摘"要:【目的】""研究多源數(shù)據(jù)估算天山假狼毒地上生物量(AGB)的能力。
【方法】""采用搭載可見光和多光譜傳感器的無人機(jī)平臺采集盛花期與結(jié)實(shí)期信息,獲取可見光植被指數(shù)、多光譜植被指數(shù)及兩者相融合的植被指數(shù),分別以多元線性回歸(MLR)、逐步線性回歸(SMLR)、隨機(jī)森林回歸(RF)建立單一植被指數(shù)與融合植被指數(shù)的AGB估測模型,采用決定系數(shù)(R2)、調(diào)整后決定系數(shù)(R2adj)和均方根誤差(RMSE)評價(jià)估算模型。
【結(jié)果】""(1)近紅外和紅邊波段組合的植被指數(shù)對天山假狼毒AGB較為敏感,可以較好的估算天山假狼毒的AGB。(2)在不同生育期中,盛花期估算效果最佳;基于融合植被指數(shù)的多元線性逐步回歸估測模型中擬合效果最佳,模型的R2、R2adj、RMSE為0.837、0.831和7.357。(3)與基于單一類型的植被指數(shù)估測模型相比,基于融合植被指數(shù)建立的估測模型擬合精度最佳、穩(wěn)定性更好。
【結(jié)論】""融合植被指數(shù)可有效增加光譜信息,提高模型預(yù)測精度。
關(guān)鍵詞:""無人機(jī);天山假狼毒地上生物量;植被指數(shù);可見光;多光譜
中圖分類號:"S812""""文獻(xiàn)標(biāo)志碼:"A""""文章編號:"1001-4330(2024)11-2787-10
0"引 言
【研究意義】近年來,新疆伊犁河谷的天然草地生產(chǎn)力下降、植被覆蓋度降低、毒害草大量繁殖。其中,天山假狼毒作為退化指示植物之一,其再生能力強(qiáng)、抗旱抗寒力極強(qiáng),在昭蘇縣天然草地大量繁殖,對當(dāng)?shù)氐男竽翗I(yè)生產(chǎn)和草原生態(tài)平衡均造成影響[1-2]。在我國天然草地退化分級指標(biāo)中,草地退化指示植物種地上產(chǎn)草量相對增加率是分級的重要指標(biāo)之一,目前對于退化指示植物的研究大多集中于對土壤與植被理化性質(zhì)的影響[3-4]、空間分布與防控[5-7]、高精度分類識別[8-9]等方面,而對于其地上生物量研究較少。因此,估算天山假狼毒地上生物量(above ground biomass,AGB)可對草地退化程度的分級有重要意義?!厩叭搜芯窟M(jìn)展】傳統(tǒng)植物AGB測量方法需要田間采樣和室內(nèi)測量,具有破壞性和滯后性,不利于大范圍農(nóng)業(yè)生產(chǎn)應(yīng)用[10]。近年來,無人機(jī)遙感技術(shù)的發(fā)展為精準(zhǔn)農(nóng)業(yè)提供了重要支持[11]。相比于無人機(jī)搭載的高光譜相機(jī)或雷達(dá)傳感器,可見光和多光譜相機(jī)具有價(jià)格低廉、續(xù)航時(shí)間長、重量輕、操作便捷且后續(xù)對影像處理難度低的特點(diǎn),已在監(jiān)測農(nóng)作物長勢及估產(chǎn)[12-17]、病蟲害監(jiān)測[18-19]、雜草識別[20-22]有諸多研究。因可見光與多光譜植被指數(shù)與AGB具有較好相關(guān)性已被廣泛用于AGB估算[23-25]。隨著無人機(jī)遙感技術(shù)迅猛發(fā)展,將多傳感器的多源數(shù)據(jù)相結(jié)合或融合擴(kuò)大輸入特征的信息量,構(gòu)建AGB的估測模型,可進(jìn)一步提高估測模型的精度和穩(wěn)定性,已成為目前的研究熱點(diǎn)[26-27]。【本研究切入點(diǎn)】天山假狼毒(Diarthron tianschanicum)作為退化指示植物之一,其生長狀況可反映草地退化程度。基于無人機(jī)可見光和多光譜影像計(jì)算可見光和多光譜植被指數(shù),將可見光植被指數(shù)與多光譜植被指數(shù)相結(jié)合估測背景復(fù)雜中的單一植被或退化指示植物AGB估算研究鮮見報(bào)道。此外,現(xiàn)有研究多估算一個(gè)時(shí)期的,缺乏對天山假狼毒關(guān)鍵生育期AGB估算的研究。【擬解決的關(guān)鍵問題】基于無人機(jī)遙感影像獲取關(guān)鍵生育期可見光植被指數(shù)、多光譜植被指數(shù)及融合植被指數(shù),結(jié)合地面實(shí)測值篩選出與AGB相關(guān)的敏感變量,利用多元線性回歸(MLR)、逐步回歸(SMLR)和隨機(jī)森林(RF)方法,構(gòu)建出關(guān)鍵生育期天山假狼毒AGB估測模型,對比分析不同類型植被指數(shù)估算AGB值的精度,為估測天山假狼毒AGB提供參考。
1"材料與方法
1.1"材 料
1.1.1"研究區(qū)概況
試驗(yàn)地位于新疆伊犁哈薩克自治州昭蘇縣馬場(43°07′~43°09′N,80°59′~81°01′E),海拔1 983~1 990 m,屬大陸性溫帶山區(qū)半干旱半濕潤冷涼氣候,4月下旬至6月上旬雨水充沛。所處地段為山地草甸草地。由于過度放牧以及氣候變化等因素,不可食牧草與雜類草比例上升,尤其是毒害草天山假狼毒成為群落的優(yōu)勢種,其重要值達(dá)0.205。
1.1.2"地面實(shí)測數(shù)據(jù)獲取
于2023年盛花期(6月下旬)與結(jié)實(shí)期(7月下旬)采集天山假狼毒AGB數(shù)據(jù),各生育期分別采集72個(gè)1 m × 1 m樣方。測量每個(gè)樣方中植被的種類、株高、覆蓋度和地上生物量。株高使用卷尺測量(cm),蓋度使用樣方框法測定(%),地上生物量使用烘干稱重法獲取干重(g)。
1.1.3"無人機(jī)遙感影像獲取及預(yù)處理
選擇太陽光照強(qiáng)度穩(wěn)定,晴朗無云條件下,與采集地面實(shí)測數(shù)據(jù)同期,采用可見光與多光譜無人機(jī)獲取可見光與多光譜影像??梢姽庀鄼C(jī)型號為FC_6310,其具備2 000×104有效像素,圖像分辨率為5 472像素×3 648像素,焦距9 mm,包含紅、綠和藍(lán)通道,可獲得高空間分辨率數(shù)碼影像。多光譜相機(jī)包含紅、綠、藍(lán)、紅邊和近紅外5個(gè)波段,單個(gè)傳感器有效像素208×104(總像素212×104),內(nèi)嵌RTK,無需布設(shè)基站,可獲得較高質(zhì)量的多光譜影像。無人機(jī)飛行航向重疊度、旁向重疊度、主航線角度分別為80%、75%和90°,飛行高度為20 m,使用大疆智圖軟件進(jìn)行圖像拼接處理。
1.2"方 法
1.2.1"可見光與多光譜植被指數(shù)選取
基于前人研究基礎(chǔ)上選取21種可見光植被指數(shù)與23種多光譜植被指數(shù),使用皮爾遜相關(guān)性篩選出相關(guān)性較高的可見光與多光譜各10種植被指數(shù),探究其與天山假狼毒AGB關(guān)系。對提取的天山假狼毒可見光與多光譜單通道影像灰度進(jìn)行歸一化處理,降低天空光對影像灰度的影響[28]。可見光影像R、G、B通道進(jìn)行歸一化后定義為r、g、b,多光譜影像R、G、B、RE、NIR通道進(jìn)行歸一化后定義為m1、m2、m3、m4和m5。表1
1.2.2"模型構(gòu)建及驗(yàn)證
采用多元線性回歸(MLR)、逐步回歸(SMLR)和隨機(jī)森林回歸(RF)建模方法分別對可見光植被指數(shù)、多光譜植被指數(shù)和多源數(shù)據(jù)融合植被指數(shù)估測天山假狼毒AGB。借助R軟件將獲取天山假狼毒AGB隨機(jī)分為兩部分,70%樣本數(shù)據(jù)(50個(gè))用于AGB的估算模型,30%樣本數(shù)據(jù)(22個(gè))用于對估算模型進(jìn)行精度驗(yàn)證。選用決定系數(shù)(coefficient of determination,R2)、調(diào)整后決定系數(shù)(Adjusted coefficient of determination,R2adj)以及均方根誤差(Root Mean Square Error,RMSE),作為評價(jià)指標(biāo)。R2、R2adj越大,RMSE越小提取效果越好。
R2="ni=1(Xi-X")2(Yi-Y")2
nni=1(Xi-X")2ni=1(Yi-Y")2".
"(1)
RMSE=""ni=1(Yi-X")2"n""."(2)
式中,Xi、X"表示實(shí)測值、實(shí)測值均值,Yi、Y"表示提取值、提取值均值,n為樣本數(shù)量。
2"結(jié)果與分析
2.1"可見光植被指數(shù)與天山假狼毒AGB相關(guān)性
研究表明,盛花期相關(guān)性(|R|=0.633~0.313)均達(dá)到顯著和極顯著水平,優(yōu)于結(jié)實(shí)期相關(guān)性(|R|=0.371~0.333),盛花期AGB相關(guān)系數(shù)大于0.4的有3個(gè),其中與天山假狼毒AGB相關(guān)性最佳的植被指數(shù)為RGRI,呈正相關(guān),其值為0.633(Plt;0.01)。表2
2.2"多光譜植被指數(shù)與天山假狼毒AGB相關(guān)性
研究表明,在盛花期(|R|=0.660~0.407)與結(jié)實(shí)期(|R|=0.560~0.342)相關(guān)性均達(dá)到極顯著水平(Plt;0.01),盛花期10種植被指數(shù)相關(guān)系數(shù)均大于0.4,最高為GRDVI,呈正相關(guān),其值為0.660(Plt;0.01)。但同一植被指數(shù)在不同生長期與天山假狼毒AGB的相關(guān)性表現(xiàn)有所差異,如,結(jié)實(shí)期GCI相關(guān)性最高,|R|為0.566,呈正相關(guān);但盛花期相關(guān)性則不高,|R|為0.439,呈負(fù)相關(guān)。表3
2.3"融合植被指數(shù)與天山假狼毒AGB相關(guān)性
研究表明,在可見光植被指數(shù)和多光譜植被指數(shù)中選取3種與天山假狼毒AGB相關(guān)性最高的植被指數(shù),分別為RGRI、VARI、EXR和GRDVI、MNLI、NLI。在盛花期9種融合后植被指數(shù)|R|均大于0.5,達(dá)到0.01顯著性水平,范圍在0.768~0.517,由大到小依次為RGRI×GRDVI、RGRI×MNLI、EXR×MNLI、VARI×MNLI、VARI×NLI、RGRI×NLI、EXR×NLI、EXR×GRDVI、VARI×GRDVI,對應(yīng)|R|為0.768、0.538、0.537、0.535、0.535、0.534、0.533、0.520和0.517;在結(jié)實(shí)期9種融合后植被指數(shù)達(dá)到0.01顯著性水平,|R|范圍在0.582~0.348。表4
2.4"基于可見光植被指數(shù)估測天山假狼毒AGB模型擬合精度"
研究表明,MLR模型在盛花期的R2、R2adj、RMSE分別為0.711、0.645和10.587;SMLR模型在盛花期的R2、R2adj、RMSE分別為0.697、0.678和10.591;RF模型在盛花期的R2、R2adj、RMSE分別為0.720、0.685和8.263。表5
2.5"基于多光譜植被指數(shù)估算天山假狼毒AGB模型擬合精度"
研究表明,在盛花期中以RF模型擬合精度最高,R2、R2adj、RMSE分別為0.794、0.779和7.318。MLR模型R2、R2adj、RMSE分別為0.804、0.753和8.876。SMLR模型R2、R2adj、RMSE分別為0.763、0.747和8.988。
2.6"融合植被指數(shù)估算天山假狼毒AGB模型擬合精度"
研究表明,篩選出與天山假狼毒AGB相關(guān)性最優(yōu)的兩類植被指數(shù)后,以相乘的方法融合,最終以9種參數(shù)作為自變量進(jìn)行建模。在各生育期之間,3種模型的R2、R2adj較單一類型的植被指數(shù)模型均有所提高,RMSE均有所下降。盛花期MLR模型R2、R2adj、RMSE分別為0.844、0.809和7.821,SMLR模型R2、R2adj、RMSE分別為0.837、0.831和7.357,RF模型R2、R2adj、RMSE分別為0.831、0.820和8.054。表7
2.7"天山假狼毒AGB估測模型預(yù)測精度
研究表明,在盛花期,可見光植被指數(shù)建立的模型預(yù)測精度R2在0.671~0.601、R2adj在0.581~0.649、RMSE在10.591~12.306;多光譜植被指數(shù)建立的模型預(yù)測精度為R2在0.601~0.713、R2adj在0.581~0.654、RMSE在10.074~10.714;融合植被指數(shù)建立的模型預(yù)測精度為R2在0.777~0.836、R2adj在0.763~0.828、RMSE在7.127~9.250。
結(jié)實(shí)期可見光植被指數(shù)建立的模型預(yù)測精度R2在0.223~0.350、R2adj在0.184~0.318、RMSE在9.083~12.693;多光譜植被指數(shù)建立的模型預(yù)測精度為R2在0.472~0.543、R2adj在0.442~0.520、RMSE在7.430~10.910;融合植被指數(shù)建立的模型預(yù)測精度為R2在0.577~0.648、R2adj在0.557~0.630、RMSE在7.054~8.873。圖1~3
3"討 論
3.1"植被指數(shù)與天山假狼毒AGB相關(guān)性的討論
利用遙感技術(shù)進(jìn)行作物長勢信息的監(jiān)測是精準(zhǔn)農(nóng)業(yè)研究的熱點(diǎn)[12, 14-17, 29]?;谔焐郊倮嵌緹o人機(jī)可見光和多光譜影像分析了可見光植被指數(shù)、多光譜植被指數(shù)在關(guān)鍵生育期與AGB之間的關(guān)系,其中單個(gè)可見光植被指數(shù)RGRI、VARI、EXR與AGB值具有較高的相關(guān)性,多光譜植被指數(shù)中GRDVI、MNLI、NLI與AGB具有較高的相關(guān)性,融合后9種植被指數(shù)提升單一植被指數(shù)穩(wěn)定性;因天山假狼毒為植被的一種,所以具有與植被相似的光譜特征,在盛花期尤為對在近紅外波段敏感具有較高反射率形成高反射平臺,與前人的研究結(jié)果基本一致[30-32]。
3.2"3種回歸模型擬合與預(yù)測的討論
與結(jié)實(shí)期相比,盛花期天山假狼毒粉白花與其他牧草、裸地光譜差異最大,其AGB模型精度最高,以此時(shí)期為例,基于單一植被指數(shù)估測天山假狼毒AGB模型擬合精度,結(jié)果表明,RF擬合精度gt;SMLR擬合精度gt;MLR擬合精度;基于融合植被指數(shù)估測天山假狼毒AGB模型擬合精度,SMLR擬合精度gt;RF擬合精度gt;MLR擬合精度,非線性RF模型性能優(yōu)于SMLR方法,但天山假狼毒AGB擬合與預(yù)測精度并不高,此研究結(jié)果與杭燕紅等[26]采用SMLR模型精度最高結(jié)論一致。原因是RF模型通常需要更大的數(shù)據(jù)集來產(chǎn)生準(zhǔn)確的預(yù)測,而研究中數(shù)據(jù)量不夠,或由于數(shù)據(jù)本身差異性,數(shù)據(jù)中包含噪聲,RF模型可能更容易受到這些噪聲的干擾,而多元逐步回歸通常對噪聲數(shù)據(jù)更加魯棒。
3.3"單一植被指數(shù)與融合植被指數(shù)估測模型
在任意時(shí)期融合植被指數(shù)模型比單一類型的植被指數(shù)模型在預(yù)測精度和穩(wěn)定性上有明顯提高,其中,融合植被指數(shù)AGB估測模型(R2adj=0.809~0.831,RMSE=7.357~8.054)>多光譜植被指數(shù)AGB估測模型(R2adj=0.747~8.988,RMSE=7.318~8.988)>RGB植被指數(shù)AGB估測模型(R2adj=0.645~0.685,RMSE=8.263~10.591);模型精度驗(yàn)證中,融合植被指數(shù)AGB估測模型(R2adj=0.763~0.828,RMSE=7.127~9.250)>多光譜植被指數(shù)AGB估測模型(R2adj=0.708~0.742,RMSE=10.041~10.714)>RGB植被指數(shù)AGB估測模型(R2adj=0.581~0.654,RMSE=10.591~12.306),表明不同波段反射率對天山假狼毒AGB具有差異性需綜合考慮不同波段信息,并發(fā)現(xiàn)估算模型精度整體上高于驗(yàn)證模型,因此將兩類相關(guān)性較高的植被指數(shù)相結(jié)合,可以提供更全面、準(zhǔn)確、精細(xì)的植被指數(shù)信息,與前人研究結(jié)果相一致[27, 29]。
4"結(jié) 論
4.1
在近紅外、紅波段的植被指數(shù),如RGRI、VARI、EXR、GRDVI、MNLI、NLI與天山假狼毒AGB的相關(guān)性較強(qiáng)。在近紅外和紅邊波段組合的植被指數(shù)對天山假狼毒AGB較為敏感,選用此波段進(jìn)行AGB估算較優(yōu)。
4.2
在不同生育期中以盛花期反演效果最佳,3種建模方法的擬合精度均高于其他生育期。在盛花期中,基于融合植被指數(shù)的多元線性逐步回歸估測模型中擬合效果最佳,模型的R2、R2adj、RMSE為0.837、0.831和7.357。
4.3"""與基于單一類型的植被指數(shù)估測模型相比,基于融合植被指數(shù)建立的估測模型擬合精度最佳、穩(wěn)定性更佳。
參考文獻(xiàn)"(References)
[1]"李宏, 陳衛(wèi)民, 陳翔, 等.新疆伊犁草原毒害草種類及其發(fā)生與危害[J].草業(yè)科學(xué), 2010, 27(11): 171-173.
LI Hong, CHEN Weimin, CHEN Xiang, et al.Poisonous weed species and their harmfulness in the grassland of Yili regions, Xinjiang Uygur Autonomous Region of China[J].Pratacultural Science, 2010, 27(11): 171-173.
[2] 張鮮花, 安沙舟, 王顯瑞, 等.白喉烏頭種群空間分布格局初步研究[J].草地學(xué)報(bào), 2012, 20(3): 428-433.
ZHANG Xianhua, AN Shazhou, WANG Xianrui, et al.Spatial distribution patterns of Aconitum leucostomum[J].Acta Agrestia Sinica, 2012, 20(3): 428-433.
[3] 牛瓊梅, 單貴蓮, 羅欽, 等.毒害草入侵?jǐn)U散對滇西北亞高山草甸土壤微生物多樣性的影響[J].草地學(xué)報(bào), 2023, 31(7): 1996-2004.
NIU Qiongmei, SHAN Guilian, LUO Qin, et al.Effect of invasion and diffusion of poisonous weeds on soil microbial diversity in subalpine meadow in northwest Yunnan[J].Acta Agrestia Sinica, 2023, 31(7): 1996-2004.
[4] 王宏生, 宋梅玲, 王玉琴, 等.不同恢復(fù)措施對黃帚橐吾及毒害草型退化草地群落的影響[J].中國草地學(xué)報(bào), 2022, 44(4): 32-39.
WANG Hongsheng, SONG Meiling, WANG Yuqin, et al.Effects of different restoration methods on Ligularia virgaurea and toxic weed dominated degraded grassland community[J].Chinese Journal of Grassland, 2022, 44(4): 32-39.
[5] 呂紹倫, 趙陽, 盧吉瑞, 等.伊犁州毒草害空間分布特征及防治[J].農(nóng)村經(jīng)濟(jì)與科技, 2022, 33(3): 24-27.
LYU Shaolun, ZHAO Yang, LU Jirui, et al.Spatial distribution characteristics and control of poisonous weeds in Yili Prefecture[J].Rural Economy and Science-Technology, 2022, 33(3): 24-27.
[6] 楊晨, 沙日扣, 蘇日拉格, 等.中國天然草原毒害草種類分布、毒性及防控與利用研究進(jìn)展[J].家畜生態(tài)學(xué)報(bào), 2022, 43(11): 88-96.
YANG Chen, SHA Rikou, SU Rilage, et al.Research progress on distribution, toxicity, control and utilization of poisonous grass species in natural grassland of China[J].Journal of Domestic Animal Ecology, 2022, 43(11): 88-96.
[7] 岳方正, 李璇, 楊鼎, 等.我國主要草原有害生物防治指標(biāo)制定與分析[J].草業(yè)科學(xué), 2022, 39(9): 1773-1781.
YUE Fangzheng, LI Xuan, YANG Ding, et al.Establishment and analysis of key pest control indicators in grasslands in China[J].Pratacultural Science, 2022, 39(9): 1773-1781.
[8] 范宏, 劉素紅, 陳吉軍, 等.基于深度學(xué)習(xí)的白喉烏頭與牧草高精度分類研究[J].江蘇農(nóng)業(yè)科學(xué), 2021, 49(12): 173-180.
FAN Hong, Liu Suhong, Chen Jijun, et al.Study on high-precision classification of Aconitum leucostomum Worosch and pasture based on deep learning[J].Jiangsu Agricultural Sciences, 2021, 49(12): 173-180.
[9] 梁俊歡.基于無人機(jī)影像和深度學(xué)習(xí)方法的白喉烏頭識別研究[D].烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2022.
LIANG Junhuan."Recognition of Aconitum Leucostomum Based on UVA Image and Deep Learning Method[D].Urumqi: Xinjiang Agricultural University, 2022.
[10] 王晗, 向友珍, 李汪洋, 等.基于無人機(jī)多光譜遙感的冬油菜地上部生物量估算[J].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2023, 54(8): 218-229.
WANG Han, XIANG Youzhen, LI Wangyang, et al.Estimation of winter rapeseed above-ground biomass based on uav multi-spectral remote sensing[J].Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 218-229.
[11] 劉建剛, 趙春江, 楊貴軍, 等.無人機(jī)遙感解析田間作物表型信息研究進(jìn)展[J].農(nóng)業(yè)工程學(xué)報(bào), 2016, 32(24): 98-106.
LIU Jiangang, ZHAO Chunjiang, YANG Guijun, et al.Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 98-106.
[12] Che Y P, Wang Q, Xie Z W, et al.Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography[J].Annals of Botany, 2020, 126(4): 765-773.
[13] 孫永祺, 陳夢媛, 黃倩, 等.低空無人機(jī)遙感在油料作物表型分析中的應(yīng)用[J].浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2023, 49(4): 472-483.
SUN Yongqi, CHEN Mengyuan, HUANG Qian, et al.Application of low-altitude unmanned aerial vehicle remote sensing in the phenotypic analysis of oil crops[J].Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 472-483.
[14] 向友珍, 安嘉琪, 趙笑, 等.基于無人機(jī)多光譜遙感的大豆生長參數(shù)和產(chǎn)量估算[J].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2023, 54(8): 230-239.
XIANG Youzhen, AN Jiaqi, ZHAO Xiao, et al.Soybean growth parameters and yield estimation based on UAV multispectral remote sensing[J].Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 230-239.
[15] Osco L P, Junior J M, Ramos A P M, et al.Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques[J].Remote Sensing, 2020, 12(19): 3237.
[16] Lu J S, Cheng D L, Geng C M, et al.Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize[J].Biosystems Engineering, 2021, 202: 42-54.
[17] Zhou X B, Kono Y, Win A, et al.Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches[J].Plant Production Science, 2021, 24(2): 137-151.
[18] 秦彩杰, 李勇.作物病蟲害自動識別技術(shù)研究——基于視頻監(jiān)控和無人機(jī)平臺[J].農(nóng)機(jī)化研究, 2021, 43(10): 42-45, 50.
QIN Caijie, LI Yong.Research on automatic identification technology of crop diseases and insect pests—based on video monitoring and UAV platform[J].Journal of Agricultural Mechanization Research, 2021, 43(10): 42-45, 50.
[19] 楊國峰, 何勇, 馮旭萍, 等.無人機(jī)遙感監(jiān)測作物病蟲害脅迫方法與最新研究進(jìn)展[J].智慧農(nóng)業(yè), 2022, 4(1): 1-16.
YANG Guofeng, HE Yong, FENG Xuping, et al.Methods and new research progress of remote sensing monitoring of crop disease and pest stress using unmanned aerial vehicle[J].Smart Agriculture, 2022, 4(1): 1-16.
[20] Lan Y B, Huang K H, Yang C, et al.Real-time identification of rice weeds by UAV low-altitude remote sensing based on improved semantic segmentation model[J].Remote Sensing, 2021, 13(21): 4370.
[21] Zhu H, Jiang Y, Zhang C, et al.Research on mosaic method of UAV low-altitude remote sensing image based on SIFT and SURF[J].Journal of Physics: Conference Series, 2022, 2203(1): 012027.
[22] Tetila E C, Machado B B, Astolfi G, et al.Detection and classification of soybean pests using deep learning with UAV images[J].Computers and Electronics in Agriculture, 2020, 179: 105836.
[23] 張正健, 李愛農(nóng), 邊金虎, 等.基于無人機(jī)影像可見光植被指數(shù)的若爾蓋草地地上生物量估算研究[J].遙感技術(shù)與應(yīng)用, 2016, 31(1): 51-62.
ZHANG Zhengjian, LI Ainong, BIAN Jinhu, et al.Estimating aboveground biomass of grassland in zoige by visible vegetation index derived from unmanned aerial vehicle image[J].Remote Sensing Technology and Application, 2016, 31(1): 51-62.
[24] 聶松偉.基于無人機(jī)多光譜遙感的冬小麥長勢指標(biāo)監(jiān)測[D].烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2022.
NIE Songwei.Monitoring of Winter Wheat Growth Index Based on UAV Multi-spectral Remote Sensing[D].Urumqi: Xinjiang Agricultural University, 2022.
[25] 吳培強(qiáng), 任廣波, 張程飛, 等.無人機(jī)多光譜和LiDAR的紅樹林精細(xì)識別與生物量估算[J].遙感學(xué)報(bào), 2022, 26(6): 1169-1181.
WU Peiqiang, REN Guangbo, ZHANG Chengfei, et al.Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J].National Remote Sensing Bulletin, 2022, 26(6): 1169-1181.
[26] 杭艷紅, 蘇歡, 于滋洋, 等.結(jié)合無人機(jī)光譜與紋理特征和覆蓋度的水稻葉面積指數(shù)估算[J].農(nóng)業(yè)工程學(xué)報(bào), 2021, 37(9): 64-71.
HANG Yanhong, SU Huan, YU Ziyang, et al.Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage[J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 64-71.
[27] 牛慶林, 馮海寬, 周新國, 等.冬小麥SPAD值無人機(jī)可見光和多光譜植被指數(shù)結(jié)合估算[J].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2021, 52(8): 183-194.
NIU Qinglin, FENG Haikuan, ZHOU Xinguo, et al.Combining UAV visible light and multispectral vegetation indices for estimating SPAD value of winter wheat[J].Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 183-194.
[28] 李長春, 牛慶林, 楊貴軍, 等.基于無人機(jī)數(shù)碼影像的大豆育種材料葉面積指數(shù)估測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017, 48(8): 147-158.
LI Changchun, NIU Qinglin, YANG Guijun, et al.Estimation of leaf area index of soybean breeding materials based on UAV digital images[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 147-158.
[29] 孫奇, 關(guān)琳琳, 焦全軍, 等.基于植被指數(shù)融合的冬小麥生物量反演研究[J].遙感技術(shù)與應(yīng)用, 2021, 36(2): 391-399.
SUN Qi, GUAN Linlin, JIAO Quanjun, et al.Research on retrieving biomass of winter wheat based on fusing vegetation index[J].Remote Sensing Technology and Application, 2021, 36(2): 391-399.
[30] 劉玉杰, 封志明, 鄧福英.基于草地退化指示植物大狼毒的植被指數(shù)研究[J].草地學(xué)報(bào), 2014, 22(3): 455-460.
LIU Yujie, FENG Zhiming, DENG Fuying.Vegetation indices of Euphorbia jolkinii As an indicator plant of grassland degradation[J].Acta Agrestia Sinica, 2014, 22(3): 455-460.
[31] 干珠扎布, 段敏杰, 高清竹, 等. 藏北高寒退化草地天山假狼毒群落地面光譜特征及其生物量估測[C]. 國際能源與環(huán)境會議(ICEE), 2011, 303-306.
Ganzhuzhabu, DUAN Minjie, GAO Qingzhu, et al. Spectral reflectance and biomass estimation of Diarthron tianschanicum in northern Tibet[C]. "International Conference on Energy and Environment (ICEE), 2011, 303-306.
[32] 凱楠, 劉詠梅, 李京忠, 等.青海瑞香狼毒葉綠素含量高光譜預(yù)測模型[J].生態(tài)學(xué)雜志, 2017, 36(4): 1150-1157.
KAI Nan, LIU Yongmei, LI Jingzhong, et al.Hyperspectal predicting model of chlorophyll content of Stellera chamaejasme in Qinghai Province[J].Chinese Journal of Ecology, 2017, 36(4): 1150-1157.
Estimation of aboveground biomass of Diarthron tianschanicum"""based on vegetation index fusion
HOU Zhengqing1, YAN An2, XIE Kaiyun2, YUAN Yilin1,"""XIA Wenqiu3, XIAO Shuting1, ZHANG Zhenfei1, SUN Zhe1
(1.College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; 2. College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China; 3. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China)
Abstract:【Objective】 ""In order to explore the ability of multi-source data to estimate aboveground biomass (AGB) of D.tianschanicum.
【Methods】 ""A drone platform equipped with visible light and multispectral sensors was used to collect information on blooming and heading stages and obtain visible light vegetation index, multispectral vegetation index, and a combination of the two vegetation indices.Multiple linear regression (MLR), stepwise linear regression (SMLR) Random Forest Regression (RF) were applied to establish an AGB estimation model for single vegetation index and fused vegetation index by using the determination coefficient (R2), and to valuate the estimation model with the adjusted coefficient of determination (R2adj) and root mean square error (RMSE).
【Results】 ""The vegetation index in the combination of near-infrared and red edge bands was more sensitive to the AGB of D. tianschanicum, so selecting;The peak flowering period had the best estimation effect among different growth stages, and the fitting effect was the best in the multiple linear stepwise regression estimation model based on the fusion vegetation index. The model's R2, R2adj and RMSE were 0.837, 0.831, and 7.357;Compared with vegetation index estimation models based on a single type, estimation models based on fused vegetation indices hadthe best fitting accuracy and better stability.
【Conclusion】 """The fusion of vegetation index can effectively increase spectral information and improve model prediction accuracy.
Key words:""drones; Diarthron tianschanicum aboveground biomass; vegetation index; visible light; multispectral
Fund projects:""Special Project for Key R amp; D Tasks in Xinjiang Uygur Autonomous Region (2022B02003)
Correspondence author:"""YAN An (1983-), male, from Ziyang,Sichuan,Ph.D., professor, research direction: digital agriculture and ecological environment remote sensing monitoring,(E-mail)yanan@xjau.edu.cn
收稿日期(Received):
2024-04-15
基金項(xiàng)目:
新疆維吾爾自治區(qū)重點(diǎn)研發(fā)任務(wù)專項(xiàng)計(jì)劃(2022B02003)
作者簡介:
侯正清(1999-),女,新疆昭蘇人,碩士研究生,研究方向?yàn)檗r(nóng)業(yè)信息化,(E-mail)287511284@qq.com
通訊作者:
顏安(1983-),男,四川資陽人,教授,博士,碩士生/博士生導(dǎo)師,研究方向?yàn)閿?shù)字農(nóng)業(yè)與生態(tài)環(huán)境遙感監(jiān)測,(E-mail)yanan@xjau.edu.cn