朱利文,任超,李競天,田沛宜,肖建輝,李萍
(1. 河南省第一地質(zhì)礦產(chǎn)調(diào)查院有限公司,河南 洛陽 471000;2. 河南省生態(tài)環(huán)境與勘查地球化學應用工程技術研究中心,河南 洛陽 471000)
鎘是一種劇毒重金屬,在土壤中有高遷移性、長持久性和生物累積性,對人體健康、動物和植物構成威脅[1],土壤鎘污染形勢不容樂觀,亟待解決。鈍化是鎘污染土壤修復的主要技術之一,國內(nèi)外已有大量研究[2-3],但大部分研究針對的是酸性鎘污染土壤[4-6],中國北方和南方部分地區(qū)多為中堿性土壤[7-9],其鎘污染農(nóng)田的鈍化修復材料仍有待研究。蒙脫石是一種2∶1型硅鋁酸鹽礦物[10],因其特殊層狀結構使之比表面積較大,對土壤重金屬離子吸附能力較強,被用于鈍化修復土壤重金屬污染[11-13]。然而,天然蒙脫石表面硅氧結構的親水性較強、鍵合能力較弱,導致其吸附過程可逆,吸附效果有限,鈍化效果不穩(wěn)定[14-15],在吸附鈍化土壤重金屬鎘應用上受到限制,因此目前研究熱點集中于在使用前對其進行改性,進而增強吸附能力[16-18]。
巰基具有很強的絡合能力,黏附性能強,且?guī)€基是一種弱堿、Cd2+是一種弱酸,基于軟硬酸堿理論,巰基與Cd2+可形成穩(wěn)定的結合態(tài),能很好地吸附重金屬離子[19-20]。龐婷雯等[21]對天然膨潤土進行巰基化、鈉化、酸化改性后,開展了Cu2+、Pb2+、Zn2+吸附試驗,發(fā)現(xiàn)巰基化改性膨潤土無論在單一重金屬離子的等溫吸附環(huán)境下,還是在競爭吸附環(huán)境下均表現(xiàn)出較好的吸附能力。朱霞萍等[22]采用溶液法對蒙脫石進行巰基改性,通過開展材料表征、動力學和熱力學試驗發(fā)現(xiàn),改性蒙脫石對Cd的吸附容量提高了近39倍。巰基改性可使鈍化材料對重金屬離子的吸附能力得到大幅提升,可應用于鈍化修復土壤鎘污染。目前,已有研究證實了巰基改性蒙脫石對中國南方酸性鎘污染土壤存在鈍化效果。朱凰榕等[23]將天然蒙脫石進行改性,制成巰基改性蒙脫石,通過盆栽和大田實驗表明,巰基改性蒙脫石對南方酸性鎘污染土壤(pH 5.03~5.86)有鈍化修復效果,土壤Cd水溶態(tài)和離子交換態(tài)含量均有所減少,有效地抑制了小白菜對Cd的吸收。曾燕君等[24]通過吸附解吸實驗也證實材料改性處理能明顯提高對Cd的飽和吸附容量,可有效地鈍化南方酸性Cd污染土壤。但蒙脫石改性前后對北方中堿性Cd污染農(nóng)田土壤的鈍化研究鮮有報道,考慮到鈍化材料對Cd2+的吸附容量受土壤pH值影響較大[22,25],蒙脫石改性前后對北方中堿性鎘污染農(nóng)田土壤的鈍化效果有待進一步研究。
本文以蒙脫石為原材料,將巰基基團負載在其表面或層間制備巰基改性蒙脫石,并借助X射線衍射(XRD)、掃描電鏡(SEM)、透射電鏡(TEM)和傅里葉紅外光譜(FTIR)表征巰基改性蒙脫石的特性,同時,開展室內(nèi)培養(yǎng)試驗研究巰基改性蒙脫石在不同添加量的情況下對中國北方中堿性農(nóng)田土壤Cd的鈍化效果,探究蒙脫石改性前后、不同添加量對北方中堿性農(nóng)田土壤Cd鈍化修復效果的影響,最后結合材料表征,分析巰基改性蒙脫石對Cd的鈍化機制,以期為修復北方Cd污染農(nóng)田土壤提供理論依據(jù)。
1.1.1 供試土壤
供試土壤采自河南省洛陽市欒川縣赤土店鎮(zhèn)鎘污染農(nóng)田,按照梅花五點法采集0~20cm混合土壤樣,土壤類型為褐土,質(zhì)地為粉壤土。經(jīng)除雜、自然風干、研磨后保存?zhèn)溆谩?/p>
1.1.2 鈍化材料
蒙脫石(M):購自宜陽天冠膨潤土有限公司,是由當?shù)氐V山開采破碎磨細制得。
巰基改性蒙脫石(GM):以天然蒙脫石礦物為原材料,經(jīng)破碎、球磨后粒度達到300目后備用;按質(zhì)量比例(蒙脫石粉∶去離子水=1∶20)混合,充分攪拌均勻后加入9.6%的無水乙醇和1.2%的3-巰丙基三乙氧基硅烷混合劑,常溫攪拌6h,用去離子水充分洗凈,于80℃下烘干研磨制得,干燥儲存,備用。
鎘污染土壤制備:將99.95%的氯化鎘(半五水合物)作為鎘源配制成鎘溶液,加入供試土壤中,充分混勻,并采用稱重法調(diào)節(jié)土壤含水量保持在田間持水量的70%,在25±2℃的恒溫培養(yǎng)箱中培養(yǎng)7天后,取出自然風干,作為鎘污染的土壤用于試驗,按每份100g土樣裝入5號自封袋中儲存?zhèn)溆谩?/p>
室內(nèi)培養(yǎng)試驗:共設置7個處理??瞻讓φ仗幚鞢K;添加1%、3%、5%(占供試土壤質(zhì)量百分比,添加到每份100g污染土壤中)的蒙脫石粉處理M1、M3、M5;添加1%、3%、5%的巰基改性蒙脫石粉處理GM1、GM3、GM5;每個處理設置3個重復。按比例將鈍化材料添加到Cd污染土壤中,于5號自封袋內(nèi)充分混勻。經(jīng)上述處理的土壤樣品分別準確移至相應的玻璃培養(yǎng)皿內(nèi)(模擬實驗的土壤深度15mm),每隔2天用去離子水給土壤補充水分,采用稱重法控制土壤含水量保持在田間持水量的70%,蓋上培養(yǎng)皿蓋,置于25±2℃的恒溫培養(yǎng)箱內(nèi)培養(yǎng),與此同時用塑料勺對土壤樣品進行攪拌混合,確保多次充分混合。分別在7、15、30、50、70天分5次取樣,每次稱取20g土樣在自然狀態(tài)下風干過20目篩,測定土樣的pH和全Cd、有效態(tài)Cd及Cd各賦存形態(tài)含量。
測試項目和具體檢測分析方法及依據(jù)見表1。包括:對供試土壤樣品進行pH、陽離子交換量(CEC)、有機質(zhì)、營養(yǎng)元素和Cd含量分析,對室內(nèi)培養(yǎng)試驗得到的土壤樣品進行pH、全Cd、有效態(tài)Cd和Cd各賦存形態(tài)含量分析。對鈍化材料進行pH、CEC、重金屬全量、BET、XRD、SEM、TEM和FTIR分析。具體檢測分析方法及依據(jù)見表1。所有樣品檢測均做兩次平行實驗,測定結果取平均值,平行樣測量值的相對偏差小于10%。
表1 樣品的檢測分析方法及依據(jù)Table 1 Detection and analysis methods and their basis of samples.
本研究目的是鈍化材料對鎘污染農(nóng)田土壤鎘鈍化(降低其有效性)的影響,并為研發(fā)鎘污染農(nóng)田土壤鈍化材料提供依據(jù)。為使研發(fā)的材料性能更貼近實際,實地采集了鎘污染土壤,對其理化性質(zhì)、營養(yǎng)元素和重金屬Cd元素進行分析檢測。
土壤pH值為7.96,全鎘含量為1.33mg/kg,CEC為12.0cmol(+)/kg,有機質(zhì)含量為15.4g/kg,全氮、全磷和全鉀含量分別為0.99、1.74、21.7g/kg,堿解氮、有效磷和速效鉀含量分別為107、14.8、84.2mg/kg。
2.2.1 基本性質(zhì)
蒙脫石pH值為10.64,CEC為41.6cmol(+)/kg,重金屬Cd、Hg、As、Pb、Cr、Cu、Ni、Zn含量為0.07、0.04、9.60、41.9、24.1、8.00、5.53、79.9mg/kg,考慮到田間實際應用,根據(jù)《耕地污染治理效果評價準則》(NY/T 3343—2018),蒙脫石作為鈍化材料投入品,滿足不對耕地或地下水造成二次污染的要求。
蒙脫石的比表面積為17.14m2/g,平均孔徑7.28nm。巰基改性蒙脫石的比表面積為10.74m2/g,平均孔徑27.90nm。
2.2.2 X射線衍射表征晶體結構
通過XRD來分析晶體結構信息變化,如圖1所示,蒙脫石主要含有SiO2、KAlSi2O3等礦物,巰基改性蒙脫石與蒙脫石相比,兩者XRD圖譜基本一致,說明這種改性方法沒有破壞原始礦物結構,巰基可能被負載在材料層間,也可能包裹在材料外面,進而完成改性。
圖1 蒙脫石和巰基改性蒙脫石的X射線衍射圖譜Fig. 1 X-ray diffraction patterns of montmorillonite and thiolmodified montmorillonite.
2.2.3 掃描電鏡表征微觀結構
由蒙脫石、巰基改性蒙脫石的SEM圖像(圖2)可看出,蒙脫石(圖2中a,b)為致密的片層狀結構,表面結構平坦規(guī)整,層狀結構間的通道和聚集顆粒間的空隙為重金屬離子的吸附提供空間。巰基改性后的材料(圖2中c,d)表面結構卷曲、松散,這可能是由于硅烷的黏度較大,導致小顆粒團聚。聚集形態(tài)不規(guī)則,顆粒間吸附空位明顯增多,表面粗糙疏松,說明巰基在蒙脫石內(nèi)部負載并不均勻,對原蒙脫石也有表面改性的作用[26]。
2.2.4 透射電鏡表征顆粒形貌和元素分布
由圖3可以看出,改性前的蒙脫石(圖3中a,b)為致密的片層狀結構,內(nèi)部出現(xiàn)小部分且少量的團聚現(xiàn)象,其內(nèi)部元素分布相對均勻。經(jīng)過巰基改性后的蒙脫石(圖3中c,d)與未改性前相比粒度明顯增大,與SEM分析結果一致,改性前蒙脫石呈片狀,改性后片狀消失,但改性前后元素并未發(fā)生改變且分布均相對均勻。
2.2.5 傅里葉紅外光譜表征官能團信息
改性前后的FTIR圖譜(圖4)存在明顯差異,改性前的天然蒙脫石FTIR圖譜顯示出,3634cm-1附近是結構層內(nèi)的-OH伸縮振動峰,3434cm-1附近是吸附的層間水形成的-OH伸縮振動峰,1643cm-1附近是C=O伸縮振動峰,1424cm-1附近是C-O反對稱伸縮振動峰,1037cm-1附近是Si-O-Si反對稱伸縮振動峰,796cm-1附近是Si-O-Si對稱伸縮振動峰。巰基改性蒙脫石在上述位置均出現(xiàn)特征吸收峰,且在3419cm-1附近的-OH伸縮振動峰和1640cm-1附近的C=O伸縮振動峰強度均明顯增強,表明負載巰基后沒有改變蒙脫石固有的官能團,但增強了-OH和C=O化學鍵的活性。另外,在2000~3000cm-1還增加了兩個吸收峰,2932cm-1附近是飽和C-H對稱伸縮振動,2027cm-1附近是S-H伸縮振動。
根據(jù)SEM、TEM分析及BET結果,改性后蒙脫石粒度增大,平均孔徑由7.28nm增加至27.90nm,層間距減小,比表面積由17.14m2/g減少至10.74m2/g,而巰基位于另一端,也可以有效地嫁接于蒙脫石表面或層間,巰基在蒙脫石上成功實現(xiàn)負載,形成了穩(wěn)定的巰基改性蒙脫石。結合FTIR分析圖譜,發(fā)現(xiàn)改性后的蒙脫石不僅新增了C-H、S-H共價鍵,而且增強了-OH和C=O化學鍵的活性。
土壤重金屬鈍化修復是通過施加鈍化材料與土壤重金屬發(fā)生吸附、離子交換、絡合、沉淀、固膠體、氧化還原等作用來降低土壤重金屬的活性[27-28],其中堿性物質(zhì),如硅酸鈉、石灰、碳酸鹽類等,鈍化機理是通過提高土壤的酸堿度,增加其吸附重金屬離子的能力,促進重金屬在土壤中的沉淀反應,減少其遷移性[29];黏土礦物,如蒙脫石、海泡石、高嶺土等,因其特殊的晶體結構,具有較大的孔容和比表面積,層間離子可交換[12],能與重金屬發(fā)生吸附、離子交換、共沉淀和配位反應[13],進而降低土壤中重金屬離子濃度與活性。針對中國北方廣泛分布的中堿性土壤[8],考慮到鈍化材料的施加會影響土壤pH,過高的pH易導致土壤板結、保水保肥能力降低[9],故針對其重金屬污染問題,不適合施加pH調(diào)節(jié)型堿性鈍化材料,環(huán)境友好且有一定鈍化效果的黏土礦物或改性黏土礦物更適用于北方中堿性農(nóng)田土壤。在本研究中,添加不同劑量的蒙脫石、改性蒙脫石后,土壤pH分別提高了0.12~0.78、0.30~0.85,提升幅度不大(表2)。這可能是由于蒙脫石自身呈堿性且含有羥基等基團[30],使土壤pH值升高。與蒙脫石相比,巰基改性蒙脫石對土壤pH也有輕微升高,可能是由于改性材料是3-巰丙基三乙氧基硅烷,它的酸度系數(shù)(pKa)比較高,可達到10.39,因此巰基改性蒙脫石加入土壤后確實可在一定程度上提升土壤的pH值,但影響不大。
表2 不同鈍化處理對土壤pH值的影響(70天)Table 2 Effects of different passivation treatments on soil pH(70d).
2.4.1 鈍化材料對土壤有效態(tài)鎘含量的影響
重金屬元素的有效態(tài)含量是影響其在土壤的生物有效性和移動性的主要因素,影響重金屬被植物吸收累積程度,能很好地表征其污染特征以及對植物毒害程度[31-32]。蒙脫石、改性蒙脫石在1%、3%、5%添加量下土壤有效態(tài)Cd含量的變化見圖5。兩者均能降低土壤有效態(tài)Cd含量,但改性蒙脫石對有效態(tài)Cd含量的降低效果顯著優(yōu)于蒙脫石。
圖5 鈍化材料1%、3%、5%添加量下土壤有效態(tài)鎘含量的變化Fig. 5 Changes of soil available cadmium content under 1%,3% and 5% addition of passivation materials.
蒙脫石本身具備一定的離子交換性及吸附性,對土壤有效態(tài)Cd含量的降低幅度僅為1.80%~6.71%,效果不顯著(p<0.05),這與化黨領等[33]、任露陸等[34]的研究結果一致。Gupta等[35]研究表明,有效態(tài)Cd含量的降低主要是由于蒙脫石自身的負電荷對Cd2+的靜電吸附作用,其次是由于蒙脫石表面或層間的-OH、OH2+等基團與Cd2+、CdOH+發(fā)生的離子交換行為,而且其-OH官能團能與Cd發(fā)生配位吸附,形成Cd(OH)2沉淀。改性后制得的巰基改性蒙脫石在吸附土壤有效態(tài)Cd時表現(xiàn)出高效性能,對土壤有效態(tài)Cd含量的降低幅度達到21.92%~82.90%,效果顯著。添加改性蒙脫石70天后,土壤有效態(tài)Cd含量略有提升,而且改性蒙脫石與蒙脫石均出現(xiàn)同樣的趨勢,該變化可能與培養(yǎng)過程中土壤性質(zhì)的變化有關,并不是改性蒙脫石特有。不同添加量的鈍化材料對有效態(tài)Cd的降低效果也有所差別,其中,蒙脫石的不同添加量對土壤鎘的鈍化效果差異不大,1%、3%、5%的添加量對土壤有效態(tài)Cd分別降低了3.37%、1.80%、6.71%。改性蒙脫石1%、3%、5%的添加量對土壤有效態(tài)Cd分別降低了21.92%、69.11%、82.90%。由此可見,改性蒙脫石對土壤鎘的鈍化效果顯著,鈍化效果與添加量成正比,施用5%改性蒙脫石對土壤鎘的鈍化效果最好,土壤有效態(tài)Cd含量降低幅度高達82.90%。
卿艷紅等[12]研究發(fā)現(xiàn),巰基改性的蒙脫石既具備蒙脫石自身的尺寸穩(wěn)定性、吸附性和阻隔性,又具有硅烷分子多種功能基團的反應活性。結合材料表征結果,XRD分析結果顯示出改性后蒙脫石的結構并未發(fā)生改變,對有效鎘仍具備靜電吸附、離子交換吸附、羥基配位吸附能力。FTIR分析結果顯示,改性后蒙脫石對土壤中有效態(tài)Cd含量的大幅降低主要來源于兩方面:一方面是由于改性后新增了C-H、S-H共價鍵,能與Cd2+發(fā)生巰基配位吸附作用,其作用力明顯強于靜電吸附、離子交換吸附和羥基配位吸附作用力,這與以往[24,36]的研究結果一致;另一方面是由于改性后增強了-OH和C=O化學鍵的活性,增強了蒙脫石原有的羥基配位吸附作用,反應示意圖見圖6。
圖6 巰基改性蒙脫石與鎘的反應示意圖Fig. 6 Reaction diagram of mercapto thiol-modified montmorillonite with Cd.
2.4.2 鈍化材料對土壤鎘賦存形態(tài)的影響
本研究鈍化修復Cd污染土壤的主要原理是基于對土壤Cd賦存形態(tài)的轉化,故分析改性前后的蒙脫石對土壤Cd賦存形態(tài)的影響??紤]到待測土壤樣品的pH值為7.91~9.26,偏堿性,采用Tessier修正順序七步提取法對重金屬活性態(tài)進行提?。?7]。原狀土的Cd以離子交換態(tài)和碳酸鹽結合態(tài)為主要賦存形態(tài),蒙脫石改性前后均對土壤Cd賦存形態(tài)有所影響,培養(yǎng)70天后土壤鎘的賦存形態(tài)變化如圖7所示。
圖7 添加鈍化材料培養(yǎng)70天后土壤鎘賦存形態(tài)變化Fig. 7 The change of cadmium speciation in soil after 70 days of incubation with passivation materials.
添加蒙脫石對土壤Cd賦存形態(tài)的影響不大,變化幅度小于5%。培養(yǎng)70天后(圖7a),水溶態(tài)、強有機結合態(tài)和硅酸鹽殘余態(tài)Cd含量基本無變化,其他形態(tài)Cd含量發(fā)生一定程度的變化,離子交換態(tài)Cd所占比例降低1.17%~4.87%,碳酸鹽結合態(tài)、腐植酸結合態(tài)、鐵錳氧化物結合態(tài)Cd所占比例分別升高0.97%~3.53%、0.74%~1.06%、0.19%~0.51%。添加蒙脫石后土壤Cd主要由離子交換態(tài)轉化為碳酸鹽結合態(tài),仍以這兩種賦存形態(tài)為主。
添加改性蒙脫石70天后,土壤Cd賦存形態(tài)發(fā)生顯著改變(圖7a),與空白對照組相比,水溶態(tài)Cd含量略有提升,但仍保持在低位穩(wěn)定狀態(tài),離子交換態(tài)Cd所占比例大幅降低(12.76%~40.84%),碳酸鹽結合態(tài)、腐植酸結合態(tài)、鐵錳氧化物結合態(tài)Cd所占比例分別提高了2.86%~8.45%、2.76%~9.34%、6.67%~34.75%,而強有機結合態(tài)、硅酸鹽殘余態(tài)Cd含量略有下降。添加巰基改性蒙脫石后,主要促使土壤Cd形態(tài)從離子交換態(tài)轉化為鐵錳氧化物結合態(tài)。不同添加量的改性蒙脫石對土壤Cd賦存形態(tài)分布差異顯著(1%、3%和5%添加量對土壤Cd賦存形態(tài)的影響分別見圖7中b、c和d),隨著改性蒙脫石添加量的增加,離子交換態(tài)Cd含量大幅降低,鐵錳氧化物結合態(tài)Cd含量大幅增加,碳酸鹽結合態(tài)Cd含量也有提升,其他形態(tài)(水溶態(tài)、腐植酸結合態(tài)、強有機結合態(tài)、硅酸鹽殘余態(tài))Cd含量變化不大,這可能是由于土壤添加改性蒙脫石后并沒有改變土壤有機質(zhì)含量和性質(zhì)[38],因此,其他形態(tài)發(fā)生變化過程中,沒有影響強有機結合態(tài)Cd含量。通過對比改性前后的蒙脫石對土壤Cd賦存形態(tài)的影響差異,對于改性蒙脫石而言,巰基的增加可與土壤Cd發(fā)生巰基配位吸附[39],促使離子交換態(tài)轉變?yōu)殍F錳氧化物結合態(tài),另外羥基的活性增強可與土壤Cd發(fā)生羥基配位吸附,促使離子交換態(tài)轉化為碳酸鹽結合態(tài),兩者均可使土壤Cd的活性降低。
用3-巰丙基三乙氧基硅烷對天然蒙脫石進行改性后能夠實現(xiàn)巰基在蒙脫石上成功負載,形成穩(wěn)定的巰基改性蒙脫石。改性后的蒙脫石不僅新增了C-H、S-H共價鍵,而且增強了-OH和C=O化學鍵的活性,并通過與Cd2+發(fā)生巰基及羥基的配位吸附作用,提高蒙脫石對土壤鎘的吸附能力。當施加5%巰基改性蒙脫石時,土壤有效鎘的降低幅度可在對照組6.71%的基礎上,提高到82.90%。
施加巰基改性蒙脫石后,土壤Cd賦存形態(tài)發(fā)生顯著改變,離子交換態(tài)大幅減少,新增的巰基配位吸附作用使其轉化為鐵錳氧化物結合態(tài),增強的羥基配位吸附作用使其轉化為碳酸鹽結合態(tài)。巰基改性蒙脫石對中國北方鎘污染農(nóng)田土壤的鈍化效果顯著,可作為北方鎘污染農(nóng)田土壤安全利用的鈍化材料。
BRIEF REPORT
Significance:Heavy metal pollution in farmland soil is the main factor affecting the environmental quality and safety of agricultural products in China. Passivation material is a key material for repairing heavy metal contaminated soil in farmland. Research and development of efficient soil heavy metal passivation materials is very important for repairing heavy metal contaminated farmland and ensuring the food safety of agricultural products.Passivation is one of the main technologies for the remediation of Cd-contaminated soil. There have been a lot of studies at home and abroad[2-3], but most of the studies are aimed at acidic Cd-contaminated soil[4-6]. Most of the northern and southern parts of China are alkaline soil[7-9], and the passivation remediation materials for Cdcontaminated farmland still need to be studied.
The passivation effect of montmorillonite before and after modification on the alkaline Cd contaminated farmland soil in northern China needs to be further studied. Montmorillonite is a 2∶1 type aluminosilicate mineral[10]. Due to its special layered structure, it has a large specific surface area and strong adsorption capacity for heavy metal ions in soil, and has been used to passivate and repair heavy metal pollution in soil[11-13]. However, due to the strong hydrophilicity and weak bonding ability of the silicon-oxygen structure on the surface of natural montmorillonite, the adsorption process is reversible, the adsorption effect is limited, and the passivation effect is unstable[14-15], which is limited in the application of adsorption and passivation of soil heavy metal Cd. Therefore,the current research focuses on the modification of natural montmorillonite before use, thereby enhancing the adsorption capacity[16-18]. The thiol group has a strong complexing ability, strong adhesion, and is a weak base. Cd2+is a weak acid, based on the theory of soft and hard acid-base, thiol group and Cd2+can form a stable binding state,and can be a good adsorption of heavy metal ions[19-20]. At present, studies have confirmed that thiol-modified montmorillonite has a passivation effect on acidic Cd-contaminated soil in the south. However, considering that the adsorption capacity of passivation materials for Cd2+is greatly affected by soil pH[22,25], and the passivation of montmorillonite before and after modification on alkaline Cd-contaminated farmland, soil in the north is rarely reported. Therefore, this study was carried out to analyze the changes in material characterization before and after montmorillonite modification, the passivation effect of montmorillonite before and after modification, and different amounts of montmorillonite on Cd in alkaline farmland in the north.
Methods:Montmorillonite was used as the raw material, and the thiol group was loaded on the surface or interlayer of montmorillonite to prepare thiol-modified montmorillonite. The characteristics of thiol-modified montmorillonite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). At the same time, indoor soil experiments were carried out to study the passivation effect of thiol-modified montmorillonite on Cd in northern alkaline farmland soil with different addition amounts, and explore the effects of montmorillonite modification and different addition amounts on the passivation and repair effect of Cd in northern alkaline farmland soil. Finally, combined with material characterization, the passivation mechanism of thiol-modified montmorillonite on Cd was analyzed in order to provide a theoretical basis for the remediation of Cd-contaminated farmland soil in northern China.
A total of 7 treatments were set up. Blank control treatment CK; montmorillonite powder treatments M1, M3 and M5 were added with 1%, 3% and 5% (percentage of soil quality, added to 100g contaminated soil per share).GM1, GM3 and GM5 were treated with 1%, 3% and 5% thiol-modified montmorillonite powder. Each treatment was set up with 3 replicates. The passivation material was added to the Cd-contaminated soil in proportion and fully mixed in the No.5 self-sealing bag. The soil samples treated above were accurately moved to the corresponding glass culture dish (the soil depth of the simulation experiment was 15mm), and the soil was replenished with deionized water every 2 days. The soil moisture content was controlled by the weighing method to maintain 70% of the field water holding capacity, and the culture dish was covered and placed in a constant temperature incubator at 25±2℃. At the same time, the soil samples were stirred and mixed with a plastic spoon to ensure multiple full mixing. Samples were taken 5 times at 7, 15, 30, 50 and 70 days, and 20g soil samples were weighed and dried in natural state through 20 mesh sieves. The pH, total Cd content, available Cd content and Cd content of each form were determined. The specific detection and analysis methods and basis are shown in Table 1.
Data and Results:The crystal structure, microstructure, particle morphology and functional group information were analyzed by material characterization techniques. The change of crystal structure was analyzed by XRD. The XRD patterns of montmorillonite and thiol-modified montmorillonite (Fig.1) were basically the same, indicating that this modification method did not destroy the original mineral structure. The thiol group may be loaded between the layers of the material, or it may be wrapped outside the material to complete the modification. According to the results of SEM (Fig.2), TEM (Fig.3) and BET, the particle size of montmorillonite increased after modification, the surface structure changed from flat and regular to curly and loose, and the interlayer spacing decreased. The thiol group had been effectively grafted onto the surface or interlayer of montmorillonite, forming a stable thiol-modified montmorillonite. Combined with FTIR analysis (Fig.4), it was found that the modified montmorillonite not only added C-H and S-H covalent bonds, but also enhanced the activity of -OH and C=O chemical bonds.
The passivation effect of thiol-modified montmorillonite on Cd in soil was significant. After the addition of thiol-modified montmorillonite to the test soil, the ion-exchanged Cd in the soil was converted into an ironmanganese oxide-bound state due to the thiol coordination adsorption, and the enhanced hydroxyl coordination adsorption converted it into a carbonate-bound state. As a result, the occurrence form of Cd in the soil was significantly changed, the ion exchange state was greatly reduced, and the available Cd in the soil absorbed by the crop roots was significantly reduced. After adding 1%, 3% and 5% thiol-modified montmorillonite, the available Cd in soil decreased by 21.92%, 69.11% and 82.90%, respectively (Fig.5). As the control group, the addition of 1%,3%, and 5% montmorillonite only decreased by 3.37%, 1.80%, and 6.71%, respectively. The passivation effect of montmorillonite on soil Cd was significantly improved after thiol modification, and the decrease of available Cd in soil tended to increase with the increase of thiol-modified montmorillonite. When 5% thiol-modified montmorillonite was applied, the decrease of available Cd in soil could be increased to 82.90% on the basis of 6.71% in the control group. The passivation effect of thiol-modified montmorillonite on Cd-contaminated farmland soil in northern China is significant, and it can be used as a passivation material for safe utilization of Cdcontaminated farmland soil in Northern China.