè),Candidatus_Nitrosotalea為間作柱花草后土壤特有相對(duì)豐度大于1%菌屬。T1與CK1相比,Bryo bacter、Candidatus_Solibacter、Gemmatimonas、Rhizomicrobium和Nitrospira的相對(duì)豐度分別提高了22.52%、14.08%、22.75%、29.90%和3.81%;酸桿菌門(mén)(Acidobacteriota)的亞群Gp2、Can didatus_Koribacter、Ktedonobacter和Xanthob acteraceae的相對(duì)豐度分別降低49.72%、3.02%、14.81%和0.66%。
T2土壤細(xì)菌群落結(jié)構(gòu)相對(duì)豐度大于1%的屬有9個(gè),CK2土壤細(xì)菌群落結(jié)構(gòu)相對(duì)豐度大于1%的屬有8個(gè),Nitrospira為間作柱花草后土壤特有相對(duì)豐度大于1%菌屬。T2與CK2相比,Ktedon obacter、Bryobacter、Candidatus_Solibacter、Gemmatimonas和Xanthobacteraceae的相對(duì)豐度分別提高6.00%、9.69%、19.15%、38.06%和25.94%;酸桿菌門(mén)(Acidobacteriota)的亞群Gp2、Candidatus_Koribacter、Rhizomicrobium和Candidatus_Nitrosotalea的相對(duì)豐度分別降低12.62%、1.35%、7.27%和6.49%。
2.3.3""LEfSe分析""由圖3可知,Actinobacteria(p__Actinobacteria)在組間存在顯著差異,且在CK2土壤中被顯著富集,豐度最高(CK2土壤中Actinobacteria的豐度顯著高于其他各組);同時(shí),Actinobacteria的LDA得分值大于其他分類(lèi)單元,表明其對(duì)組間差異的影響更大。酸桿菌門(mén)(Acidobacteriota)的亞群Gp2(g_Gp2)且在CK2土壤中被顯著富集,豐度最高;Gp2的LDA得分值大于其他分類(lèi)單元,表明其對(duì)組間差異的影響更大。
2.4""土壤細(xì)菌與理化因子的相關(guān)性分析
2.4.1""土壤細(xì)菌門(mén)水平與理化因子的相關(guān)性分析""在門(mén)水平上,對(duì)相對(duì)豐度1%以上的細(xì)菌中進(jìn)行冗余分析。由圖4可知,在間作的土壤細(xì)菌群落主要受有效磷、硝態(tài)氮和有機(jī)質(zhì)的影響;其中Gemmatimonadota、Proteobacteria、Bacte roidota、Verrucomicrobiota、Crenarchaeota與有效磷和有機(jī)質(zhì)呈正相關(guān),Chloroflexi、Firmicutes、Acidobacteriota、Myxococcota和Actinobacteriota與有效磷和全鉀呈負(fù)相關(guān);硝態(tài)氮與Actino bacteriota、Myxococcota、Gemmatimonadota、Proteobacteria、Bacteroidota、Verrucomicrobiota呈正相關(guān),與Acidobacteriota、Firmicutes、Chl oroflexi、Crenarchaeota呈負(fù)相關(guān)。
2.4.2""土壤細(xì)菌屬水平與理化因子的相關(guān)性分析""在屬水平上,對(duì)相對(duì)豐度1%以上的細(xì)菌與土壤理化因子進(jìn)行相關(guān)性分析(圖5)。Rhizomicrobium與總有機(jī)碳、有效磷、硝態(tài)氮呈正相關(guān)(Plt;0.05);Xanthobacteraceae與銨態(tài)氮呈正相關(guān);Candidatus_"Nitrosotalea與速效鉀呈負(fù)相關(guān)(Plt;0.05);Bryobacter與銨態(tài)氮、有效磷呈正相關(guān)(Plt;0.01),與pH、速效鉀呈負(fù)相關(guān)(Plt;0.01);Candidatus_"Solibacter與銨態(tài)氮(Plt;0.05)、有效磷(Plt;0.01)呈正相關(guān),與pH(Plt;0.01)、速效鉀(Plt;0.05)呈負(fù)相關(guān);酸桿菌門(mén)(Acidobacteriota)的亞群Gp2與硝態(tài)氮(Plt;0.01)、有效磷(Plt;0.05)呈負(fù)相關(guān);Ktedonobacter與硝態(tài)氮呈負(fù)相關(guān)(Plt;0.05)。
2.5""間作柱花草對(duì)荔枝樹(shù)株高、冠幅大小、地徑的影響
由圖6可知,間作柱花草后荔枝樹(shù)的株高對(duì)比CK提高了17.41%(Plt;0.05),這說(shuō)明間作柱花草有利于荔枝樹(shù)株高的提高;間作柱花草后荔枝樹(shù)的冠幅對(duì)比CK提高了19.09%(Plt;0.05),這說(shuō)明間作柱花草有利于荔枝樹(shù)冠幅的增加;間作柱花草后荔枝樹(shù)的冠幅對(duì)比CK無(wú)顯著差異(Plt;0.05),這說(shuō)明間作柱花草對(duì)荔枝樹(shù)地徑的影響不大。
3.1""間作柱花草對(duì)土壤理化性質(zhì)的影響
南方熱區(qū)普遍出現(xiàn)土壤酸化及缺磷等問(wèn)題,磷是植物生長(zhǎng)發(fā)育的基本元素之一,能夠促進(jìn)植物根系的生長(zhǎng)和形成、提高果實(shí)品質(zhì)、增強(qiáng)植物的抗逆性。有研究表明種植豆綠肥能夠有效提高土壤有效磷的含量,其自然脫落物在腐解的過(guò)程中能夠產(chǎn)生有機(jī)酸類(lèi)可以吸收部分難溶性養(yǎng)分,轉(zhuǎn)化為有效的形態(tài),綠肥作物體內(nèi)所含有的磷在此過(guò)程中釋放到土壤內(nèi),提高土壤的有效磷含量[18]。本研究在荔枝間作柱花草后,T1、T2有效磷含量有顯著提高,T1比CK1提高了141.53%,T2比CK2提高了48.52%,說(shuō)明間作柱花草能夠顯著提高土壤表層的有效磷含量。在荔枝間作柱花草后,T1和T2的速效鉀含量分別顯著降低125.59%和188.57%,可能是由于海南的降雨頻繁,降雨量大,土壤中的鉀離子容易被雨水淋溶和沖刷流失,加之柱花草生長(zhǎng)時(shí)對(duì)速效鉀吸收,導(dǎo)致了土壤的速效鉀含量降低[19]。在荔枝間作柱花草后,T1和T2的硝態(tài)氮含量分別顯著提高47.52%和76.02%,可能是與豆科植物有自生固氮和共生固氮的能力能夠從大氣中捕獲分子氮和通過(guò)與根瘤菌共生固氮有關(guān)[20-22]。
3.2""間作柱花草對(duì)土壤細(xì)菌群落多樣性的影響
作為評(píng)估微生物群落多樣性的指標(biāo)之一,Alpha多樣性指數(shù)能夠反映土壤微生物群落中的物種組成概況,揭示微生物種群的均勻度與豐富度[23]。研究發(fā)現(xiàn),合理的間作策略可以增加土壤中細(xì)菌、真菌等微生物的數(shù)量,提高土壤微生物群落的多樣性及功能性,優(yōu)化微生物群落結(jié)構(gòu),保持微生態(tài)系統(tǒng)的平衡[24-26]。同時(shí),部分研究顯示,長(zhǎng)期豆科植物間作可能導(dǎo)致土壤細(xì)菌數(shù)量的降低,但其豐富度不受影響[27]。這些結(jié)果表明,間作對(duì)土壤微生物群落多樣性的影響可能與間作植物種類(lèi)的差異有關(guān)。
在本研究中,柱花草間作期間土壤Alpha多樣性各項(xiàng)指標(biāo)的差異均未達(dá)到顯著水平,表明間作柱花草不會(huì)影響菌群的均勻度與豐富度。
3.3""間作柱花草對(duì)土壤細(xì)菌群落結(jié)構(gòu)的影響
菌群的相對(duì)豐度變化能夠體現(xiàn)土壤環(huán)境的變化,通過(guò)菌群豐度的變化能夠較早地了解土壤環(huán)境的變化過(guò)程[28]。
在門(mén)水平上,Bacteroidota是土壤微生物中一類(lèi)重要的細(xì)菌,可以分解土壤中的有機(jī)物質(zhì),產(chǎn)生酸性物質(zhì)與土壤中的一些全氮化合物相互作用,促進(jìn)全氮化合物的分解和釋放,可以將有機(jī)氮化合物轉(zhuǎn)化為銨態(tài)氮或硝態(tài)氮[29]。Proteo bacteria在土壤中的主要作用是分解有機(jī)物質(zhì)和固氮,部分Proteobacteria類(lèi)群的成員也與植物共生,能夠通過(guò)固氮幫助植物獲取營(yíng)養(yǎng)[30]。Verrucom icrobiota在降解有機(jī)物方面有重要作用[31]。本研究中在T1和T2中均觀察到相對(duì)豐度提高的菌門(mén),如Proteobacteria、Bacteroidota、Verrucomicrobiota等,其中部分菌門(mén)在2個(gè)土層中都呈現(xiàn)相似的變化趨勢(shì),可能與土壤養(yǎng)分中氮含量的增加和植物脫落物的分解有關(guān)。Acidobacteriota是一種普遍存在于土壤中的嗜酸菌,既往的研究表明,Acidobacteriota的比例可以反映土壤的酸性條件,并且與土壤pH存在極顯著的負(fù)相關(guān)關(guān)系[32]。然而,在本研究中,Acidobacteriota及酸桿菌門(mén)(Aci dobacteriota)的亞群Gp2與土壤pH并未顯示出顯著的相關(guān)性,這可能意味著在本研究的特定環(huán)境條件下,酸桿菌及其亞群Gp2的存在可能受到其他環(huán)境因素的影響,而非僅僅與土壤的pH有關(guān)。Crenarchaeota是土壤中占主導(dǎo)地位的氨氧化微生物[33]。在本研究中Crenarchaeota菌門(mén)僅在T1中表現(xiàn)出相對(duì)豐度大于1%,這表明間作柱花草后土壤銨態(tài)氮含量的提高可能對(duì)土壤微生物群落的結(jié)構(gòu)產(chǎn)生了一定影響。
在屬水平上,在T1中細(xì)菌群落相對(duì)豐度大于1%的屬增加到9個(gè),而CK1土壤中只有8個(gè)。其中,Candidatus_Nitrosotalea是間作柱花草后土壤特有的相對(duì)豐度大于1%的菌屬,這表明間作柱花草可能提高了土壤中的氮循環(huán)能力,因?yàn)镃andi datus_Nitrosotalea屬包含已知的氨氧化微生物,它們?cè)谕寥赖h(huán)中扮演著重要角色[34]。Bryo bacter是一類(lèi)能夠分解有機(jī)質(zhì),并降解咪唑啉酮類(lèi)和氟草凈除草劑的厭氧細(xì)菌[35]。Candidatus_"Solibacter可以分解復(fù)雜的有機(jī)物質(zhì),利用碳源的菌屬[36]。Nitrospira是一種已知的硝化細(xì)菌,是氮循環(huán)的主要參與者,能夠?yàn)橥寥捞峁┲参锟梢岳玫牡碵37]。Gemmatimonas在土壤中的主要功能通常包括有機(jī)物質(zhì)的分解,同時(shí)也涉及氮素的代謝[38]。Bryobacter、Candidatus_"Solibacter、Gemmatimonas和Nitrospira等屬的相對(duì)豐度在間作柱花草土壤中均有所提高。這些菌屬通常與有機(jī)物的分解和氮的循環(huán)相關(guān)聯(lián),它們的提升可能意味著間作柱花草提高了土壤的肥沃度。在20~40"cm的土層中,與0~20"cm土層相似,T2增加了相對(duì)豐度大于1%屬的數(shù)量,Nitrospira為間作柱花草后土壤特有相對(duì)豐度大于1%菌屬,Nitrospira的提升對(duì)土壤氮循環(huán)尤其重要,因?yàn)樵搶偈且阎南趸饔藐P(guān)鍵參與者[37]。
3.4""土壤細(xì)菌與理化因子的相關(guān)性分析
對(duì)土壤細(xì)菌群落的冗余分析揭示了土壤中某些重要物質(zhì)因子對(duì)細(xì)菌群落結(jié)構(gòu)的顯著影響。冗余分析結(jié)果表明,有效磷、硝態(tài)氮和有機(jī)質(zhì)是影響柱花草間作階段土壤細(xì)菌群落變化的主要因素,這3種因素通常被視為極其重要的土壤屬性,它們?cè)诘厍蚧瘜W(xué)循環(huán),尤其是氮和磷循環(huán)中起著關(guān)鍵作用,并且影響微生物的生活力和生產(chǎn)力[39]。土壤細(xì)菌門(mén)水平相對(duì)豐度有顯著變化的Bacteroi dota和Gemmatimonadota與有效磷呈正相關(guān),Acidobacteriota與有效磷和硝態(tài)氮呈負(fù)相關(guān),說(shuō)明有效磷是間作過(guò)程中影響土壤細(xì)菌群落變化的主要環(huán)境因子,這與前人研究[40-41]發(fā)現(xiàn)的pH或堿解氮為影響土壤細(xì)菌群落變化的主要環(huán)境因子不同。
本研究發(fā)現(xiàn),在屬水平上Rhizomicrobium、Candidatus_Solibacter、Xanthobacteraceae、Ktedo nobacter、Bryobacter和Gp2與土壤氮素形態(tài)(硝態(tài)氮、銨態(tài)氮)顯著相關(guān),說(shuō)明這些細(xì)菌可能參與了土壤氮素循環(huán)過(guò)程。它們?cè)诘剞D(zhuǎn)化過(guò)程中的作用可能有助于柱花草間作對(duì)土壤氮素狀況的改善。Rhizomicrobium、Bryobacter、Candidatus_"Solibacter和Gp2與銨態(tài)氮、硝態(tài)氮、有效磷和速效鉀有著多重相關(guān)性,而間作柱花草改變了其相對(duì)豐度,又顯著改變了土壤硝態(tài)氮、有效磷和速效鉀的含量。說(shuō)明間作可以改變土壤微生物群落結(jié)構(gòu),這些相對(duì)豐度的變化可能與間作柱花草導(dǎo)致的氮、磷、鉀等養(yǎng)分含量變化有關(guān)。
3.5""不同間作模式對(duì)荔枝樹(shù)生長(zhǎng)的影響
果園間作綠肥在影響荔枝樹(shù)的生長(zhǎng)方面可能表現(xiàn)出正面或負(fù)面的效果,這些效果受到種植的果樹(shù)品種、選擇的間作作物、土壤條件以及管理措施等多種因素的影響[42]。例如杏樹(shù)與苜蓿進(jìn)行間作,盡管在資源上存在一定程度上的爭(zhēng)奪,但仍然有助于提高林下土壤的理化性質(zhì),從而有效地促進(jìn)杏樹(shù)的生長(zhǎng)和發(fā)育[43];庫(kù)爾勒香梨與豆科牧草間作,通過(guò)根系相互作用,也已被證實(shí)有助于增加庫(kù)爾勒香梨的產(chǎn)量[44]。間作柱花草后,荔枝樹(shù)的株高得到了明顯的提升,這可能是由于柱花草在土壤中形成良好的生態(tài)環(huán)境,通過(guò)改善土壤結(jié)構(gòu)或提高土壤有機(jī)質(zhì)水平,從而增強(qiáng)荔枝樹(shù)的生長(zhǎng)。荔枝樹(shù)冠幅對(duì)比CK組增加了19.09%,可能因?yàn)橹ú莸拈g作增加土壤中的氮含量,進(jìn)而提高植物的營(yíng)養(yǎng)物和水分吸收,利于冠幅增大。本研究發(fā)現(xiàn),間作柱花草能夠極顯著增加荔枝樹(shù)的株高和冠幅,表明間作柱花草對(duì)荔枝樹(shù)的生長(zhǎng)有促進(jìn)作用。
本研究表明,間作柱花草對(duì)荔枝樹(shù)生長(zhǎng)具有積極影響。具體表現(xiàn)為荔枝樹(shù)株高提高了17.41%,冠幅提高了19.09%。此外,間作柱花草能增加土壤有效磷含量和硝態(tài)氮含量,從而為荔枝樹(shù)提供了更多的營(yíng)養(yǎng)物質(zhì),但間作柱花草降低了土壤速效鉀的含量,說(shuō)明長(zhǎng)期間作柱花草需要適量補(bǔ)施鉀肥。同時(shí),研究發(fā)現(xiàn)間作柱花草有助于改善土壤微生物群落結(jié)構(gòu),增加部分有利于氮循環(huán)和有機(jī)物降解的菌門(mén)及菌屬相對(duì)豐度。本研究探討了荔枝園間作柱花草模式下對(duì)土壤養(yǎng)分、微生物多樣性和荔枝樹(shù)植物指標(biāo)的影響,為今后的生產(chǎn)實(shí)踐及研究提供理論依據(jù)。
參考文獻(xiàn)
[1]"吳淑嫻."中國(guó)果樹(shù)志:"荔枝卷[M]."北京:"中國(guó)林業(yè)出版社,"1998."WU"S"X."Chinese"fruit"tree"history:"Lychee"roll[M]."Beijing:"China"Forestry"Publishing"House,"1998."(in"Chinese)
[2]"螢燭."藥食同源話(huà)荔枝[J]."解放軍健康,"2016(4):"32.YING"Z."Lychee"of"medicine"and"food[J]."PLA"Health,"2016(4):"32."(in"Chinese)
[3]"劉玉壺,"羅獻(xiàn)瑞."中國(guó)植物志:"第四十七卷[M]."北京:"科學(xué)出版社,"1985:"69-70.LIU"Y"H,"LUO"X"R."Flora"of"China:"volume"XLVII[M]."Beijing:"Science"Press,"1985:"69-70."(in"Chinese)
[4]"吳宇."海南妃子笑荔枝高產(chǎn)的栽培技術(shù)的探討[J]."農(nóng)業(yè)科技通訊,"2019(8):"389-391.WU"Y."Discussion"on"cultivation"technology"of"high-yield"lychee"of"litchi"Feizixiao"in"Hainan[J]."Bulletin"of"Agricultural"Science"and"Technology,"2019(8):"389-391."(in"Chinese)
[5]"吳定堯,"張海嵐."妃子笑荔枝的特性[J]."中國(guó)南方果樹(shù),"1997(5):"26-27.WU"D"Y,"ZHANG"H"L."Characteristics"of"Feizixiao"lychee[J]."South"China"Fruits,"1997(5):"26-27."(in"Chinese)
[6]"胡福初,"范鴻雁,"何凡,"華敏,"王祥和."妃子笑荔枝高效花穗處理及保果壯果技術(shù)[J]."中國(guó)熱帶農(nóng)業(yè),"2014(3):"65-67."HU"F"C,"FAN"H"Y,"HE"F,"HUA"M,"WANG"X"H."High-efficiency"flower"spikenbsp;treatment"and"fruit"preservation"technology"of"Feizixiao"lychee[J]."China"Tropical"Agriculture,"2014(3):"65-67."(in"Chinese)
[7]"陳明智,"林彬,"謝國(guó)干,"謝延坤,"蘇林嘯."海南荔枝園土壤基本養(yǎng)分狀況分析[J]."海南師范學(xué)院學(xué)報(bào)(自然科學(xué)版),"2001,"14(2):"57-59.CHEN"M"Z,"LIN"B,"XIE"G"G,"XIE"Y"K,"SU"L"X."An"analysis"of"the"basic"nutrients"in"the"soil"of"Hainan’s"litchi"orchards[J]."Journal"of"Hainan"Normal"University"(Natural"Science),"2001,"14(2):"57-59."(in"Chinese)
[8]"周兆禧,"林興娥,"劉永霞,"王必遵,"明建鴻,"高宏茂,"毛海濤,"許方瑜."海南荔枝果園土壤存在的問(wèn)題及提肥增效措施[J]."中國(guó)熱帶農(nóng)業(yè),"2018(5):"23-24.ZHUO"Z"X,"LIN"X"E,"LIU"Y"X,"WANG"B"Z,"MING"J"H,"GAO"H"M,"MAO"H"T,"XU"F"Y."Problems"in"the"soil"of"Hainan"litchi"orchards"and"measures"to"improve"fertilizer"efficiency[J]."China"Tropical"Agriculture,"2018(5):"23-24."(in"Chinese)
[9]"范鴻雁,"趙亞,"馮學(xué)杰,"胡福初,"王祥和,"郭利軍,"羅志文,"許書(shū)海."檳榔林下復(fù)合栽培產(chǎn)業(yè)現(xiàn)狀及發(fā)展對(duì)策[J]."中國(guó)熱帶農(nóng)業(yè),"2019(5):"10-14.FAN"H"Y,"ZHAO"Y,"FENG"X"J,"HU"F"C,"WANG"X"H,"GUO"L"J,"LUO"Z"W,"XU"S"H."The"current"situation"and"development"strategies"of"betel"nut"under"forest"complex"cultivation"industry[J]."China"Tropical"Agriculture,"2019(5):"10-14."(in"Chinese)
[10]"BUNEMANN"E"K,"BONGIORNO"G,"BAI"Z,"CREAMER"R"E,"DE"DEYN"G."Soil"quality:"a"critical"review[J]."Soil"Biology"and"Biochemistry,"2018,"120:"105-125.
[11]"ZHAO"X"H,"DONG"Q"Q,"HAN"Y,"ZHANG"K"Z,"SHI"X"L,"YANG"X,"YUAN"Y,"ZHOU"D"Y,"WANG"K,"WANG"X"G,"JIANG"C"J,"LIU"C"J,"LIU"X"B,"ZHANG"H,"ZHANG"Z"M,"YU"H"Q."Maize/peanut"intercropping"improves"nutrient"uptake"of"side-row"maize"and"system"microbial"community"diversity[J]."BMC"Microbiology,"2022,"22:"14.
[12]"周顏."橡膠園間作不同柱花草后土壤肥力變化研究[D]."南京:"南京農(nóng)業(yè)大學(xué),"2021.ZHOU"Y."Research"on"the"soil"fertility"changes"of"rubber"plantation"after"different"stylosanthes"intercropping[D]."Nanjing:"Nanjing"Agricultural"University,"2021."(in"Chinese)
[13]"劉曉霞,"陶云彬,"章日亮."不同綠肥連續(xù)還田對(duì)水稻產(chǎn)量和土壤肥力的影響[J]."浙江農(nóng)業(yè)科學(xué),"2016,"57(9):"1379-"1382."LIU"X"X,"TAO"Y"B,"ZHANG"R"L."Effects"of"continuous"application"of"green"manure"on"rice"yiel"and"soil"fertility[J]."Journal"of"Zhejiang"Agricultural"Sciences,"2016,"57(9):"1379-1382."(in"Chinese)
[14]"張久東,"包興國(guó),"曹衛(wèi)東,"車(chē)宗賢,"胡志橋,"盧秉林."間作綠肥作物對(duì)玉米產(chǎn)量和土壤肥力的影響[J]."中國(guó)土壤與肥料,"2013,"50(4):"43-47.ZHANG"J"D,"BAO"X"G,"CAO"W"D,"CHE"Z"X,"HU"Z"Q,"LU"B"L."Effects"of"intercropping"green"manure"crops"on"maize"yield"and"soil"fertility[J]."Soils"and"Fertilizers"Sciences"in"China,"2013,"50(4):"43-47."(in"Chinese)
[15]"鮑士旦."土壤農(nóng)化分析[M]."北京:"中國(guó)農(nóng)業(yè)科技出版社,"2000.BAO"S"D."Soil"agrochemical"analysis[M]."Beijing:"China"Agricultural"Science"and"Technology"Press,"2000."(in"Chinese)
[16]"ABDALLA"M,"HASTINGS"A,"CHENG"K,"YUE"Q,"CHADWICK"D,"ESPENBERG"M."A"critical"review"of"theimpacts"of"cover"crops"on"nitrogen"leaching,"net"greenhouse"gas"balance"and"crop"productivity[J]."Globa"Change"Biology,"2019,"25(8):"2530-2543.
[17]"魯如坤."土壤農(nóng)業(yè)化學(xué)分析方法[M]."北京:"中國(guó)農(nóng)業(yè)科技出版社,"2000.LU"R"K."Soil"agrochemical"analytical"methods[M]."Beijing:"China"Agricultural"Science"and"Technology"Press,"2000."(in"Chinese)
[18]"吳雙."夏綠肥植物還田對(duì)休耕農(nóng)田土壤磷素的影響[D]."上海:"華東師范大學(xué),"2020.WU"S."Effects"of"summer"green"manure"plants"on"soil"phosphorus"in"fallow"farmland[D]."Shanghai:"East"China"Normal"University,"2020."(in"Chinese)
[19]"李盟軍,"艾紹英,"寧建鳳,"王榮輝,"姚建武,"余丹妮."不同養(yǎng)分管理措施下常年菜地磷、鉀養(yǎng)分徑流流失特征[J]."農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),"2019,"36(1):"33-42.LI"M"J,"AI"S"Y,"NING"J"F,"WANG"R"H,"YAO"J"W,"WU"D"N."Runoff"characteristics"of"phosphorus"and"potassium"from"a"perennial"vegetable"field"under"different"nutrition"managements[J]."Journal"of"Agricultural"Resources"and"Environment,"2019,"36(1):"33-42."(in"Chinese)
[21]"趙葉舟,"王浩銘,"汪自強(qiáng)."豆科植物和根瘤菌在生態(tài)環(huán)境中的地位和作用[J]."農(nóng)業(yè)環(huán)境與發(fā)展,"2013,"30(4):"7-12."ZHAO"Y"Z,"WANG"H"M,"WANG"Z"Q."The"role"of"leguminous"plants"and"rhizobium"in"ecological"environment[J]."Journal"of"Agricultural"Resources"and"Environmen,"2013,"30(4):"7-12."(in"Chinese)
[22]"張志權(quán),"束文圣,"廖文波,"藍(lán)崇鈺."豆科植物與礦業(yè)廢棄地植被恢復(fù)[J]."生態(tài)學(xué)雜志,"2002(2):"47-52.ZHANG"Z"Q,"SHU"W"S,"LIAO"W"B,"LAN"C"Y."Role"of"legume"species"in"revegetation"of"mined"wastelands[J]."Chinese"Journal"of"Ecology,"2002(2):"47-52."(in"Chinese)
[23]"姚玉嬌,"梁婷,"馬源,"周會(huì)程,"肖海龍,"孫斌,"張德罡,"陳建綱."土壤微生物群落多樣性對(duì)高寒草甸退化程度的響應(yīng)[J]."草地學(xué)報(bào),"2020,"28(6):"1489-1497.YAO"Y"J,"LIANG"T,"MA"Y,"ZHOU"H"C,"XIAO"H"L,"SUN"B,"ZHANG"D"G,"CHEN"J"G."Response"of"soil"microbial"community"diversity"to"degradation"degree"of"alpine"meadow[J]."Acta"Agrestia"Sinica,"2020,"28(6):"1489-1497."(in"Chinese)
[24]"趙春曉,"鄭海春,"郜翻身,"高娃,"王霞,"王昇."不同處理對(duì)河套灌區(qū)玉米土壤硝態(tài)氮和銨態(tài)氮?jiǎng)討B(tài)及氮肥利用率的影響[J]."中國(guó)土壤與肥料,"2017(6):"99-104.ZHAO"C"X,"ZHENG"H"C,"GAO"F"S,"GAO"W,"WANG"X,"WANG"S."Effect"of"different"materials"on"dynamic"change"of"soil"nitrate"and"ammonium"nitrogen"and"N"uptake"by"maize"in"Hetao"irrigation"area[J]."Soil"and"Fertilizer"Sciences"in"China,"2017(6):"99-104."(in"Chinese)
[25]"劉廣勤,"朱海軍,"周蓓蓓,"生靜雅,"張萌."鼠茅覆蓋對(duì)梨園雜草控制及土壤微生物和酶活性的影響[J]."果樹(shù)學(xué)報(bào),"2010,"27(6):"1024-1028.LUI"G"Q,"ZHU"H"J,"ZHOU"B"B,"SHENG"J"Y,"ZHANG"M."Effects"of"sod"culture"with"Vulpia"myuros"on"weed"control,"soil"microbial"biomass"and"soil"enzyme"activities"in"pear"orchard[J]."Journal"of"Fruit"Science,"2010,"27(6):"1024-1028."(in"Chinese)
[26]"DING"T"T,"YAN"Z"C,"ZHANG"W"Z,"DUAN"T"Y."Green"manure"crops"affected"soil"chemical"properties"and"fungal"diversity"and"community"of"apple"orchard"in"the"Loess"Plateau"of"China[J]."Journal"of"Soil"Science"and"Plant"Nutrition,"2021,"21:"1089-1102.
[27]"ZHONG"Z"M,"HUANG"X"S,"FENG"D"Q,"XING"S"H,"WENG"B"Q."Long-term"efects"of"legume"mulching"on"soil"chemical"properties"and"bacterial"community"composition"and"structure[J]."Agriculture,"Ecosystems"amp;"Environment,"2018,"268:"24-33.
[28]"顏彩繽,"胡福初,"趙亞,"王祥和,"陳哲,"張世青,"吳鳳芝,"范鴻雁."荔枝園間作平托花生對(duì)土壤理化性質(zhì)、酶活性和微生物群落結(jié)構(gòu)及多樣性的影響[J]."中國(guó)土壤與肥料,"2022(5):"203-210.YAN"C"B,"HU"F"C,"ZHAO"Y,"WANG"X"H,"CHEN"Z,"ZHANG"S"Q,"WU"F"Z,"FAN"H"Y."Effects"of"intercropping"pinto"peanuts"on"soil"physicochemical"properties,"enzyme"activity,"bacterial"community"structure"and"diversity[J]."Soil"and"Fertilizer"Sciences"in"China,"2022(5):"203-210."(in"Chinese)
[29]"CHU"H,"FIERER"N,"LAUBER"C"L."Soil"bacterial"diversity"in"the"Arctic"is"not"fundamentally"different"from"that"found"in"other"biome[J]."Environmental"Microbiology,"2010,"12(11):"2998-3006.
[30]"LI"Y,"ZHANG"Q,"LI"M,"SAN"W"J,"WANG"Y,"WU"L"F,"YANG"Y"Q."Bioaugmentation"of"sequencing"batch"reactor"for"aniline"treatment"during"start-up"period:"investigation"of"microbial"community"structure"of"activated"sludge[J]."Chemosphere,"2020,"243:"125426.
[31]"JI"B,"ZHANG"M,"GU"J,"MA"Y"Q,"LIU"Y."A"self-sustaining"synergetic"microalgal-bacterial"granular"sludge"process"towards"energy-efficient"and"environmentally"sustainable"municipal"wastewater"treatment[J]."Water"Research,"2020,"179:"115884.
[32]"HUANG"J"J,"MA"K,"XIA"X"X,"GAO"K"L,"LU"Y"H."Biochar"and"magnetite"promote"methanogenesis"during"anaerobic"decomposition"of"rice"straw[J]."Soil"Biology"and"Biochemistry,"2020,"143:"107740.
[33]"SHEN"J"P,"ZHANG"L"M,"DI"H"J,"HE"J"Z."Are"view"of"ammonia-oxidizing"bacteria"and"archaea"in"Chinese"soils[J]."Frontiers"in"Microbiology,"2012,"3:"296.
[34]"翁澤斌,"彭世文,"王淑民,"何東東,"鄭國(guó)建,"徐辰生,"蔡海洋,"劉泓,"陳志厚."鉀對(duì)煙草根際氮細(xì)菌、氮古菌群落及氮代謝的影響[J]."中國(guó)煙草學(xué)報(bào),"2018,"24(2):"39-47.WENG"Z"B,"PENG"S"W,"WANG"S"M,"HE"D"D,"ZHENG"G"J,"XIU"C"S,"CAI"H"Y,"LIU"H,"CHEN"Z"H."Effect"of"different"potassium"levels"on"nitrogen"metabolism,"nitrogen"bacteria"and"nitrogen"archaea"bacteria"communities"in"rhizosphere"of"tobacco"plant[J]."Acta"Tabacaria"Sinica,"2018,"24(2):"39-47."(in"Chinese)
[35]"PERTILE"M,"SOUSA"R"M"S,"MENDES"L"W,"ANTUNES"J"E"L,"OLIVEIRA"L"M"S."Response"of"soil"bacterial"communities"to"the"application"of"the"herbicides"imazethapyr"and"flumyzin[J]."European"Journal"of"Soil"Biology,"2021,"102:"103252.
[36]"杜思瑤,"于淼,"劉芳華,"肖雷雷,"張洪霞,"陶軍,nbsp;顧衛(wèi),"顧京晏,"陳茜."設(shè)施種植模式對(duì)土壤細(xì)菌多樣性及群落結(jié)構(gòu)的影響[J]."中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),"2017,"25(11):"1615-1625.DU"S"Y,"YU"M,"LIU"F"H,"XIAO"L"L,"ZHANG"H"X,"TAO"J,"GU"W,"GU"J"Y,"CHEN"X."Effect"of"facility"management"regimes"on"soil"bacterial"diversity"and"community"structure[J]."Chinese"Journal"of"Eco-Agriculture,"2017,"25(11):"1615-"1625."(in"Chinese)
[37]"凌宇,"趙遠(yuǎn)哲,"王海燕,"閆國(guó)凱,"常洋,"董偉羊,"儲(chǔ)昭升,"王歡."HRT對(duì)A/O-BF處理低碳氮比農(nóng)村生活污水脫氮的影響[J]."環(huán)境科學(xué)研究,"2021,"34(4):"927-935.LING"Y,"ZHAO"Y"Z,"WANG"H"Y,"YAN"G"K,"CHANG"Y,"DONG"W"Y,"CHU"Z"S,"WANG"H."Effects"of"HRT"on"A/O-BF"nitrogen"removal"of"low"C/N"rural"domestic"sewage[J]."Research"of"Environmental"Sciences,"2021,"34(4):"927-935."(in"Chinese)
[38]"劉士奇."熱活化過(guò)硫酸鹽處理利福霉素菌渣及其菌渣肥對(duì)土壤性能影響研究[D]."青島:"青島農(nóng)業(yè)大學(xué),"2022.LIU"S"Q."Effect"of"rifamycin"mycelial"dreg"treated"by"thermally"activated"persulfate"and"its"mycelial"dreg"fertilizer"on"soil"properties[D]."Qingdao:"Qingdao"Agricultural"University,"2022."(in"Chinese)
[39]"DELGADO-BAQUERIZO"M,"CASTILLO-MONROY"A"P,"MAESTRE"F"T,"GALLARDO"A."Plants"and"biological"soil"crusts"modulate"the"dominance"of"N"forms"in"a"semi-arid"grassland[J]."Soil"Biology"amp;"Biochemistry,"2010(42):"376-"378.
[40]"林洪鑫,"袁展汽,"肖運(yùn)萍,"汪瑞清,"呂豐娟,"張志華."施氮和間作花生對(duì)木薯根際土壤細(xì)菌群落結(jié)構(gòu)的影響[J]."中國(guó)土壤與肥料,"2020(4):"56-65.LIN"H"X,"YUAN"Z"Q,"XIAO"Y"P,"WANG"R"Q,"LYU"F"J,"ZHANG"Z"H."Effects"of"nitrogen"application"and"intercropping"with"peanut"on"bacterial"community"structure"in"cassava"rhizosphere"soil[J]."Soil"and"Fertilizer"Sciences"in"China,"2020(4):"56-65."(in"Chinese)
[41]"袁秉琛,"王燕茹,"孫郁婷,"李承臻,"虞道耿."荔枝園分別間作距瓣豆與廣東金錢(qián)草對(duì)土壤養(yǎng)分、微生物群落結(jié)構(gòu)及多樣性影響研究[J/OL]."熱帶作物學(xué)報(bào),"[2023-05-19]."https://kns.cnki.net/kcms2/article/abstract?v=WdAl4K16JyUqBORn3moIzZgtAjrmj2Yu-DfC8-Nhs-Pc9AuBSdcCCk8enTGC0PJ0tLrpOy6UeD-VpSucvBU3tagWUS9CqH1OHPW7LN2Ie-fEKNqEzIoTQwBZokI-jgEqL4f-6oUBZg4=amp;uniplatform=NZKPTamp;language=CHS.YUAN"B"C,"WANG"Y"R,"SUN"Y"T,"LI"C"Z,"YU"D"G."Effect"of"intercropping"Centrosema"pubescens"or"Grona"styracifolia"of"Litchi"orchard"on"the"soil"nutrients,"microbial"community"structure"and"diversity[J/OL]."Chinese"Journal"of"Tropical"Crops,"[2023-05-19]."https://kns.cnki.net/kcms2/article/"abstract?v=WdAl4K16JyUqBORn3moIzZgtAjrmj2Yu-DfC8-"Nhs-Pc9AuBSdcCCk8enTGC0PJ0tLrpOy6UeD-VpSucvBU3tagWUS9CqH1OHPW7LN2Ie-fEKNqEzIoTQwBZokI-jgEqL4f-6oUBZg4=amp;uniplatform=NZKPTamp;language=CHS."(in"Chinese)
[42]"覃嬋嬋."荔枝幼齡果園間作對(duì)荔枝生長(zhǎng)發(fā)育和根際生態(tài)的影響研究[D]."南寧:"廣西大學(xué),"2019.QIN"C"C."Effects"of"intercropping"on"growth"and"rhizo sphere"ecology"of"Litchi"in"young"orchards[D]."Nanning:"Guangxi"University,"2019."(in"Chinese)
[43]"姜黎,"鄭銀,"王平,"劉國(guó)軍."刈割對(duì)杏樹(shù)間作的紫花苜蓿根系和土壤理化性質(zhì)的影響[J]."北方園藝,"2017(24):"123-128.JIANG"L,"ZHENG"Y,"WANG"P,"LIU"G"J."Effect"of"mowing"on"the"root"system"distribution"ofnbsp;alfalfa"under"apricot"intercropping"and"lateral"root"distribution"of"apricot"and"soil"physical"and"chemical"properties"in"the"apricot"garden[J]."Northern"Horticulture,"2017(24):"123-128."(in"Chinese)
[44]"王寧欣."豆科牧草與庫(kù)爾勒香梨間作下生物固氮與轉(zhuǎn)移效率的研究[D]."烏魯木齊:"新疆農(nóng)業(yè)大學(xué),"2022.WANG"N"X."Study"of"biological"nitrogen"fixation"and"transfer"efficiency"under"the"intercropping"of"legumes"and"Pyrus"sinkiangensis[D]."Urumqi:"Xinjiang"Agricultural"University,"2022."(in"Chinese)