国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鹽、堿及復(fù)合鹽堿脅迫對(duì)番茄幼苗光合特性及抗氧化酶活性的影響

2024-02-22 00:00:00劉會(huì)芳王強(qiáng)韓宏偉莊紅梅王浩常亞南
新疆農(nóng)業(yè)科學(xué) 2024年11期
關(guān)鍵詞:酶活性鹽脅迫光合特性

摘"要:【目的】""研究鹽、堿及復(fù)合鹽堿脅迫對(duì)番茄幼苗光合特性及抗氧化酶活性的影響。

【方法】""以前期篩選的耐鹽漸滲系番茄品種IL7-5-5及鹽敏感栽培番茄品種M82為材料,通過對(duì)幼苗進(jìn)行相同濃度的鹽、堿及復(fù)合鹽堿脅迫處理,研究不同脅迫條件下番茄幼苗光合特性、MDA、O-2、H2O2含量以及SOD、POD、CAT、APX、GR活性的影響。

【結(jié)果】""與對(duì)照相比,鹽脅迫條件下,番茄品種M82幼苗葉片光合氣體交換參數(shù)顯著降低,Pn降低了48.10%,WUE極顯著增加了95.81%,POD和CAT活性極顯著降低,GR活性顯著增加,從而使O-2和H2O2含量極顯著降低了15.75%、25.85%;IL7-5-5番茄品種幼苗葉片Pn、Ci、WUE極顯著降低,分別降低了34.72%、32.78%、51.02%,SOD活性極顯著增加,GR活性顯著增加,CAT和APX活性極顯著降低,使MDA、O-2和H2O2含量極顯著降低了29.48%、34.47%和18.66%。堿脅迫條件下,番茄品種M82幼苗葉片光合氣體交換參數(shù)Pn、Gs、Tr、CE極顯著降低56.40%、71.02%、61.93%和41.73%,Ci顯著降低了25.49%,POD和CAT活性極顯著增加,APX活性極顯著降低,使MDA含量極顯著增加了40.55%,O-2和H2O2含量極顯著降低了25.80%、20.48%;番茄品種IL7-5-5幼苗葉片光合氣體交換參數(shù)Pn、Gs和Ci極顯著降低68.75%、74.65%和59.49%,Tr、CE顯著降低63.69%、21.54%,SOD活性極顯著增加,CAT和GR活性極顯著降低,使O-2產(chǎn)生速率顯著下降10.18%。鹽堿脅迫條件下,番茄品種M82幼苗葉片光合氣體交換參數(shù)Pn、Gs、Ci、Tr和CE極顯著下降44.64%、67.05%、37.46%、56.56%和11.58%,POD活性極顯著下降,APX活性顯著下降,使O-2極顯著下降34.06%,MDA含量極顯著增加37.44%;番茄品種IL7-5-5幼苗葉片光合氣體交換參數(shù)Pn、Gs極顯著下降27.78%、78.87%,Tr顯著下降69.05%,WUE極顯著增加128.17%,GR和SOD活性極顯著增加,使O-2產(chǎn)生速率極顯著下降25.30%。

【結(jié)論】""2個(gè)番茄品種均能夠通過調(diào)節(jié)抗氧化酶活性,達(dá)到清除O-2和H2O2的效果,番茄品種IL7-5-5幼苗能夠維持MDA含量在對(duì)照水平,比番茄品種M82膜脂過氧化程度輕。3種脅迫條件下,番茄幼苗的光合速率下降,2個(gè)番茄品種均以堿脅迫最低;堿脅迫和鹽堿脅迫均對(duì)番茄品種M82幼苗造成了一定程度的膜脂過氧化損傷;脅迫不同程度的調(diào)節(jié)了2個(gè)番茄品種幼苗葉片抗氧化酶的活性、O-2和H2O2的含量,其中2個(gè)番茄品種均以鹽脅迫條件下H2O2的含量最低,其次是堿脅迫、鹽堿脅迫。

關(guān)鍵詞:""番茄;鹽脅迫;堿脅迫;復(fù)合鹽堿脅迫;光合特性;酶活性

中圖分類號(hào):"S641.2""""文獻(xiàn)標(biāo)志碼:"A""""文章編號(hào):"1001-4330(2024)11-2658-09

0"引 言

【研究意義】堿脅迫不同于鹽脅迫,對(duì)植物的傷害遠(yuǎn)大于鹽脅迫。但鹽堿混合脅迫并不是鹽脅迫(中性鹽脅迫)和堿脅迫(堿性鹽脅迫)的疊加,兩者間的協(xié)同效應(yīng)對(duì)作物的傷害常遠(yuǎn)大于單一鹽、堿脅迫[1]。在自然環(huán)境中,鹽脅迫與堿脅迫往往同時(shí)發(fā)生,可能對(duì)植物的生長(zhǎng)發(fā)育造成混合效應(yīng),與單一鹽脅迫、堿脅迫表現(xiàn)出不同的生理及分子機(jī)制?!厩叭搜芯窟M(jìn)展】鹽脅迫包括滲透脅迫和離子毒害,而堿脅迫不僅包括滲透脅迫和離子毒害,還包括pH脅迫。與鹽脅迫相比,堿脅迫條件下作物細(xì)胞中離子的平衡狀態(tài)遭到破壞,Ca2+、K+和Na+等離子在細(xì)胞內(nèi)的分布受到影響,導(dǎo)致作物生長(zhǎng)受抑制和農(nóng)業(yè)生產(chǎn)力下降。鹽堿混合脅迫會(huì)降低土壤滲透勢(shì),使作物離子失衡和生理代謝紊亂、生長(zhǎng)受抑和產(chǎn)量下降[2-3]。鹽堿混合脅迫也導(dǎo)致植物活性氧代謝失調(diào)[4],降低線粒體功能和葉綠體光能轉(zhuǎn)換效率,甚至引起植株死亡[5]?!颈狙芯壳腥朦c(diǎn)】研究以鹽敏感材料M82和耐鹽漸滲系IL-7-5 2個(gè)番茄品種為材料,研究鹽脅迫、堿脅迫和復(fù)合鹽堿脅迫條件下,番茄幼苗的光合特性、MDA、O-2、H2O2含量以及SOD、POD、CAT、APX、GR活性的影響差異?!緮M解決的關(guān)鍵問題】探究不同抗性番茄品種響應(yīng)鹽、堿及復(fù)合鹽堿脅迫的生理機(jī)制,為提高番茄耐鹽堿性及復(fù)合鹽堿脅迫研究提供參考。

1"材料與方法

1.1"材 料

試驗(yàn)于2020年在新疆農(nóng)業(yè)科學(xué)院園藝作物研究所光照培養(yǎng)室進(jìn)行。供試番茄品種為耐鹽漸滲系IL7-5-5及鹽敏感栽培番茄M82。采用穴盤基質(zhì)育苗(穴盤規(guī)格72穴),待幼苗長(zhǎng)至二葉一心,將穴盤剪開成3穴×4穴大小,置于發(fā)芽盒中,用1/2 Hoagland營養(yǎng)液培養(yǎng)至4葉1心,設(shè)不同脅迫處理:(1)對(duì)照;(2)100 mmol/L NaCl;(3)100 mmol/L NaHCO3;(4)50 mmol/L NaCl+50 mmol/L NaHCO3,即IL7-5-5品種4個(gè)處理為L(zhǎng)-1、L-2、L-3和L-4,M8-2品種4個(gè)處理記為M-1、M-2、M-3和M-4。脅迫均加至營養(yǎng)液中,每個(gè)處理3個(gè)重復(fù)。室內(nèi)環(huán)境控制標(biāo)準(zhǔn):溫度控制在白天28℃,晚上22℃,空氣濕度40%,光照強(qiáng)度為3 000 lx,光質(zhì)為三基色自然光,光周期為白天14 h/夜晚10 h。

1.2"方 法

于脅迫第10 d 上午10:00,用便攜式光合測(cè)定系統(tǒng)TPS-2 測(cè)定番茄幼苗葉片光合氣體參數(shù),設(shè)定光強(qiáng)為938 μmol/(m2·s),測(cè)定內(nèi)容包括光合速率、蒸騰速率、氣孔導(dǎo)度、水分利用率等。葉片水分利用效率(WUE):WUE = Pn/Tr。羧化效率(CE):CE=Pn/Ci。其中測(cè)量部位為每株植株的倒三葉,每個(gè)處理重復(fù)3次。

另外,每個(gè)處理取6株番茄植株,將倒二葉和倒三葉取下,混勻,分裝,用液氮速凍,然后置于-80℃超低溫冰箱保存。用于測(cè)定生理指標(biāo)。超氧陰離子(O-2)、過氧化氫含量(H2O2)、丙二醛(MDA)含量,及超氧化物歧化酶(SOD)、過氧化物酶(POD)、過氧化氫酶(CAT)、谷胱甘肽還原酶(GR)、抗壞血酸過氧化物酶(APX)活性測(cè)定采用蘇州科銘生物技術(shù)有限公司的微量法試劑盒。

1.3"數(shù)據(jù)處理

所有數(shù)據(jù)采用Microsoft Excel 2007和SPSS進(jìn)行數(shù)據(jù)處理和差異顯著性檢驗(yàn)(Duncan's 法)。作圖采用Microsoft Excel 2007軟件。

2"結(jié)果與分析

2.1"鹽、堿及復(fù)合鹽堿脅迫對(duì)番茄幼苗光合特性的影響"

研究表明,不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片光合氣體交換參數(shù)Pn、Gs和Ci的影響表現(xiàn)為M82顯著高于IL 7-5-5,Tr表現(xiàn)相反。M82與對(duì)照相比,鹽、復(fù)合鹽堿脅迫條件下番茄幼苗葉片光合氣體交換參數(shù)均極顯著降低;堿脅迫條件下Pn、Gs、Tr等參數(shù)降低了56.40%、71.02%、61.93%,達(dá)到極顯著差異水平,Ci降低了25.49%,達(dá)顯著差異水平。3種脅迫條件相比,鹽脅迫條件下番茄幼苗葉片Pn顯著高于堿脅迫,復(fù)合鹽堿脅迫條件下番茄幼苗葉片Pn極顯著高于堿脅迫。IL 7-5-5與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片光合氣體交換參數(shù)Pn、Ci降低了34.72%、32.78%。達(dá)到極顯著差異水平,Gs、Tr未達(dá)到顯著差異水平;堿脅迫條件下光合氣體交換參數(shù)均極顯著降低,分別降低了68.75%、74.65%、59.49%和63.69%;復(fù)合鹽堿脅迫條件下Pn、Gs降低了27.78%、78.87%,達(dá)極顯著差異水平,Ci、Tr未達(dá)到顯著差異水平。3種脅迫條件相比,鹽、復(fù)合鹽堿脅迫條件下番茄幼苗葉片Pn極顯著高于堿脅迫。圖1"

研究表明,不同脅迫條件下2個(gè)番茄品種幼苗葉片WUE表現(xiàn)為M82顯著低于IL 7-5-5,CE表現(xiàn)相反。M82與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片WUE極顯著升高,達(dá)到95.81%;堿、復(fù)合鹽堿脅迫條件下無顯著差異;與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片CE顯著降低,未達(dá)到極顯著差異水平;堿、復(fù)合鹽堿脅迫條件下極顯著降低,分別降低了41.73%、11.58%。IL 7-5-5與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片WUE極顯著降低,降低了51.02%,堿脅迫條件下無明顯變化,復(fù)合鹽堿脅迫條件下極顯著升高,達(dá)128.17%;與對(duì)照相比,3種脅迫條件下番茄幼苗葉片CE均呈降低的趨勢(shì),其中L-3處理達(dá)到顯著差異水平。圖2"

2.2"鹽、堿及復(fù)合鹽堿脅迫對(duì)番茄幼苗葉片MDA、H2O2和O-2含量的影響"

研究表明,不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片MDA含量的影響無顯著差異。M82與對(duì)照相比,鹽脅迫條件下MDA含量降低,未達(dá)到顯著差異水平;堿脅迫和復(fù)合鹽堿脅迫條件下MDA含量升高至極顯著差異水平,分別增加了40.55%、37.44%。IL 7-5-5與對(duì)照相比,鹽脅迫條件下MDA含量降低29.48%,達(dá)到極顯著差異水平;堿脅迫條件下MDA降低5.92%,未達(dá)到顯著差異水平;復(fù)合鹽堿脅迫條件下MDA含量升高6.63%,未達(dá)到顯著差異水平。3種脅迫條件相比,2個(gè)番茄品種均表現(xiàn)為堿脅迫和復(fù)合鹽堿脅迫條件下MDA含量極顯著高于鹽脅迫,前兩者之間無顯著差異。圖3

不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片超氧陰離子產(chǎn)生速率的影響無顯著差異。M82與對(duì)照相比,鹽、堿及復(fù)合鹽堿脅迫條件下番茄幼苗葉片超氧陰離子產(chǎn)生速率分別降低15.75%、25.80%和34.06%,均達(dá)到極顯著差異水平,其中堿脅迫條件下番茄幼苗葉片超氧陰離子產(chǎn)生速率極顯著低于鹽脅迫,復(fù)合鹽堿脅迫顯著低于前二者;IL 7-5-5與對(duì)照相比,鹽、堿及復(fù)合鹽堿脅迫條件下番茄幼苗葉片超氧陰離子產(chǎn)生速率分別降低34.47%、10.18%和25.30%,均達(dá)到顯著差異水平,且鹽脅迫與復(fù)合鹽堿脅迫差異達(dá)到極顯著水平;3種脅迫條件相比,表現(xiàn)為堿gt;復(fù)合鹽堿gt;鹽,均達(dá)到顯著差異水平。

不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片過氧化氫含量的影響無顯著差異。M82鹽脅迫和堿脅迫條件下番茄幼苗葉片過氧化氫含量極顯著降低,分別減少了25.85%、20.48%;復(fù)合鹽堿脅迫條件下過氧化氫含量增加了1.73%,未達(dá)到顯著差異水平;3種脅迫條件相比,復(fù)合鹽堿脅迫極顯著大于鹽、堿脅迫,后兩者未達(dá)到顯著差異水平。IL 7-5-5與對(duì)照相比,鹽、堿及復(fù)合鹽堿脅迫條件下番茄幼苗葉片過氧化氫含量分別降低18.66%、11.86%和1.33%,其中鹽脅迫達(dá)到顯著差異水平;3種脅迫條件相比,表現(xiàn)為復(fù)合鹽堿脅迫顯著大于鹽脅迫。圖4

2.3"鹽、堿及復(fù)合鹽堿脅迫對(duì)番茄幼苗葉片SOD、POD、CAT、GR、APX活性的影響"

研究表明,不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片SOD活性的影響無顯著差異。M82與對(duì)照相比,鹽、堿及復(fù)合鹽堿脅迫條件下番茄幼苗葉片SOD活性無顯著差異。IL 7-5-5與對(duì)照相比,鹽、堿及復(fù)合鹽堿脅迫條件下番茄幼苗葉片SOD活性分別升高37.37%、44.44%和37.91%,均達(dá)到極顯著差異水平;3種脅迫條件之間未達(dá)到顯著差異水平。

不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片POD活性的影響表現(xiàn)為M82顯著高于IL 7-5-5。M82與對(duì)照相比,鹽、堿及復(fù)合鹽堿脅迫條件下番茄幼苗葉片POD活性均極顯著降低,降低了46.77%、33.95%、31.81%,IL 7-5-5在鹽、堿及復(fù)合鹽堿脅迫條件下番茄幼苗葉片POD活性與對(duì)照無顯著差異。

不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片POD活性的影響表現(xiàn)為M82顯著低于IL 7-5-5。M82與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片CAT活性顯著降低48.74%,堿脅迫條件下極顯著升高207.65%,復(fù)合鹽堿脅迫條件下無顯著差異。3種脅迫條件之間相比,堿脅迫極顯著高于鹽、復(fù)合鹽堿脅迫。IL 7-5-5在鹽、堿脅迫條件下番茄幼苗葉片CAT活性極顯著降低,降低了67.49%、55.24%,復(fù)合鹽堿脅迫條件下與對(duì)照無顯著差異。3種脅迫條件之間相比,復(fù)合鹽堿脅迫極顯著高于鹽、堿脅迫。圖5"

不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片GR活性的影響表現(xiàn)為M82顯著高于IL 7-5-5。M82與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片GR活性極顯著升高20.63%;堿脅迫條件下升高15.26%,未達(dá)顯著水平;復(fù)合鹽堿脅迫條件下無明顯變化。IL 7-5-5與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片GR活性顯著升高,升高了22.05%;堿脅迫條件下極顯著降低,降低了62.89%;復(fù)合鹽堿脅迫條件下極顯著升高,升高了38.67%。3種脅迫條件之間相比,鹽脅迫、復(fù)合鹽堿脅迫極顯著高于堿脅迫。

不同脅迫條件對(duì)2個(gè)番茄品種幼苗葉片APX活性的影響表現(xiàn)為M82顯著低于IL 7-5-5。M82與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片APX活性升高3.86%,未達(dá)顯著差異水平;堿脅迫條件下降低38.21%,達(dá)極顯著水平;復(fù)合鹽堿脅迫條件下降低了13.65%,達(dá)到顯著水平。3種脅迫條件之間相比,鹽脅迫顯著高于堿、復(fù)合鹽堿脅迫。IL 7-5-5與對(duì)照相比,鹽脅迫條件下番茄幼苗葉片APX活性極顯著降低,降低了16.10%;堿、復(fù)合鹽堿脅迫條件下分別降低了10.28%、7.91%,未達(dá)到顯著差異水平。3種脅迫條件之間相比,均未達(dá)到顯著差異水平。圖6"

3"討 論

3.1

脅迫條件下,大多數(shù)植物光合速率顯著降低,試驗(yàn)也證明了這一點(diǎn)。脅迫條件下,番茄品種M82幼苗葉片的凈光合速率顯著降低,伴隨著Gs和Ci的顯著降低,說明脅迫條件下番茄幼苗葉片 Pn的降低以氣孔限制因素為主,可能是由于脅迫條件下,氧化脅迫增加和高濃度的Na+、Cl-等積累所導(dǎo)致的滲透和離子脅迫,使葉片發(fā)生生理干旱、氣孔收縮,從而限制了CO2向葉綠體的輸送,引起番茄幼苗葉片Pn下降[6];IL 7-5-5番茄品種幼苗葉片的凈光合速率也表現(xiàn)出顯著降低的趨勢(shì),其中鹽脅迫條件下Ci極顯著降低,復(fù)合鹽堿脅迫條件下Gs極顯著降低,說明鹽、復(fù)合鹽堿脅迫降低番茄葉片Pn的活性均以非氣孔限制為主,需要進(jìn)一步進(jìn)行微表觀觀察以及光合過程的酶活性等方面展開研究。同時(shí),研究也表明,鹽脅迫條件下番茄品種M82幼苗WUE極顯著升高,由于葉片水分利用效率不僅受外部因素的影響,而且受植物內(nèi)部因素的影響,所以番茄葉片水分利用率變化的具體情況還需要進(jìn)一步研究。另外,2品種的CE表現(xiàn)為鹽敏感品種M82大于耐鹽品種IL 7-5-5,品種間差異較大,說明不同番茄品種具有不同的羧化效率水平,CE是否可以作為篩選耐鹽番茄品種指標(biāo),還有待進(jìn)一步研究。

3.2

正常條件下,植物體內(nèi)活性氧的產(chǎn)生與清除保持動(dòng)態(tài)的平衡;鹽脅迫時(shí),由于細(xì)胞代謝受阻將產(chǎn)生大量的活性氧導(dǎo)致膜系統(tǒng)損傷和細(xì)胞傷害,加速細(xì)胞衰老和解體,從而影響植物生長(zhǎng)[7]。試驗(yàn)中,鹽脅迫條件下2個(gè)番茄品種的幼苗葉片O-2產(chǎn)生速率和H2O2含量均顯著降低,MDA含量降低,伴隨著番茄品種M82幼苗的GR活性顯著增加、POD活性極顯著降低、CAT活性降低以及IL 7-5-5番茄品種SOD活性極顯著增加,GR活性顯著增加、CAT和APX活性極顯著降低,說明100 mmol/L的鹽脅迫激活了番茄幼苗的抗氧化系統(tǒng),不同程度的提高了番茄葉片清除活性氧的效率,降低了脅迫造成的膜脂過氧化程度。堿脅迫條件下,番茄品種M82幼苗葉片CAT活性極顯著升高,POD和APX活性極顯著降低,O-2產(chǎn)生速率和H2O2含量均極顯著降低,說明堿脅迫一定程度的激活了番茄幼苗的抗氧化系統(tǒng),但MDA含量顯著增加,說明堿脅迫仍然造成了嚴(yán)重的膜脂過氧化;IL 7-5-5番茄品種幼苗葉片SOD 活性極顯著升高,CAT和GR活性極顯著降低,O-2產(chǎn)生速率顯著降低,H2O2和MDA的積累保持在對(duì)照水平,保持了較好的細(xì)胞膜完整性。復(fù)合鹽堿脅迫條件下,番茄品種M82幼苗葉片APX活性顯著降低、POD活性和O-2產(chǎn)生速率極顯著降低、MDA含量極顯著增加,說明復(fù)合鹽堿脅迫造成了番茄幼苗葉片的膜脂過氧化;番茄品種IL 7-5-5幼苗葉片SOD和GR活性極顯著升高,O-2產(chǎn)生速率極顯著降低,POD、CAT、APX活性、H2O2、MDA含量保持在對(duì)照水平,說明復(fù)合鹽堿脅迫激活了番茄幼苗的抗氧化系統(tǒng),提高了番茄葉片清除活性氧的效率,保護(hù)了自身的膜系統(tǒng)完整性。

3.3

鹽、堿脅迫相關(guān)研究較多,但對(duì)鹽、堿及復(fù)合鹽堿對(duì)番茄的影響差異研究較少。已有研究表明,植物對(duì)堿性鹽和中性鹽脅迫的響應(yīng)存在不同的機(jī)制[8]。堿脅迫不僅具有與鹽脅迫相同的破壞因素,而且還增加了高pH值脅迫,導(dǎo)致對(duì)植物的更多破壞[9-10]。試驗(yàn)研究發(fā)現(xiàn),脅迫對(duì)番茄幼苗葉片凈光合速率的降低幅度及機(jī)制有所不同,其中以堿脅迫對(duì)凈光合速率的降低最大,這和郭瑞等[11-12]的研究結(jié)果一致,可能是由于堿脅迫使光系統(tǒng)潛在活性受到抑制,直接影響了光合作用的電子傳遞[13]。堿脅迫和鹽堿脅迫造成了MDA的大量積累,以番茄品種M82幼苗葉片中積累更多,MDA含量增加了40.55%,37.44%,其含量高低可以作為考察細(xì)胞受到脅迫嚴(yán)重程度的指標(biāo)之一[14],說明堿脅迫和鹽堿脅迫對(duì)番茄幼苗葉片造成了較嚴(yán)重的膜脂過氧化損傷,對(duì)感鹽品種M82的膜脂過氧化損傷更嚴(yán)重。不同脅迫條件下,番茄幼苗葉片通過調(diào)節(jié)不同抗氧化酶的活性水平達(dá)到清除活性氧的目的。堿脅迫和鹽堿脅迫均顯著增加了番茄幼苗葉片POD活性,POD作為組織老化的生理指標(biāo)之一,推測(cè)可能是由于堿脅迫和鹽堿脅迫的高pH使番茄幼苗膜脂質(zhì)過氧化作用增加,打破活性氧的代謝失衡,膜結(jié)構(gòu)遭到破壞,影響了膜的功能,隨著脂質(zhì)過氧化產(chǎn)物積累越多,植株衰老現(xiàn)象越嚴(yán)重,POD活性被激活[15]。另外,鹽堿脅迫條件下,耐鹽品種IL7-5-5番茄幼苗葉片GR的活性增加,推測(cè)是由于ASA-GSH循環(huán)參與了活性氧的清除。

4"結(jié) 論"""4.1

脅迫條件下,番茄品種M82幼苗葉片的凈光合速率顯著降低,以氣孔限制因素為主;番茄品種IL 7-5-5幼苗葉片的凈光合速率也表現(xiàn)出顯著降低的趨勢(shì),以非氣孔限制為主。

4.2"""堿和鹽堿脅迫對(duì)番茄幼苗的膜脂過氧化損傷程度更嚴(yán)重,表現(xiàn)為MDA含量的大量積累,以番茄品種M82幼苗葉片中積累更多,MDA含量增加了40.55%,37.44%。

4.3"""番茄幼苗能夠通過不同的響應(yīng)機(jī)制一定程度的緩解損傷。鹽脅迫能夠通過增加番茄品種M82幼苗葉片的GR活性以及番茄品種IL7-5-5幼苗葉片的SOD和GR活性,降低O-2和H2O2含量,一定程度的緩解脅迫造成的氧化損傷;堿脅迫條件下,M82抗氧化酶POD和CAT活性極顯著增加,一定程度的降低了O-2和H2O2含量,緩解了脅迫造成的氧化損傷,MDA含量極顯著增加堿脅迫對(duì)葉片造成了較強(qiáng)的膜脂過氧化損傷,番茄品種IL7-5-5幼苗葉片SOD活性極顯著增加,O-2產(chǎn)生速率顯著下降,一定程度的緩解脅迫造成的氧化損傷;鹽堿脅迫條件下,番茄品種M82幼苗葉片的MDA含量極顯著增加,鹽堿脅迫對(duì)葉片造成了較強(qiáng)的膜脂過氧化損傷,番茄品種IL7-5-5幼苗葉片GR和SOD活性極顯著增加,O-2產(chǎn)生速率極顯著下降,一定程度的緩解脅迫造成的氧化損傷。

參考文獻(xiàn)"(References)

[1]"閆永慶, 劉興亮, 王崑,等. 白刺對(duì)不同濃度混合鹽堿脅迫的生理響應(yīng)[J]. 植物生態(tài)學(xué)報(bào), 2010, 34(10): 1213-1219.

YAN Yongqing, LIU Xingliang, WANG Kun, et al. Effect of complex saline-alkali stress on physiological parameters of Nitratia tangutorum[J]. Chinese Journal of Plant Ecology, 2010, 34(10): 1213-1219.

[2] 劉建新, 王金成, 王瑞娟,等. 混合鹽堿脅迫對(duì)燕麥幼苗礦質(zhì)離子吸收和光合特性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2017, 35(1): 178-184, 239.

LIU Jianxin, WANG Jincheng, WANG Ruijuan, et al. Effect of complex saline-alkali stress on the mineral ions absorption and photosynthetic characteristics of oat seedlings[J]. Agricultural Research in the Arid Areas, 2017, 35(1): 178-184, 239.

[3] 王佺珍, 劉倩, 高婭妮,等. 植物對(duì)鹽堿脅迫的響應(yīng)機(jī)制研究進(jìn)展[J]. 生態(tài)學(xué)報(bào), 2017, 37(16): 5565-5577.

WANG Quanzhen, LIU Qian, GAO Yani, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica, 2017, 37(16): 5565-5577.

[4] 潘雄波, 向麗霞, 胡曉輝,等. 外源亞精胺對(duì)鹽堿脅迫下番茄幼苗根系線粒體功能的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2016, 27(2): 491-498.

PAN Xiongbo, XIANG Lixia, HU Xiaohui, et al. Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 491-498.

[5] 李辛, 趙文智. 荒漠區(qū)植物霧冰藜光合特性對(duì)混合鹽堿脅迫的響應(yīng)[J]. 生態(tài)學(xué)報(bào), 2018, 38(4): 1183-1193.

LI Xin, ZHAO Wenzhi. Response of various salt-alkaline mixed stresses on the photosynthetic characteristics of Bassia dasyphylla in a desert region[J]. Acta Ecologica Sinica, 2018, 38(4): 1183-1193.

[6] 劉會(huì)芳, 何曉玲, 肖春燕,等. 外源GSH對(duì)NaCl脅迫下番茄幼苗光合特性及碳同化關(guān)鍵酶基因表達(dá)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(9): 2637-2644.

LIU Huifang, HE Xiaoling, XIAO Chunyan, et al. Effects of exogenous GSH on photosynthetic characteristics and expression of key enzyme genes of CO2 assimilation in leaves of tomato seedlings under NaCl stress[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2637-2644.

[7] Sreenivasulu N, Grimm B, Wobus U, et al. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica)[J]. Physiologia Plantarum, 2000, 109(4): 435-442.

[8] Geng G, Li R R, Stevanato P, et al. Physiological and transcriptome analysis of sugar beet reveals different mechanisms of response to neutral salt and alkaline salt stresses[J]. Frontiers in Plant Science, 2020, 11: 571864.

[9] Lin J X, Yu D F, Shi Y J, et al. Salt-alkali tolerance during germination and establishment of Leymus chinensis in the Songnen Grassland of China[J]. Ecological Engineering, 2016, 95: 763-769.

[10] Song T T, Xu H H, Sun N, et al. Metabolomic analysis of alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress[J]. Frontiers in Plant Science, 2017, 8: 1208.

[11] Shi C C, Yang F, Liu Z H, et al. Uniform water potential induced by salt, alkali, and drought stresses has different impacts on the seedling of Hordeum jubatum: from growth, photosynthesis, and chlorophyll fluorescence[J]. Frontiers in Plant Science, 2021, 12: 733236.

[12] 郭瑞, 周際, 楊帆,等. 堿脅迫對(duì)小麥(Triticum aestivum linn)葉片代謝過程的影響[J]. 中國農(nóng)業(yè)科學(xué), 2017, 50(2): 250-259.

GUO Rui, ZHOU Ji, YANG Fan, et al. Effects of alkaline stress on metabonomic responses of wheat(Triticum aestivum linn) leaves[J]. Scientia Agricultura Sinica, 2017, 50(2): 250-259.

[13] 石德成, 趙可夫. NaCl和Na2CO3對(duì)星星草生長(zhǎng)及營養(yǎng)液中主要礦質(zhì)元素存在狀態(tài)的影響[J]. 草業(yè)學(xué)報(bào), 1997, 6(2): 51-61.

SHI Decheng, ZHAO Kefu. Effects of NaCl and Na2CO3 on the growth of PUCCINELLIA tenuiflora and the existing state of main mineral elements in nutrient solution[J]. Acta Prataculturae Sinica, 1997, 6(2): 51-61.

[14] Wang C, Zhang S H, Wang P F, et al. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara[J]. Aquatic Toxicology, 2008, 87(2): 88-98.

[15] 鄒曉云, 向華, 于曉英. Cu2+脅迫對(duì)香菇草生長(zhǎng)和生理生化特性的影響[J]. 天津農(nóng)業(yè)科學(xué), 2011, 17(1): 22-24.

ZOU Xiaoyun, XIANG Hua, YU Xiaoying. Effects of Cu2+ stress on the growth and physiological and biochemical characteristics of Hydrocotyle vulgaris[J]. Tianjin Agricultural Sciences, 2011, 17(1): 22-24.

Effects of salt, alkali and complex salt alkali stress on the ""photosynthetic characteristics and antioxidant enzyme ""activity of tomato seedlings

LIU Huifang,WANG Qiang,HAN Hongwei,ZHUANG Hongmei,WANG Hao,CHANG Yanan

(1. Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Xinjiang Vegetable Engineering Technology Research Center/XJARS-Vegetable/Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables,Urumqi "830091,China)

Abstract:【Objective】 ""To explore the effects of salt, alkali and complex salt alkali stress on the photosynthetic characteristics and antioxidant enzyme activity of tomato seedlings.

【Methods】 """In this study, the salt-tolerant tomato IL7-5-5 and the salt-sensitive tomato M82 were selected as materials, and the seedlings were subjected to the same concentration of salt, alkali and complex salt alkali stress. The photosynthetic characteristics, contents of MDA, O-2, H2O2 and activities of SOD, POD, CAT, APX and GR of tomato seedlings under different stress conditions were studied.

【Results】 """The results showed that: Compared with the control, under salt stress, photosynthetic gas exchange parameters of M82 tomato seedlings significantly decreased, Pn decreased by 48.10%, WUE increased by 95.81%, POD and CAT activities significantly decreased, and GR activity significantly increased. The contents of O-2 and H2O2 were significantly reduced by 15.75% and 25.85%. Leaf Pn, Ci and WUE of IL7-5-5 varieties were significantly decreased by 34.72%, 32.78% and 51.02%, respectively. SOD activity was significantly increased, GR activity was significantly increased, CAT and APX activities were significantly decreased. The contents of MDA, O-2 and H2O2 were significantly reduced by 29.48%, 34.47% and 18.66%. Under alkali stress, photosynthetic gas exchange parameters Pn, Gs, Tr and CE of M82 tomato seedlings significantly decreased by 56.40%, 71.02%, 61.93% and 41.73%, Ci significantly decreased by 25.49%, POD and CAT activities significantly increased, and APX activities significantly decreased. MDA content was significantly increased by 40.55%, while O-2 and H2O2 contents were significantly decreased by 25.80% and 20.48%. Photosynthetic gas exchange parameters Pn, Gs and Ci of IL7-5-5 tomato seedlings significantly decreased by 68.75%, 74.65% and 59.49%, Tr and CE significantly decreased by 63.69% and 21.54%, SOD activity significantly increased, CAT and GR activities significantly decreased. The production rate of O-2 decreased by 10.18%. Under salt-alkali stress, photosynthetic gas exchange parameters Pn, Gs, Ci, Tr and CE of M82 tomato seedlings significantly decreased by 44.64%, 67.05%, 37.46%, 56.56% and 11.58%, POD activity significantly decreased, APX activity significantly decreased, O-2 significantly decreased by 34.06%. MDA content was significantly increased by 37.44%; Photosynthetic gas exchange parameters Pn and Gs of IL7-5-5 tomato seedlings significantly decreased by 27.78% and 78.87%, Tr significantly decreased by 69.05%, WUE significantly increased by 128.17%, GR and SOD activity significantly increased, and O-2 production rate significantly decreased by 25.30%.

【Conclusion】 """Both tomato varieties can achieve the effect of eliminating O-2 and H2O2 by adjusting the activity of antioxidant enzymes. The content of MDA of IL7-5-5 tomato seedlings is maintained at the control level, and the degree of membrane lipid peroxidation is lighter than that of M82 tomato varieties. Under the three stress conditions, the photosynthetic rate of tomato seedlings decrease, and the alkali stress is the lowest in both varieties. Both alkali and saline-alkali stress causes membrane lipid peroxidation damage to M82 tomato seedlings to a certain extent. Stress can regulate the activity of antioxidant enzymes and the contents of O-2 and H2O2 in the leaves of the two tomato varieties to different degrees. The contents of H2O2 are the lowest in both tomato varieties under salt stress, followed by alkali stress and saline-alkali stress.

Key words:""tomato; salt stress; alkali stress; compound saline-alkali stress; photosynthetic characteristics; enzyme activity

Fund projects:""Natural Science Foundation of Xinjiang Uygur Autonomous Region( 2022D01B168); Youth Fund Project of Xinjiang Academy of Agricultural Sciences (xjnkq - 2023010); "Major Science and Technology Projects of Xinjiang (2022A02005-2); "XJARS-Vegetable(XJARS-07-01,XJARS-07-04);Tianshan Talents-Science and technology Innovation Leading Talent project(2023TSYCLJ0013)

Correspondence author:"""WANG Qiang (1983-), male, from Gansu, researcher associate, research direction: physiology and stress of vegetable cultivation in facilities, "(E-mail)wangqiang201004@sina.com

WANG Hao (1970-), male, from Shandong, researcher, research direction: facility vegetable cultivation and physiology, "(E-mail)wanghao183@163.com

收稿日期(Received):

2024-04-13

基金項(xiàng)目:

新疆維吾爾自治區(qū)自然科學(xué)基金青年科學(xué)基金項(xiàng)目(2022D01B168);新疆農(nóng)業(yè)科學(xué)院青年科技骨干創(chuàng)新能力培養(yǎng)項(xiàng)目(xjnkq-2023010);新疆維吾爾自治區(qū)重大科技專項(xiàng)(2022A02005-2);新疆蔬菜產(chǎn)業(yè)技術(shù)體系(XJARS-07-01,XJARS-07-04);天山英才-科技創(chuàng)新領(lǐng)軍人才(2023TSYCLJ0013)

作者簡(jiǎn)介:

劉會(huì)芳(1989-),女,河南人,助理研究員,碩士研究生,研究方向?yàn)槭卟嗽耘嗪湍婢成?,(E-mail)568899051@qq.com

通訊作者:

王強(qiáng)(1983-),男,甘肅人,研究員,研究方向?yàn)樵O(shè)施蔬菜栽培生理與逆境脅迫,(E-mail)wangqiang201004@sina.com

王浩(1970-),男,山東人,研究員,研究方向?yàn)樵O(shè)施蔬菜栽培與生理,(E-mail)wanghao183@163.com

猜你喜歡
酶活性鹽脅迫光合特性
外源NO對(duì)NaCl脅迫下高粱幼苗生理響應(yīng)的調(diào)節(jié)
百香果總糖含量及抗氧化酶活性的測(cè)定研究
5個(gè)引種美國紅楓品種的光合特性比較
4種砧木對(duì)甜櫻桃葉片光合特性的影響
花生Clp家族成員的篩選、聚類和鹽脅迫響應(yīng)分析
不同水分條件下硫肥對(duì)玉米幼苗葉片光合特性的影響
安圖縣水稻高光效新型栽培技術(shù)示范推廣總結(jié)
利用實(shí)驗(yàn)教學(xué)培養(yǎng)學(xué)生的科學(xué)素養(yǎng)
利用初榨草莓汁探究pH對(duì)果膠酶活性的影響
淺談鹽脅迫對(duì)紫穗槐生理指標(biāo)的影響
华安县| 忻城县| 金门县| 塔城市| 元氏县| 双牌县| 建阳市| 漾濞| 宝兴县| 宁南县| 桦甸市| 特克斯县| 南江县| 和田县| 方山县| 兖州市| 渝中区| 富民县| 湟中县| 洛浦县| 博白县| 沙坪坝区| 泾川县| 乡城县| 南雄市| 兴城市| 阿勒泰市| 远安县| 朝阳市| 扶沟县| 榆中县| 邳州市| 共和县| 顺义区| 潮州市| 苗栗市| 武乡县| 原阳县| 临澧县| 孝感市| 新乡市|