摘 要:【目的】微生物菌劑的作用效果受作物及生態(tài)環(huán)境的影響較大,篩選適應新疆土壤類型及氣候特點的具有促生長、抗倒伏和耐受生物或非生物脅迫等作用的功能菌株,為新疆干旱區(qū)農(nóng)業(yè)微生物資源收集與挖掘提供依據(jù)。
【方法】采用浸種方式進行小麥盆栽試驗,測定單菌及其組合對小麥生長和生理特性的影響。
【結果】從新疆不同生態(tài)環(huán)境土壤中分離得到9株具有促生功能的菌株,均有不同程度的耐鹽堿、耐干旱等特性。在輕度鹽堿土中,9株菌小麥發(fā)芽率增幅為6.67%~33.33%,株高為6.91%~54.09%,鮮重為15.74%~75.32%,葉綠素含量為27.03%~143.87%;8株菌提高了小麥植株具抗病性的苯丙氨酸解氨酶(PAL)酶活,增幅為18.06%~89.59%;5株菌提高了小麥植株具抗逆性的過氧化物酶(POD)酶活;3株菌增加了小麥植株與抗倒伏特性相關的木質(zhì)素含量,分別提高了19.10%、13.77%和8.43%。結合促生、抗倒伏、抗逆性等功能,對其中3株具有不同功能的菌株Y24(類芽孢桿菌屬)、SD5(芽孢桿菌屬)、L6(鹽單胞菌屬)進行組合。組合后SD5-L對小麥生長和生理特性的總體效果最佳。發(fā)芽率和鮮重較SD5和L6單菌分別增加7.15%和0.00%、133.33%和1.23%,葉綠素、木質(zhì)素含量分別增加了100.00%和92.03%、5.34%和2.45%,PAL、POD酶活性分別增加了8.25%和44.80%、4.13%和-6.04%。
【結論】在新疆干旱區(qū)輕度鹽堿脅迫下,促生菌組合后小麥未明顯增加株高,但發(fā)芽率、鮮重、光合作用、抗倒伏和抗病性等功能效果顯著優(yōu)于單一菌株,不同菌株之間能夠協(xié)同增效。芽孢桿菌屬和鹽單胞菌屬組合可以發(fā)揮菌株更大作用,可促進小麥生長和提高植株的抗逆性。
關鍵詞:小麥;功能菌株;合成菌群;促生評價
中圖分類號:S-188;S512"" 文獻標志碼:A"" 文章編號:1001-4330(2024)12-2890-12
0 引 言
【研究意義】小麥是新疆重要的糧食作物,2020年新疆小麥種植面積達106.9×104 hm2,總產(chǎn)582.09×104 t,單產(chǎn)5 445.18 kg/hm2,居全國第6位[1]。新疆屬干旱半干旱地區(qū)、溫帶大陸性荒漠氣候[2],該區(qū)域農(nóng)田受鹽漬化、次生鹽漬化和干旱脅迫的土壤面積較大[3-4],低溫冷凍、高溫、熱干風、沙塵和冰雹等農(nóng)業(yè)氣象災害頻發(fā)[5],施肥結構、比例、分配等是影響小麥抗逆性、品質(zhì)、化肥利用率的因素[6]。因此,結合小麥種植區(qū)氣候條件、土壤情況等因素,篩選優(yōu)質(zhì)品種、合理調(diào)節(jié)種植密度、規(guī)范小麥種植技術、科學合理施肥,對提高小麥質(zhì)量、促進小麥高產(chǎn)具有重要意義?!厩叭搜芯窟M展】收集和挖掘新疆干旱、鹽堿區(qū)域特有的、能較好適應其特殊生態(tài)環(huán)境的促生菌,有利于干旱區(qū)農(nóng)業(yè)綠色高效生產(chǎn)[7-8]。促生菌具有分泌植物激素、改善生物或非生物脅迫環(huán)境,增強作物抗病害、抗倒伏、防早衰等能力,將土壤中作物難以利用的物質(zhì)轉(zhuǎn)化為可以吸收的養(yǎng)分、提高土壤微生物多樣性,進而促進植物生長、提升產(chǎn)量和品質(zhì)及維持土壤生態(tài)健康等[9-10]。分離自鹽堿地堿蓬根際土的克錫勒氏細菌,可苗期促進小麥生長發(fā)育,且對根系分泌的部分有機酸影響顯著,草酸和酒石酸可能在微生物-植物互作中具有重要作用[11]。較高固氮酶活性、溶磷特性和促生長作用的巴西固氮螺菌可提高小麥對氮素的吸收[12]。接種叢枝菌根真菌和植物根際促生菌,可調(diào)節(jié)小麥應對干旱的生理生化過程,增加生物量,提高植株脯氨酸合成量和葉片抗氧化酶活性[13]??莶菅挎邨U菌和蜂房類芽孢桿菌能誘導小麥植株增加酚類化合物(類黃酮、羥基肉桂酸HCAs和HCA酰胺),進而啟動對條銹病感染的系統(tǒng)抗性[14]。金黃桿菌屬可高效去除土壤中DDT等污染物,具有多條高效合成IAA的代謝途徑,促生效果明顯[15]。熒光假單胞菌產(chǎn)鐵載體,可促進小麥根系生長增加Ni的積累,但籽粒和秸稈中無顯著變化,并改善植株礦質(zhì)營養(yǎng)[16]?!颈狙芯壳腥朦c】促生菌的應用效果具有區(qū)域特異性,受土壤類型和微生物群落、生態(tài)環(huán)境等因素的影響,選用本地有益微生物可改善植物-細菌相互作用,與商業(yè)促生菌相比,對土壤微生物的不利影響最小[17]。新疆特殊干旱區(qū)具有獨特多樣的生態(tài)環(huán)境,擁有形態(tài)各異、種類豐富、功能眾多的微生物資源,研究和開發(fā)價值較大[18-21]。【擬解決的關鍵問題】從新疆特殊環(huán)境微生物資源庫中輻射污染、鹽堿、干旱等不同生態(tài)地區(qū)及鹽生植物根際土壤篩選并保存的土著促生細菌中,挖掘適合新疆干旱生態(tài)區(qū)具有小麥促生長、抗倒伏和抗鹽堿、干旱等逆境功能的微生物菌株,并進行組合,為提升新疆特殊環(huán)境微生物資源開發(fā)利用提供基礎理論依據(jù)。
1 材料與方法
1.1 材 料
1.1.1 菌 株
所用菌株為新疆農(nóng)業(yè)科學院微生物應用研究所特殊環(huán)境微生物資源庫從新疆相關荒漠、農(nóng)田等生態(tài)區(qū)篩選并保存的土壤及鹽生植物、棉花和核桃等根際土壤,前期已進行耐鹽堿、耐旱、ACC脫氨酶、解磷、解鉀、固氮、產(chǎn)IAA等功能驗證[22],具有促生功能及生態(tài)適應性的細菌菌株。表1
1.1.2 土 樣
供試土樣采自新疆農(nóng)業(yè)科學院綜合試驗場,土壤類型為灰漠土,土壤基礎理化性質(zhì):有機質(zhì)22.2 g/kg、速效氮81.7 mg/kg、速效磷64.1 mg/kg、速效鉀25.4 mg/kg、總鹽2.5 g/kg、電導率0.6 mS/cm和pH 8.1,為輕度鹽堿土。
1.1.3 主要培養(yǎng)基
功能菌株常規(guī)分離、培養(yǎng)選用由青島高科園海博生物技術有限公司生產(chǎn)營養(yǎng)瓊脂(NA)培養(yǎng)基和營養(yǎng)肉湯(NB)培養(yǎng)基。其中,NA培養(yǎng)基:蛋白胨10.0 g,牛肉粉3.0 g,NaCl 5.0 g,瓊脂15.0 g,H2O 1 000 mL,pH 7.3。NB培養(yǎng)基:蛋白胨10.0 g,牛肉膏5.0 g,NaCl 5.0 g,H2O 1 000 mL,pH 7.2。解磷菌篩選培養(yǎng)基包括PKO固體培養(yǎng)基和蒙金娜固體培養(yǎng)基;解鉀菌篩選培養(yǎng)基為鉀長石粉固體培養(yǎng)基;合成IAA菌株篩選培養(yǎng)基及試劑包括改良的NB液體培養(yǎng)基(含L-色氨酸80 mg/L)、Salkowski比色液;耐鹽測定培養(yǎng)基為10%NaCl濃度的基礎培養(yǎng)基;耐堿測定培養(yǎng)基為pH 9的基礎培養(yǎng)基;采用30%濃度聚乙二醇( PEG 6000) 配制耐干旱培養(yǎng)基[23]。
1.2 方 法
1.2.1 菌種活化及斜面保存
將特殊環(huán)境微生物資源庫保存的功能菌株干粉管,用無菌水溶解后,以劃線法接種于含2%NaCl的NA培養(yǎng)基上,待菌液吸收完全后,倒置于30℃培養(yǎng)箱中培養(yǎng)2~7 d,驗純后將單菌落轉(zhuǎn)接至2% NaCl的NA培養(yǎng)基斜面上,4℃保存?zhèn)溆谩?/p>
1.2.2 單菌株施用對小麥促生、抗病、抗倒伏、抗逆境等功能作用
將活化后的單菌落接種于含2% NaCl的NB液體培養(yǎng)基中,于30℃、180 r/min 振蕩培養(yǎng)48 h后,發(fā)酵液于10 000 r/min離心10 min后,棄去上清液,采用無菌水調(diào)節(jié)菌懸液OD600值為0.04左右,使菌數(shù)量保持一致。選擇顆粒飽滿且無明顯破損的小麥種子(新春6號),使用0.1%的升汞消毒5 min,無菌水洗凈后,浸于菌懸液4 h。采用盆栽方式,設計麥種接菌和不接菌試驗處理。將菌液和對照處理的種子每20粒播入裝有2.5 kg土的20 cm×10 cm×10 cm花盆中,播種深度3 cm,于自然環(huán)境下生長至成熟期,測量試驗組和對照組小麥植株的形態(tài)學參數(shù)(發(fā)芽率、結穗率、株高、地上部分鮮重和干重、莖稈木質(zhì)素含量、葉片葉綠素含量、苯丙氨酸解氨酶和過氧化物酶活性)。
株高采用皮尺測量,取小麥整株地上部分,用電子天平稱量鮮重,烘干稱干重。木質(zhì)素含量、葉綠素含量和苯丙氨酸解氨酶(Phenylalanine ammonia lyase,PAL)和過氧化物酶(Peroxidase,POD)活性測定,均由蘇州科銘生物技術有限公司使用木質(zhì)素含量試劑盒、植物葉綠素試劑盒和PAL、POD酶活測定試劑盒完成,均采用比色法測定。
1.2.3 菌株組合對小麥生長及生理特性的影響
9株小麥多功能微生物菌株,根據(jù)小麥促豐產(chǎn)、抗倒伏、抗逆性等特性分別選擇具有較好促生、防病、抗逆、促早熟及增加木質(zhì)素含量等作用的菌株作為組合菌種,并采用代金霞等[24]的平板拮抗法檢測不同菌株之間是否有拮抗作用。將待測的促生菌株分別作為指示菌均勻涂布至2%NaCl的NA培養(yǎng)基上,將滅菌后的濾紙片間隔一定距離放置在涂有指示菌的平板上,將其它測試菌株的發(fā)酵液分別滴至濾紙片上,30℃培養(yǎng)5~7 d后,觀察菌株之間是否有拮抗作用。選擇相互協(xié)同或無拮抗作用的功能菌株分別擴培后,按兩兩組合的方式,以1∶1混合配制成復合菌液。盆栽試驗同單菌試驗,于自然環(huán)境下生長至成熟期,測量小麥植株的各種形態(tài)學參數(shù),包括發(fā)芽率、結穗率、株高、地上部分鮮重、干重和植株生理特性(葉綠素、木質(zhì)素、PAL酶和POD酶)。
1.3 數(shù)據(jù)處理
數(shù)據(jù)采用DPS v9.50版軟件單因素方差分析(one-way ANOVA)中最小顯著差數(shù)法(LSD)進行多重比較和差異顯著性檢驗(Plt; 0.05)。采用TOPSIS分析法(逼近理想解排序法)綜合評價小麥生長和植株生理特性指標,確定最佳菌株及其組合。采用WPS office 2016軟件處理試驗數(shù)據(jù)和繪制圖表。
2 結果與分析
2.1 促生菌株活化及功能驗證
研究表明,對新疆特殊環(huán)境微生物資源庫保存的具有耐鹽、耐旱、促生等功能特性的細菌菌株進行整理和活化,培養(yǎng)3~7 d后,將所得菌株保存于2% NaCl的NA培養(yǎng)基斜面上。結合前期試驗,將具有促生、抗倒伏和抗逆境等生理功能作用的20株菌通過小麥盆栽試驗,篩選獲得9株具有較好促生功能的菌株。
2.2 功能性菌株對小麥生長的影響
研究表明,與CK處理相比,促生菌浸種小麥發(fā)芽率顯著增加了6.67%~33.33%,其中菌株R11發(fā)芽率為100%。統(tǒng)計第1株小麥開始結穗后5 d不同菌株的結穗率,6株菌促進小麥早熟的作用,顯著增加了33.33%~266.67%,其中菌株L6作用效果最佳。大部分菌的作用效果均很明顯,鮮重顯著增加了15.74%~75.32%,株高增加了6.91%~54.09%,其中L6處理的小麥植株鮮重和株高增加效果均較好,分別顯著增加了62.13%和53.35%。表2
2.3 功能性菌株對小麥植株葉綠素和木質(zhì)素含量的影響
研究表明,9株菌均具有明顯提高小麥葉綠素含量的作用,增加了27.03%~143.87%,其中K27、L6和R10處理增加效果較佳,葉綠素含量分別增加了143.87%、114.55%和98.73%。
與CK處理相比,K27、Y24、SD5處理有增加小麥木質(zhì)素含量的作用,分別增加了19.10%、13.77%和8.43%。圖1
2.4 功能性菌株對小麥植株防御性保護酶活性的影響
研究表明,PAL酶活除P4低于CK處理外,其余8株菌均顯著增加了18.06%~89.59%,其中K27和R10處理提升效果最顯著,酶活分別增加了89.59%和61.62%。
與CK處理相比,Y24、L6、MM18、R11、P4處理提高了小麥植株POD酶活。圖2
2.5 功能菌株組合初步篩選
研究表明,選擇具有較好促生、防病、抗逆、促早熟及增加木質(zhì)素含量等作用的5株菌作為組合菌種,5株菌分別為Y24、R11、SD5、L6和K27。5株菌之間互相無拮抗作用。與CK處理相比,5株菌均有較好發(fā)芽率和促生效果,促早熟作用以K27、Y24、L6和R11效果較佳,抗倒伏以K27、SD5和Y24作用效果較佳,抗病性以K27、SD5和R11作用效果較佳,抗逆性以Y24、L6和R11效果較佳。
Y24-R11、R11-K27、SD5-L6和L6-K27兩兩組合方式的發(fā)芽率略高于CK處理,其余組合未增加小麥發(fā)芽率,而R11-L6組合發(fā)芽率則降低了16.67%。與CK處理相比,結穗率SD5-L6和L6-K27組合達95%和90%,L6-K27組合略高于CK處理。株高除Y24-SD5、Y24-L6、SD5-L6和SD5-K27組合與CK處理差異不顯著,其余均降低,最低下降了25.82%(R11-L6組合)。小麥干重Y24-SD5、Y24-L6和SD5-L6組合分別增加了22.69%、3.24%和8.33%,其余則降低。木質(zhì)素含量各組合處理均高于CK處理,增加了5.24%~36.05%。選擇既要較快生長、促進早熟,又要有較好抗倒伏、抗逆性等能力的微生物組合方式。選擇3組組合方式,分別為Y24-SD5、Y24-L6和SD5-L6,其中以SD5-L6效果最佳,株高無增加,但發(fā)芽率、干重和木質(zhì)素含量增加,結穗率也較好。表3
2.6 功能性菌株組合對小麥植株生長及生理特性的影響
研究表明,單菌和組合對小麥發(fā)芽率總體無太大影響,但小麥株高和鮮重不同菌株和組合有差異。與CK相比,株高增加了1.64%~18.42%,其中Y24-SD5-L6三者組合效果最佳,為18.42%,其次是L6-Y24組合,為9.25%,其余差異均不顯著。鮮重增加了9.19%~65.72%,其中L6-Y24組合效果最佳,為65.72%,其次為Y24-SD5-L6、Y24和Y24-SD5,分別增加了57.95%、55.83%和50.88%。表4
2.6.1 功能性菌株組合對小麥植株葉綠素和木質(zhì)素含量的影響
研究表明,菌株Y24葉綠素含量提升效果最好,與CK處理相比,顯著增加了71.21%;菌株兩兩組合L6-Y24、Y24-SD5和SD5-L6分別顯著增加了42.16%、56.04%和48.59%;但3株菌組合葉綠素含量差異不顯著。
功能菌株及其組合均可以提高小麥植株木質(zhì)素含量,增加了6.50%~17.27%,以SD5和Y24-SD5的含量最高,分別顯著增加了17.17%和17.27%;其次是Y24和SD5-L6,分別顯著增加了10.66%和10.91%。圖3
2.6.2 功能性菌株對小麥植株防御性保護酶活性的影響
研究表明,與CK處理相比,功能菌株及其組合PAL酶活增加了2.33%~48.99%,其中SD5-L6顯著增加了48.99%,其次SD5、L6-Y24和Y24-SD5-L6分別顯著增加了37.64%、32.61%和30.79%。與CK處理相比,L6提升效果最佳,顯著增加了16.50%;其次是SD5-L6,顯著增加了9.46%;其它處理差異不顯著或顯著降低。圖4
2.6.3 基于TOPSIS法綜合評價功能菌株及其組合對小麥生長的效應
研究表明,小麥各處理的貼近度Ci從優(yōu)到劣依次為SD5-L6處理gt;Y24處理gt;L6-Y24處理gt;Y24-SD5處理gt;Y24-SD5-L6處理gt;L6處理gt;SD5處理gt;CK處理。其中SD5-L6處理綜合性能最佳,統(tǒng)計量為 0.742,其次是Y24和L6-Y24,統(tǒng)計量分別為0.666和0.660。SD5-L6組合小麥發(fā)芽率、株高和鮮重較CK處理分別增加7.15%、3.24%和45.58%,葉綠素、木質(zhì)素含量和PAL、POD酶活性分別增加了48.59%、10.91%和48.99%、9.46%。較SD5和L6單菌,小麥發(fā)芽率、株高和鮮重分別增加7.15%和0.00%、-2.02%和0.51%、133.33%和1.23%,葉綠素、木質(zhì)素含量分別增加了100.00%和92.03%、5.34%和2.45%,PAL、POD酶活性分別增加了8.25%和44.80%、4.13%和-6.04%。組合后小麥無明顯增加株高,但發(fā)芽率、鮮重、葉綠素含量、抗倒伏和抗病性等功能效果顯著優(yōu)于單一菌株。采用功能菌及其組合浸種能夠促進小麥生長,且不同功能菌株組合處理對小麥生長和生理特性的總體效果好于單菌處理。表5
3 討 論
3.1 葉綠素作為衡量植株生長的生理指標,直接參與植物光合作用,促進有機物質(zhì)積累,進而影響植株的生長速度,提高作物品質(zhì),其含量受植物自身遺傳因素和外界環(huán)境(光、溫、水、肥等)因素共同影響[25]。
小麥抗倒伏能力不僅與莖稈機械強度,還和株高關系密切,適當降低株高可以提高作物抗倒伏能力。但植株生物量是作物高產(chǎn)的物質(zhì)基礎,如果僅單純降低株高,難以同步實現(xiàn)作物高產(chǎn)和抗倒伏。木質(zhì)素能提高細胞壁硬度、機械支持力、抗壓強度,還能促進機械組織形成,常作為研究作物抗倒伏的切入點和關鍵因素。因此增加木質(zhì)素含量,增強莖稈機械強度是實現(xiàn)作物抗倒伏能力提高的有效途徑[26]。
PAL酶能促進苯丙烷類代謝、產(chǎn)生包括黃酮、黃酮醇、木脂素、香豆素、花青素、花色素苷、肉桂酸及大分子化合物木質(zhì)素等聚酚類化合物,對植物生長調(diào)節(jié)、次生代謝物合成和抗逆抗蟲抗病性等起著重要作用[27]。
POD酶廣泛存在于植物各組織和器官中,是植物清除H2O2的重要抗氧化酶,能夠促進植株在逆境條件下(包括抗旱、抗寒、抗鹽、抗病等)生長發(fā)育,可以了解植物生長發(fā)育及代謝狀況[28]。
由于單株菌在促生功能和環(huán)境適應上存在一定局限性,因此將具有不同促生功能的菌株組合施用,根據(jù)不同菌在土壤中的存活和定殖,代謝途徑上相互作用,構建兼容、穩(wěn)定、協(xié)同增強有益功能和環(huán)境耐受性的人工合成菌群,已成為目前的研究熱點方向[29]。
施用化肥可以提高中低產(chǎn)田土壤肥力,但也會對土壤生態(tài)系統(tǒng)產(chǎn)生如施用過量、次生鹽漬化等負面影響,在保障小麥生長和產(chǎn)量持續(xù)穩(wěn)定提升以及耕地土壤環(huán)境不受破壞的前提下,利用促生菌可提高小麥對生物及非生物脅迫的耐受性,改善植物對土壤養(yǎng)分吸收利用,促進小麥生長發(fā)育[30-31]。因此,分離適應新疆鹽堿土壤及干旱氣候條件的優(yōu)良菌株將對菌肥開發(fā)和利用具有重要意義[20,32]。
試驗篩選的9株促生菌均在新疆不同生態(tài)環(huán)境中廣泛分布,生長良好、可分泌多種酶和激素等,呈現(xiàn)多樣性的作用機制,促生菌的多重促生特性在植物對抗逆境脅迫中發(fā)揮著重要作用。鹽單胞菌和葉桿菌屬具有較好的耐鹽堿和干旱能力,能在鹽脅迫下促進小麥幼苗的發(fā)芽率和根長[33-34],但無解磷、解鉀和固氮能力。從鹽生植物中華補血草組織和鹽爪爪根際分離出的白蟻菌屬、芽孢桿菌屬和類芽孢桿菌具有解磷、解鉀、固氮和產(chǎn)IAA等多項促生功能,可提高土壤肥力,促進植物生長,保護植物免受鹽脅迫[35-37]。而中華微桿菌屬、藤黃單胞菌、植物桿菌屬也具有多種功能[38-40],但耐旱能力相對弱一些。而中慢生根瘤菌屬則具有較強的固氮作用[41],但無解磷、解鉀和產(chǎn)ACC脫氨酶能力。目前9株促生菌中有些尚未見用于新疆地區(qū)小麥促生的報道,通過研究,將為后續(xù)從耐多種脅迫、新疆生態(tài)環(huán)境適應特性及從基因角度揭示其促生機理奠定一定的基礎。
3.2
9株促生菌均能提高小麥植株葉綠素含量,但不同菌株促進作用效果有差異,這可能與菌種代謝產(chǎn)物濃度和在土壤中定殖能力等密切相關。由于新疆滴灌小麥種植密度高,水肥供給充足,使根系分布較淺且生長旺盛,在一定程度上降低了小麥的抗倒伏能力,是制約新疆小麥產(chǎn)量提高的重要因素。前期研究表明微生物在一定程度上能提高小麥的抗倒伏能力,進而增加了小麥產(chǎn)量[42],研究表明葉桿菌屬、類芽孢桿菌屬和芽孢桿菌屬也促進小麥具有較高的抗倒伏能力。由于新疆存在多種惡劣環(huán)境的脅迫,促生菌還可通過激活體內(nèi)抗氧化酶活性和系統(tǒng)抗性來提高小麥對環(huán)境脅迫的適應性,進而促進其生長。研究中類芽孢桿菌、鹽單胞菌、中華微桿菌、白蟻桿菌均有提高小麥植株PAL和POD活性的作用。類芽孢桿菌菌株通過誘導調(diào)節(jié)以PAL和POD基因表達為特征的防御機制潛力,對植株起保護作用[43]。在鹽堿脅迫下施用根瘤菌可提高甘草多酚氧化酶(PPO)、過氧化物酶(POD)和苯丙氨酸解氨酶(PAL)活性,緩解鹽脅迫[44]。其它菌株在提高作物防御性保護酶方面還未見報道。
3.3
促生菌及其復合菌群在鹽堿、干旱地區(qū)小麥種植中也得到很好的應用[45-46]。結合菌株資源競爭、拮抗競爭能力或其他有益特性,以及多個營養(yǎng)級別微生物間的協(xié)同效應,確保有益菌群施用后能更好地適應環(huán)境和發(fā)揮有益功能,是當下提高合成菌群穩(wěn)定性和功能性的重要手段[47]。試驗復篩得到3株對小麥分別具有高效促生、拮抗、促早熟、抗倒伏等功能的微生物菌株。由于單一菌株對植物促生、防病等效果較低,且穩(wěn)定性不高,故將3株菌兩兩組合進行復篩。3株菌中Y24為一株耐輻射類芽孢桿菌新菌種,其余2株菌均從耐鹽植物鹽爪爪根際分離獲得,分別為芽孢桿菌屬(SD5)和鹽單胞菌屬(L6)。組合后SD5-L6浸種處理對小麥生長和生理特性的總體效果最好。說明組合后不同菌株之間能夠協(xié)同增效,小麥發(fā)芽率、鮮重、葉綠素含量、抗倒伏和抗逆等功能效果顯著優(yōu)于單一菌株。由于3株菌及其組合處理適宜于新疆地理氣候條件,可應用到作物促進生長中。多菌株混合接種的促生效果不一定比單菌株接種高,具體效果受土壤環(huán)境、菌株類型與組合不同而有所差異[48]。下一步需對菌株之間相互作用機理以及菌株與作物之間作用效果及田間應用進行更深入研究。
4 結 論
從新疆特殊環(huán)境微生物資源庫中篩選出9株具有促生、抗倒伏、抗逆等功能的微生物菌株。9株菌對小麥有較好發(fā)芽率和促生效果,發(fā)芽率增幅為6.67%~33.33%,株高為6.91%~54.09%,鮮重為15.74%~75.32%,葉綠素含量為27.03%~143.87%;其中3株菌(K27、Y24、SD5)有增加小麥植株木質(zhì)素含量的作用,分別提高了19.10%、13.77%和8.43%。8株菌提高了小麥植株具有抗病性的PAL酶活,提升18.06%~89.59%。5株菌(Y24、L6、MM18、R11、P4)提高了小麥植株具有抗逆特性的POD酶活。結合促生、抗倒伏、促早熟等功能,對其中3株具有不同功能的菌株Y24、SD5、L6進行組合。組合后SD5-L6浸種處理對小麥生長和生理特性的總體效果最佳。發(fā)芽率和鮮重較SD5和L6單菌分別增加7.15%和0.00%、133.33%和1.23%,葉綠素、木質(zhì)素含量分別增加了100.00%和92.03%、5.34%和2.45%,PAL、POD酶活性分別增加了8.25%和44.80%、4.13%和-6.04%。利用不同功能促生菌構建合成菌群可以更有效改善新疆干旱區(qū)輕度鹽堿脅迫下小麥的生長、抗倒伏和抗逆性能力。
參考文獻(References)
[1]肖麗, 吳新元, 王成. 種業(yè)振興背景下推進新疆小麥育種工作對策研究——以新疆農(nóng)業(yè)科學院為例[J]. 農(nóng)業(yè)科技管理, 2022, 41(5): 17-20.
XIAO Li, WU Xinyuan, WANG Cheng. Studies on countermeasures of promoting wheat breeding in Xinjiang under the background of seed industry revitalization, taking Xinjiang academy of agricultural sciences as an example[J]. Management of Agricultural Science and Technology, 2022, 41(5): 17-20.
[2] 高曉宇, 郝海超, 張雪琪, 等. 中國西北干旱區(qū)植被水分利用效率變化對氣象要素的響應——以新疆為例[J]. 干旱區(qū)地理, 2023, 46(7): 1111-1120.
GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of Northwest China: a case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.
[3] 李菲菲, 周霞, 周玉璽. 西北地區(qū)農(nóng)業(yè)干旱脆弱性評估及時空分布特征[J]. 干旱區(qū)研究, 2023, 40(4): 663-669.
LI Feifei, ZHOU Xia, ZHOU Yuxi. Vulnerability assessment and spatiotemporal distribution of agricultural drought in Northwest China[J]. Arid Zone Research, 2023, 40(4): 663-669.
[4] 王相平, 楊勁松, 張勝江, 等. 改良劑施用對干旱鹽堿區(qū)棉花生長及土壤性質(zhì)的影響[J]. 生態(tài)環(huán)境學報, 2020, 29(4): 757-762.
WANG Xiangping, YANG Jinsong, ZHANG Shengjiang, et al. Effects of different amendments application on cotton growth and soil properties in arid areas[J]. Ecology and Environmental Sciences, 2020, 29(4): 757-762.
[5] 李紅麗. 新疆農(nóng)業(yè)氣象災害對棉花生長的影響及防范措施[J]. 智慧農(nóng)業(yè)導刊, 2022, 2(10): 22-24.
LI Hongli. The impact of agricultural meteorological disasters in Xinjiang on cotton growth and preventive measures [J]. Journal of Smart Agriculture, 2022, 2(10): 22-24.
[6] 湯明堯, 沈重陽, 陳署晃, 等. 新疆小麥、玉米的產(chǎn)量和氮磷鉀肥利用效率[J]. 中國農(nóng)業(yè)科學, 2022, 55(14): 2762-2774.
TANG Mingyao, SHEN Chongyang, CHEN Shuhuang, et al. Yield of wheat and maize and utilization efficiency of nitrogen, phosphorus and potassium in Xinjiang[J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
[7] 左筱筱, 顏安, 寧松瑞, 等. 鹽堿麥田生物有機肥促生增產(chǎn)培肥效果[J]. 新疆農(nóng)業(yè)科學, 2023, 60(10): 2532-2540.
ZUO Xiaoxiao, YAN An, NING Songrui, et al. Study on the effect of Bio-Organic fertilizer on promoting growth and increasing yield in saline alkali wheat field[J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2532-2540.
[8] Soares E V, Petropoulos S A, Soares H M V M. Editorial: Bio-based solutions for sustainable development of agriculture[J]. Frontiers in Plant Science, 2022, 13: 1056140.
[9] 賀文婧, 陸旭桐, 蔣毅寧, 等. 植物根際促生菌研究文獻計量分析[J]. 土壤通報, 2023, 54(4): 978-988.
HE Wenjing, LU Xutong, JIANG Yining, et al. Research of plant growth promoting rhizobacteria(PGPR)based on knowledge graph analysis and its development trend[J]. Chinese Journal of Soil Science, 2023, 54(4): 978-988.
[10] Cao M Y, Narayanan M, Shi X J, et al. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation[J]. Environmental Research, 2023, 217: 114924.
[11] 苑霖, 王新珍, 孫宏勇, 等. 一株克錫勒氏菌對小麥苗期的促生耐鹽效應研究[J]. 中國生態(tài)農(nóng)業(yè)學報(中英文), 2021, 29(11): 1913-1920.
YUAN Lin, WANG Xinzhen, SUN Hongyong, et al. Growth promotion and mitigation of salt stress in wheat seedlings by a Kushneria bacterium[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1913-1920.
[12] Galindo F S, Pagliari P H, Buzetti S, et al. Interactive effect of silicon application and Azospirillum brasilense inoculation on wheat nutrient uptake and accumulation combined with N application rates[J]. Journal of Plant Nutrition, 2023, 46(16): 3954-3968.
[13] Ikan C, Ben-Laouane R, Ouhaddou R, et al. Co-inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria can mitigate the effects of drought in wheat plants (Triticum durum)[J]. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 2023, 157(4): 907-919.
[14] Mashabela M D, Tugizimana F, Steenkamp P A, et al. Metabolomic evaluation of PGPR defence priming in wheat (Triticum aestivum L.) cultivars infected with Puccinia striiformis f.sp. tritici (stripe rust)[J]. Frontiers in Plant Science, 2023, 14: 1103413.
[15] 劉纓, 王夢雨, 陳國參, 等. DDT降解菌株Chryseobacterium sp. PYR2對小麥的促生作用及其機理[J]. 微生物學通報, 2019, 46(6): 1346-1355.
LIU Ying, WANG Mengyu, CHEN Guocan, et al. Plant growth-promoting effect and its mechanism of the DDT-degrading strain PYR2[J]. Microbiology China, 2019, 46(6): 1346-1355.
[16] Shabayev V P, Ostroumov V E. Spring wheat yield under application of growth-promoting rhizobacterium in soil contaminated with nickel[J]. Russian Agricultural Sciences, 2023, 49(2): 158-163.
[17] Jofre M F, Mammana S B, Appiolaza M L, et al. Melatonin production by rhizobacteria native strains: Towards sustainable plant growth promotion strategies[J]. Physiologia Plantarum, 2023, 175(1): e13852.
[18] 潘宇, 張昊, 李湘, 等. 耐鹽促生菌與其復合菌劑對鹽脅迫狼尾草生長及生理生化的影響[J]. 貴州農(nóng)業(yè)科學, 2023, 51(7): 39-49.
PAN Yu, ZHANG Hao, LI Xiang, et al. Effect of salt-tolerant and growth-promoting bacteria and composite microbial agent on growth and Physicoch-emical of Pennisetum alopecuroides under salt stress[J]. Guizhou Agricultural Sciences, 2023, 51(7): 39-49.
[19] 王改萍, 祝長青, 王茹. 一株耐鹽甲基桿菌Methylobacterium sp. W-1的分離及促生潛能研究[J]. 微生物學通報, 2021, 48(11): 4134-4144.
WANG Gaiping, ZHU Changqing, WANG Ru. Isolation and growth-promoting potential of a salt tolerant strain of Methylobacterium sp. W-1[J]. Microbiology China, 2021, 48(11): 4134-4144.
[20] Yuan Y, Shi Y L, Liu Z Z, et al. Promotional properties of ACC deaminase-producing bacterial strain DY1-3 and its enhancement of maize resistance to salt and drought stresses[J]. Microorganisms, 2023, 11(11): 2654.
[21] Zhang H, Yang Q L, Zhao J J, et al. Metabolites from Bacillus subtilis J-15 affect seedling growth of Arabidopsis thaliana and cotton plants[J]. Plants, 2022, 11(23): 3205.
[22] 張志東, 顧美英, 唐琦勇, 等. 鹽爪爪根際耐鹽促生菌的篩選及穴栽驗證[J]. 中國農(nóng)業(yè)科技導報, 2021, 23(3): 186-192.
ZHANG Zhidong, GU Meiying, TANG Qiyong, et al. Screening of salt-tolerant and growth-promoting bacteria in the rhizosphere of Kalidium foliatum and the functional identification in pot experiments[J]. Journal of Agricultural Science and Technology, 2021, 23(3): 186-192.
[23] 陳臘, 米國華, 李可可, 等. 多功能植物根際促生菌對東北黑土區(qū)玉米的促生效果[J]. 應用生態(tài)學報, 2020, 31(8): 2759-2766.
CHEN La, MI Guohua, LI Keke, et al. Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in Northeast China[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2759-2766.
[24] 代金霞, 田平雅, 沈聰, 等. 耐鹽植物根際促生菌篩選及促生效應研究[J]. 生態(tài)環(huán)境學報, 2021, 30(5): 968-975.
DAI Jinxia, TIAN Pingya, SHEN Cong, et al. Screening of rhizosphere bacteria from salt tolerant plants and their growth promoting effects[J]. Ecology and Environmental Sciences, 2021, 30(5): 968-975.
[25] 黃鍵, 王德新, 楊松, 等. 氮磷葉面噴施對云南松苗木葉綠素含量及其異速生長關系的影響[J]. 西南林業(yè)大學學報(自然科學), 2023, 43(3): 33-41.
HUANG Jian, WANG Dexin, YANG Song, et al. Effect on chlorophyll content and allometric growth relationship of Pinus yunnanensis seedlings by foliar spraying of nitrogen and phosphorus[J]. Journal of Southwest Forestry University (Natural Sciences), 2023, 43(3): 33-41.
[26] Wang L M, Xi N, Lang D Y, et al. Potential biocontrol and plant growth promotion of an endophytic bacteria isolated from Glycyrrhiza uralensis seeds[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 55.
[27] Najafi Zilaie M, Mosleh Arani A, Etesami H, et al. Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status[J]. Applied Soil Ecology, 2022, 179: 104578.
[28] 李艷燕, 趙彩桐, 齊陽陽, 等. 大豆主莖木質(zhì)素積累規(guī)律分析[J]. 華北農(nóng)學報, 2022, 37(3): 77-85.
LI Yanyan, ZHAO Caitong, QI Yangyang, et al. Analysis on the accumulation of lignin in the stem of soybean[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3): 77-85.
[29] Nishra J, Meenu S, Kumar J C, et al. Harnessing the efficacy of multifunctional rhizobacterial consortia for promoting the growth of Anethum graveolens L.[J]. Frontiers in Sustainable Food Systems, 2023, 7: 1126621.
[30] Yaghoubi Khanghahi M, AbdElgawad H, Verbruggen E, et al. Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions[J]. Physiologia Plantarum, 2022, 174(6): e13800.
[31] 王丹, 趙亞光, 張鳳華. 耐鹽促生菌篩選、鑒定及對鹽脅迫小麥的效應[J]. 麥類作物學報, 2020, 40(1): 110-117.
WANG Dan, ZHAO Yaguang, ZHANG Fenghua. Screening and identification of salt-tolerant plant growth-promoting bacteria and its promotion effect on wheat seedling under salt stress[J]. Journal of Triticeae Crops, 2020, 40(1): 110-117.
[32] Yue H T, Sun S W, Wang R Q, et al. Study on the mechanism of salt relief and growth promotion of Enterobacter cloacae on cotton[J]. BMC Plant Biology, 2023, 23(1): 656.
[33] 孫雪, 董永華, 王娜, 等. 耐鹽堿促生菌的篩選及性能[J]. 生物工程學報, 2020, 36(7): 1356-1364.
SUN Xue, DONG Yonghua, WANG Na, et al. Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria[J]. Chinese Journal of Biotechnology, 2020, 36(7): 1356-1364.
[34] Flores-Félix J D, Velázquez E, Martínez-Molina E, et al. Connecting the lab and the field: genome analysis of Phyllobacterium and Rhizobium strains and field performance on two vegetable crops[J]. Agronomy, 2021, 11(6): 1124.
[35] Qin S, Zhang Y J, Yuan B, et al. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress[J]. Plant and Soil, 2014, 374(1): 753-766.
[36] 賈崢嶸, 郝佳麗, 郝艷芳, 等. 4種促生菌劑對甘薯生長及土壤肥力的影響[J]. 干旱區(qū)資源與環(huán)境, 2022, 36(9): 166-172.
JIA Zhengrong, HAO Jiali, HAO Yanfang, et al. Effects of four growth-promoting bacteria on the growth of sweet potato and soil fertility[J]. Journal of Arid Land Resources and Environment, 2022, 36(9): 166-172.
[37] Yuan L F, Jiang H, Jiang X L, et al. Comparative genomic and functional analyses of Paenibacillus peoriae ZBSF16 with biocontrol potential against grapevine diseases, provide insights into its genes related to plant growth-promoting and biocontrol mechanisms[J]. Frontiers in Microbiology, 2022, 13: 975344.
[38] Riyanti, Zumkeller C M, Spohn M, et al. Draft genome sequence of Sinomicrobium sp. strain PAP.21, isolated from a coast sample of Papua, Indonesia[J]. Microbiology Resource Announcements, 2023, 12(4): e0126822.
[39] Wang Z G, Piao Y J, Zhang F G, et al. Promoting effects on watermelon and fermentation optimization of Plantibacter sp. WZW03[J]. Journal of Plant Growth Regulation, 2020, 39(3): 970-980.
[40] Domínguez-Castillo C, Alatorre-Cruz J M, Castaeda-Antonio D, et al. Potential seed germination-enhancing plant growth-promoting rhizobacteria for restoration of Pinus chiapensis ecosystems[J]. Journal of Forestry Research, 2021, 32(5): 2143-2153.
[41] 秦杰, 高振峰, 岳愛琴, 等. 一株晉大53號大豆中慢生根瘤菌的分離鑒定及抗逆分析[J]. 大豆科學, 2020, 39(6): 898-905.
QIN Jie, GAO Zhenfeng, YUE Aiqin, et al. Isolation, identification and stress resistance analysis of A Mesorhizobium isolated from soybean variety jinda 53[J]. Soybean Science, 2020, 39(6): 898-905.
[42] 高雁, 張永強, 張志東, 等. 功能性微生物菌劑對小麥生長和根際土壤生態(tài)的影響[J]. 新疆農(nóng)業(yè)科學, 2021, 58(1): 115-124.
GAO Yan, ZHANG Yongqiang, ZHANG Zhidong, et al. Effects of functional microbial agents on wheat growth and rhizosphere soil micro-ecology[J]. Xinjiang Agricultural Sciences, 2021, 58(1): 115-124.
[43] Samain E, van Tuinen D, Jeandet P, et al. Biological control of Septoria leaf blotch and growth promotion in wheat by Paenibacillus sp. strain B2 and Curtobacterium plantarum strain EDS[J]. Biological Control, 2017, 114: 87-96.
[44] Mousavi S S, Karami A, Saharkhiz M J, et al. Microbial amelioration of salinity stress in endangered accessions of Iranian licorice (Glycyrrhiza glabra L.) [J]. BMC Plant Biology, 2022, 22(1): 322-322.
[45] Khan M Y, Nadeem S M, Sohaib M, et al. Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions[J]. Frontiers in Microbiology, 2022, 13: 958522.
[46] Saadaoui N, Silini A, Cherif-Silini H, et al. Semi-arid-habitat-adapted plant-growth-promoting rhizobacteria allows efficient wheat growth promotion[J]. Agronomy, 2022, 12(9): 2221.
[47] 劉艷霞, 陶正朋, 李想, 等. 抗青枯病型根際促生菌(PGPR)菌群構建及其生物防控機制[J]. 微生物學報, 2023, 63(3): 1099-1114.
LIU Yanxia, TAO Zhengpeng, LI Xiang, et al. Construction of bacterial wilt-resistant and plant growth promoting rhizobacteria (PGPR) and the mechanism of biocontrol[J]. Acta Microbiologica Sinica, 2023, 63(3): 1099-1114.
[48] Timofeeva A M, Galyamova M R, Sedykh S E. Plant growth-promoting soil bacteria: nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities[J]. Plants, 2023, 12(24): 4074.
Effects of growth promoting bacteria and their combinations on the growth and physiological characteristics of wheat in arid areas of Xinjiang
GU Meiying1,2, GE Chunhui2,3, ZHU Jing1,2, TANG Qiyong1,2, Ainijiang Ersiman1,2, CHU Min1,2, TANG Guangmu2,3,YI Yuanyang1,2, XU Wanli2,3, ZHANG Zhidong1,2
(1. Xinjiang Laboratory of Special Environmental Microbiology /Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; 2. Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-arid Regions), MOARA, Urumqi 830091, China; 3.Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)
Abstract:【Objective】 The effect of microbial agents is greatly influenced by crop and ecological conditions, so this research aims to screen the functional strains adapted to the growth promotion, lodging resistance and biotic or abiotic stress tolerance in Xinjiang soil type and climate characteristics.To provide high-quality bacterial resources for the development of microbial fertilizers suitable for Xinjiang arid areas.
【Methods】 "Ecological adaptability studies showed that these strains had varying degrees of salt alkali and drought resistance, etc.
【Results】 "Nine strains with growth promoting functions were isolated from soils in different ecological environments in Xinjiang.The effects of single and compound bacteria on the growth and physiological characteristics of wheat were determined using seed soaking method by pot experiment.In mild saline alkali soil, the germination rate of 9 strains increased by 6.67%-33.33%, the plant height increased by 6.91%-54.09%, the fresh weight increased by 15.74%-75.32%, and the chlorophyll content increased by 27.03%-143.87%.8 strains increased the activity of phenylalanine ammonia lyase with disease resistance in wheat plants, and the increase ranged between 18.06%-89.59%.5 strains of increased the peroxidase activities with stress resistance in wheat plants.3 strains increased the lignin content related to lodging resistance in wheat plants by 19.10%, 13.77%, and 8.43%, respectively.Combining functions such as growth promotion, lodging resistance, and stress resistance, three strains of Y24 (Paenibacillus), SD5 (Bacillus), and L6 (Halomonas) with different functions of promoting growth, resisting lodging and promoting premature maturation were combined.The combination of SD5-L6 treatment had the best effect on wheat growth and physiological characteristics.Compared to SD5 and L6, the germination rate and fresh weight increased by 7.15% and 0.00%, 133.33% and 1.23%, respectively.The content of chlorophyll and lignin increased by 100.00% and 92.03%, 5.34% and 2.45%, respectively.The activity of PAL and POD enzymes increased by 8.25% and 44.80%, 4.13% and -6.04%, respectively.
【Conclusion】 Under mild saline alkali stress in arid areas of Xinjiang, wheat plant height does not increase significantly after combination, but the functional effects of germination rate, fresh weight, photosynthesis, lodging resistance, and stress resistance are significantly better than those of a single strain, which shows that different strains can synergistically increase efficiency.The combination of Bacillus and halomonas can play a greater role in promoting wheat growth and enhancing plant stress resistance.
Key words:wheat; functional strains; synthetic bacteria consortia; promoting effects
Fund projects:National Key Research and Development Program of China (2021YFD1900802); Stable Support Project of Xinjiang Academy of Agricultural Sciences (xjnkywdzc-2023002-3-2); Major Science and Technology Projects of Xinjiang Uygur Autonomous Region (2023A02012-3-5)
Correspondence author:XU Wanli (1971-), male, from Shaanxi, researcher, master's/doctoral supervisor, research direction: soil environment and ecological health, (E-mail) 363954019@qq.com
ZHANG Zhidong (1977-), male, from Xinjiang, researcher, master's supervisor, research direction: utilization of microbial resources in special environment, (E-mail) 28756401@qq.com
基金項目:國家重點研發(fā)計劃項目(2021YFD1900802);新疆農(nóng)業(yè)科學院穩(wěn)定支持專項子課題(xjnkywdzc-2023002-3-2);新疆維吾爾自治區(qū)重大科技專項子課題(2023A02012-3-5)
作者簡介:顧美英(1974- ),女,江蘇無錫人,研究員,研究方向為特殊環(huán)境微生物資源利用,(E-mail) gmyxj2008@163.com
通訊作者:徐萬里(1971-),男,陜西寶雞人,研究員,碩士生/博士生導師,研究方向為土壤環(huán)境與生態(tài)健康,(E-mail)363954019@qq.com
張志東(1977- ),男,新疆烏魯木齊人,研究員,博士,研究方向為特殊環(huán)境微生物資源挖掘,(E-mail)28756401@qq.com