時(shí)林平,陳滿堂,趙閣,劉瑞紅,謝復(fù)煒*
綜述
液相微萃取技術(shù)在煙草分析中的應(yīng)用進(jìn)展
時(shí)林平1,2,陳滿堂1,趙閣1,劉瑞紅1,謝復(fù)煒1*
1 中國煙草總公司鄭州煙草研究院,鄭州高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)楓楊街2號(hào) 450001;2 鄭州大學(xué),鄭州高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)科學(xué)大道100號(hào) 450001
利用快速高效的樣品前處理方法進(jìn)行煙草成分分析可以減少煙草中基質(zhì)對(duì)分析過程的影響。液相微萃取技術(shù)是一種簡單、快捷、環(huán)保的樣品前處理技術(shù)。本文介紹了液相微萃取技術(shù)的原理,分析了影響萃取效率的因素,總結(jié)了液相微萃取技術(shù)在煙草分析中的應(yīng)用進(jìn)展。針對(duì)液相微萃取技術(shù)在煙草樣品前處理中存在的不足,對(duì)其應(yīng)用前景進(jìn)行了展望。
液相微萃??;樣品前處理;煙草分析
煙草品質(zhì)取決于其化學(xué)成分,因此,煙草化學(xué)成分的分析對(duì)于評(píng)價(jià)煙草質(zhì)量風(fēng)格至關(guān)重要。煙草成分極其復(fù)雜,且測(cè)定時(shí)各成分間往往會(huì)相互干擾,這給煙草分析帶來了較大挑戰(zhàn)。為減少煙草中基質(zhì)的影響,提高檢測(cè)方法的靈敏度,降低檢出限,實(shí)現(xiàn)復(fù)雜煙草樣品的常量、半微量甚至痕量分析,選擇合適的樣品前處理技術(shù)尤為重要。固相萃?。⊿PE)[1-2]和液液萃取(LLE)[3]是煙草分析中常用的兩種前處理技術(shù),但這些技術(shù)往往存在耗時(shí)長、有毒有機(jī)溶劑消耗多等缺點(diǎn)。為克服這些缺點(diǎn),微萃取技術(shù)尤其是液相微萃?。↙PME)逐漸得到發(fā)展。作為一種綠色的樣品前處理技術(shù),液相微萃取技術(shù)具有所需樣品量少、操作簡單、環(huán)境友好等優(yōu)點(diǎn),已在煙草中脂肪胺[4]、氨基酸[5]、香味成分[6]和揮發(fā)性成分[7]等以及煙氣中煙堿[8-9]、多酚[10]、芳香胺[11]等的分析中得到廣泛應(yīng)用。然而,目前仍缺乏對(duì)液相微萃取技術(shù)在煙草分析中應(yīng)用進(jìn)展的歸納總結(jié)。本文重點(diǎn)針對(duì)LPME技術(shù)的原理、影響因素、分類及其在煙草分析中的應(yīng)用進(jìn)行系統(tǒng)綜述,并展望了其在煙草分析中的發(fā)展方向。
LPME技術(shù)是LLE的改進(jìn)方法,以液體介質(zhì)作為萃取相,采用特定負(fù)載技術(shù)將100 μL或更少體積的溶劑固載成萃取相,用于分離富集痕量目標(biāo)物。與LLE相比,LPME技術(shù)無需大量有機(jī)溶劑,更安全環(huán)保,也可在一定程度上降低基質(zhì)干擾。LPME包括兩相LPME和三相LPME。在兩相LPME中,萃取相與樣品溶液直接接觸,有利于萃取過程的進(jìn)行,缺點(diǎn)是降低了樣品的選擇性,且限制萃取溶劑為水不溶的有機(jī)液體。然而,在三相LPME中,樣品溶液和最終的受體相通過第三種溶劑分離,該溶劑與兩相不混溶,可以用水作為受體相,能夠提高方法的選擇性。
LPME技術(shù)是一種基于分析物在樣品及小體積有機(jī)溶劑之間平衡分配,集萃取、濃縮、解吸于一體的樣品前處理技術(shù)。
對(duì)于液液微萃取體系,平衡狀態(tài)下LPME的萃取量n的計(jì)算方式為[12]:
對(duì)于液液液微萃取體系,體系達(dá)到平衡后分析物的萃取量n的計(jì)算方式為[13]:
對(duì)于靜態(tài)頂空LPME體系,平衡狀態(tài)下分析物的萃取量n的計(jì)算方式為[12]:
對(duì)于動(dòng)態(tài)頂空LPME體系,平衡狀態(tài)下萃取量n的計(jì)算方式為[14]:
LPME的萃取效率受萃取溶劑的種類、pH、萃取時(shí)間、鹽效應(yīng)、溫度等的影響。
萃取溶劑的選擇依據(jù)“相似相溶”原則。為了避免萃取過程中萃取溶劑的揮發(fā),選擇有機(jī)溶劑時(shí)應(yīng)避免揮發(fā)性有機(jī)溶劑[15]。對(duì)于單滴微萃?。⊿DME),針頭懸掛液滴的大小也會(huì)影響萃取效率。萃取效率受速率常數(shù)k(s-1)的影響,k的計(jì)算方式為[16]:
改變?nèi)芤簆H可以改變離子在溶液中的存在形態(tài),從而改變?nèi)芙舛龋黾釉谟袡C(jī)相中的分配。LPME是分析物在樣品與有機(jī)溶劑之間分配平衡的過程,當(dāng)分析物在樣品與有機(jī)溶劑之間達(dá)到分配平衡時(shí)萃取量最大,延長萃取時(shí)間也可能會(huì)導(dǎo)致萃取率下降。對(duì)于分配系數(shù)較小物質(zhì)的萃取時(shí)間則需要嚴(yán)格控制。液液分散微萃取由于萃取劑均勻地分散在水相中而能在很短時(shí)間內(nèi)將分析物從水相轉(zhuǎn)移到有機(jī)相,因此萃取效率受萃取時(shí)間的影響較小。在液體樣品中加入適量無機(jī)鹽可增加離子濃度,降低待測(cè)物溶解度,增加萃取效率和分析靈敏度。升高溫度會(huì)加快分析物的擴(kuò)散速度,縮短萃取時(shí)間;但也會(huì)加速有機(jī)溶劑的揮發(fā),導(dǎo)致其在溶劑中的萃取量減少。因此,在實(shí)際操作過程中要綜合考慮萃取時(shí)間和萃取效率以選擇最佳萃取溫度。
LPME技術(shù)近年來發(fā)展迅速(圖1)。1996年,Liu和Dasgupta[17]提出LPME技術(shù);1997年He和Lee[18]采用微量注射器作為萃取微滴的支撐體和萃取結(jié)束后的進(jìn)樣器,提出了靜態(tài)LPME技術(shù)和動(dòng)態(tài)LPME技術(shù),命名為SDME;2002年,Zhao和Lee[19]提出了中空纖維LPME技術(shù)(HF-LPME),克服了懸在色譜微量進(jìn)樣器針頭上的有機(jī)液滴在樣品攪拌時(shí)易于脫落的缺點(diǎn);Pedersen-Bjergaard和Rasmussen)[15]于1999年提出了膜輔助液液液微萃取技術(shù)(LLLME);2003年Gjelstad等[20]報(bào)道了一種膜輔助液-液-液萃取的新方法,稱為平行液膜微萃?。≒ALME);2006年Rezaee等[21]提出分散液液微萃取技術(shù)(DLLME);同年,Pedersen-Bjergaard和Rasmussen[22]提出的電膜微萃取技術(shù)(EME)已成為從復(fù)雜樣品中分離離子藥物的潛在技術(shù)。表1列舉了LPME技術(shù)在煙草分析中的應(yīng)用實(shí)例。
表1 基于LPME技術(shù)的煙草分析方法①
Tab.1 Tobacco analysis methods based on the LPME technology
注:①GC-MS: 氣相色譜-質(zhì)譜聯(lián)用;HPLC-UV: 高效液相色譜-紫外檢測(cè)器;UA-IL-DLLME: 超聲輔助離子液體分散液-液微萃取技術(shù);DSDME: 直接懸浮液滴微萃?。籚A-DLPME: 渦旋輔助分散液相微萃?。籙A-DES-LPME: 超聲輔助低共熔溶劑液相微萃??;MALDI-FTICR-MS: 基質(zhì)輔助激光解吸/電離傅里葉變換離子回旋共振質(zhì)譜法;GC-MS/MS: 氣相色譜-串聯(lián)質(zhì)譜;UV-Vis: 紫外可見吸收光譜儀;FAAS: 火焰原子吸收光譜儀;FTMS: 傅里葉變換質(zhì)譜。
Note: ①GC-MS: gas chromatography-mass spectrometry;HPLC-UV: High performance liquid chromatography ultraviolet detector;UA-IL-DLLME: Ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction;DSDME: Direct suspension droplet microextraction;VA-DLPME: Vortex-assisted dispersive liquid phase microextraction;UA-DES-LPME: Ultrasonic-assisted liquid-liquid microextraction technique based on deep eutectic solvents;MALDI-FTICR-MS: matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry; GC-MS/MS: Gas chromatography-tandem mass spectrometry;UV-Vis: Ultraviolet-visible absorption spectroscopy;FAAS: Flame atomic absorption spectrometer;FTMS: Fourier transform mass spectrometry.
SDME包括直接單滴微萃取(DI-SDME)和頂空SDME(HS-SDME)。DI-SDME是直接將有機(jī)液滴浸沒到樣品溶液中,常用于萃取熱不穩(wěn)定或沸點(diǎn)較高的目標(biāo)分析物;HS-SDME是將一滴萃取劑暴露在樣品溶液上方的頂空中,用于萃取揮發(fā)性和半揮發(fā)性分析物[18]。Sha等[4]采用HS-SDME-同步衍生氣相色譜-質(zhì)譜聯(lián)用(GC-MS)技術(shù)測(cè)定了煙草樣品中的脂肪胺,該方法線性良好。Xie等[28]用SDME-同步衍生-基質(zhì)輔助激光解吸/電離傅里葉變換離子回旋共振質(zhì)譜法(EDSD/MALDI-FTICR-MS)技術(shù)分析測(cè)定單口煙氣中的小分子醛,該方法簡單、快速、溶劑和試劑消耗量少。需要注意的是,SDME存在液滴不穩(wěn)定、容易從針頭尖端脫落、重復(fù)性差等缺點(diǎn)。
HF-LPME的發(fā)展解決了SDME中出現(xiàn)的問題,其原理是中空纖維浸入有機(jī)溶劑中,中空纖維的孔隙通過毛細(xì)管力與纖維壁結(jié)合形成薄支撐液膜(SLMs),溶劑穿過SLMs,從而防止位于纖維腔內(nèi)的萃取相溶解到樣品中[19, 38]。在兩相LPME采樣模式中,分析物從樣品中萃取到固定在中空纖維孔隙中的萃取劑中;在三相LPME萃取模式中,中空纖維孔隙中的有機(jī)溶劑與中空纖維腔內(nèi)的受體溶劑不同,形成“液液液”三相萃取體系。Esrafili等[25]基于在線HF-LPME-高效液相色譜-紫外檢測(cè)(HPLC-UV)自動(dòng)化儀器定量分析卷煙煙氣中的吡啶,該方法操作簡單、溶劑消耗量低、易于實(shí)現(xiàn)自動(dòng)化。
PALME的提出解決了HF-LPME不能在商業(yè)設(shè)備中應(yīng)用的缺點(diǎn),其原理與HF-LPME相同。PALME基于96孔濾板,每個(gè)孔的底部都對(duì)應(yīng)含有多孔過濾器的濾板;用浸漬有機(jī)溶劑的平膜將水樣品和水受體相分開,形成三明治式的體系[20,39]。PALME技術(shù)操作過程簡單,只消耗幾微升的樣品體積,可以同時(shí)進(jìn)行多個(gè)樣品的萃取,PALME形成的三相萃取體系減少了基質(zhì)效應(yīng)的影響[40]。
DLLME是將萃取劑和分散劑混合物用注射器快速注入盛有液體樣品的錐形離心管中,形成萃取劑-分散劑-液體樣品三相混合狀態(tài)溶液;萃取完成后以低速離心分離萃取劑和樣品,收集底部的萃取劑層進(jìn)行分析[21]。Tabrizi和Abdollahi[41]建立了DLLME-HPLC法測(cè)定卷煙主流煙氣中苯甲醛、丁醛和糠醛等醛類物質(zhì),該方法新穎、簡單且對(duì)環(huán)境友好。Li等[30]用衍生化-超聲輔助-DLLME技術(shù)測(cè)定煙草中11種主要碳水化合物,并將該方法成功應(yīng)用于煙草添加劑中碳水化合物的測(cè)定。雖然DLLME萃取效率高,但還有以下限制: 使用有害的有機(jī)溶劑(如氯化溶劑)作為萃取劑;乳化需要一種與萃取溶劑競(jìng)爭的分散溶劑,從而降低萃取效率;萃取后需要離心分離,難以實(shí)現(xiàn)自動(dòng)化。為解決以上問題,研究者們逐步將ILs、DESs等新型綠色溶劑應(yīng)用于DLLME技術(shù)。Memon等[26]建立了一種基于DESs的超聲輔助LPME方法,用于測(cè)定煙草樣品中的鉛含量,該方法環(huán)保、方便、簡單。
EME技術(shù)是在樣品溶液中使用兩個(gè)電極,并在中空纖維腔中外加電場(chǎng)的一種HF-LPME模式,其原理是基于被分析物在外加電場(chǎng)的作用下,通過SLMs進(jìn)入微升級(jí)的受體溶液中;萃取過程中,帶電目標(biāo)分析物在電場(chǎng)的作用下快速遷移到SLMs中并穿過SLMs,最終在接收相中富集[22]。在萃取堿性化合物時(shí),應(yīng)調(diào)整接收相和樣品相pH使目標(biāo)分析物帶正電,陽極置于樣品相中,陰極置于接收相中;當(dāng)萃取酸性化合物時(shí),調(diào)整接收相和樣品相pH確保目標(biāo)分析物帶負(fù)電,電極位置則相反。如今,EME技術(shù)廣泛用于萃取食品及環(huán)境樣品中的有機(jī)微污染物等[42-44]。EME技術(shù)正成為一種從復(fù)雜生物樣品中分離、濃縮的新綠色方法。Chen等[37]建立了一種EME-HPLC-UV聯(lián)用技術(shù)用于傳統(tǒng)卷煙、電子煙和加熱不燃燒卷煙氣溶膠中煙堿含量的檢測(cè),該方法環(huán)保、方便、簡單。
液相微萃取技術(shù)是一種新型環(huán)保的綠色萃取技術(shù),它集采樣、萃取、濃縮等步驟于一體,在分析化學(xué)領(lǐng)域展現(xiàn)出越來越廣的應(yīng)用前景,被廣泛應(yīng)用于煙草成分分析。但液相微萃取技術(shù)在萃取劑的使用、重現(xiàn)性等方面還存在局限性。液相微萃取技術(shù)未來的發(fā)展方向在于: (1)篩選環(huán)境友好、成本低廉的萃取劑;(2)進(jìn)一步提高萃取技術(shù)的選擇性;(3)與其他樣品前處理技術(shù)聯(lián)用;(4)與多種檢測(cè)手段相結(jié)合;(5)實(shí)現(xiàn)現(xiàn)場(chǎng)原位分析;(6)開發(fā)新型高穩(wěn)健液相微萃取技術(shù)應(yīng)用于煙草成分的大批量分析。
[1] ZHAO G, WANG S, FU Y, et al. Analysis of the heterocyclic aromatic amines in cigarette smoke by liquid chromatography- andem mass spectrometry[J]Chromatographia, 2014, 77(11): 813-820.
[2] CHEN Y, ZHANG W, ZHANG Y, et al. In situ preparation of core-shell magnetic porous aromatic framework nanoparticles for mixed-mode solid-phase extraction of trace multitarget analytes[J]. Journal of Chromatography A, 2018, 1556: 1-9.
[3] 嚴(yán)俊,王紅娟,陳志燕,等. 氣相色譜-串聯(lián)質(zhì)譜法測(cè)定電子煙煙液中的10種生物堿含量[J]. 分析測(cè)試學(xué)報(bào),2021, 40(7): 1037-1042.
YAN Jun, WANG Hongjuan, CHEN Zhiyan, et al. Determination of 10 alkaloids in refill solutions for electronic cigarettes by gas chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2021, 40(7): 1037-1042.
[4] SHA Y, MENG J, LIN H, et al. Development of single-drop microextraction and simultaneous derivatization followed by GC-MS for the determination of aliphatic amines in tobacco[J]. Journal of Separation Science, 2010, 33(9): 1283-1287.
[5] LI G, WU D, XIE W, et al. Analysis of amino acids in tobacco by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method[J]. Journal of Chromatography A, 2013, 1296: 243-247.
[6] WU L, LI Q, LI C, et al. Determination of aroma components in Chinese southwest tobacco by directly suspended droplet microextraction combined with GC-MS[J]. Journal of Chromatographic Science, 2014, 52(10): 1317-1325.
[7] SUN S H, XIE J P, XIE F W, et al. Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry[J]. Journal of Chromatography A, 2008, 1179(2): 89-95.
[8] 吳億勤,秦云華,劉巍,等. 分散液液微萃取結(jié)合高效液相色譜測(cè)定主流煙氣中的煙堿[J]. 云南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018, 40(3): 545-550.
WU Yiqin, QIN Yunhua, LIU Wei, et al. Determination of nicotine in mainstream flue gas by dispersive liquid-liquid microextraction combined with high performance liquid chromatography[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(3): 545-550.
[9] XIE J P, SUN S H, WANG H Y, et al. Determination of nicotine in mainstream smoke on the single puff level by liquid-phase microextraction coupled to matrix-assisted laser desorption/ ionization fourier transform mass spectrometry[J] Rapid Communications in Mass Spectrometry, 2006, 20(17): 2573-2578.
[10] CAI K, GAO W, YUAN Y, et al. An improved in situ acetylation with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the sensitive determination of phenols in mainstream tobacco smoke[J]. Journal of Chromatography A, 2019, 1603: 401-406.
[11] 鄧惠敏,李中皓,邊照陽,等. GC/MS法同時(shí)測(cè)定主流煙氣中9種芳香胺[J]. 煙草科技,2017, 50(12): 61-69.
DENG Huimin, LI Zhonghao, BIAN Zhaoyang, et al. Simultaneous determination of nine aromatic amines in mainstream cigarette smoke by GC/MS[J]. Tobacco Science & Technology, 2020, 53(9): 33-39, 61.
[12] PRZYJAZNY A, KOKOSA J M. Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction[J]. Journal of Chromatography A, 2002, 977(2): 143-153.
[13] 趙汝松,徐曉白,劉秀芬. 液相微萃取技術(shù)的研究進(jìn)展[J]. 分析化學(xué),2004, 32(9): 1246-1251.
ZHAO Rusong, XU Xiaobai, LIU Xiufen, et al. The advancement and application of liquid-phase microextraction[J]. Chinese Journal of Analytical Chemistry, 2004, 32(9): 1246-1251.
[14] SHEN G, LEE H K. Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection[J]. Analytical Chemistry, 2003, 75(1): 98-103.
[15] PEDERSEN-BJERGAARD S, RASMUSSEN K E. Liquid-liquid- liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Analytical Chemistry, 1999, 71(14): 2650-2656.
[16] ZHAO L, LEE H K. Application of static liquid-phase microextraction to the analysis of organochlorine pesticides in water[J]. Journal of Chromatography A, 2001, 919(2): 381-388.
[17] LIU H, DASGUPTA P K. Analytical chemistry in a drop. Solvent extraction in a microdrop[J]. Analytical Chemistry, 1996, 68(11): 1817-1821.
[18] HE Y, LEE H K. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe[J]. Analytical Chemistry, 1997, 69(22): 4634-4640.
[19] ZHAO L, LEE H K. Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry[J]. Analytical Chemistry, 2002, 74(11): 2486-2492.
[20] GJELSTAD A, RASMUSSEN K E, PARMER M P, et al. Parallel artificial liquid membrane extraction: Micro-scale liquid-liquid-liquid extraction in the 96-well format[J]. Bioanalysis, 2013, 5(11): 1377-1385.
[21] REZAEE M, ASSADI Y, MILANI HOSSEINI M R, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(1-2): 1-9.
[22] PEDERSEN-BJERGAARD S, RASMUSSEN K E. Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids[J]. Journal of Chromatography A, 2006, 1109(2): 183-190.
[23] Memon Z M, Yilmaz E,Soylak M. Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination[J]. Journal of Molecular Liquids, 2017, 229: 459-464.
[24] SUN S, CHENG Z, XIE J, et al. Identification of volatile basic components in tobacco by headspace liquid-phase microextraction coupled to matrix-assisted laser desorption/ionization with Fourier transform mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(8): 1025-1030.
[25] ESRAFILI A, YAMINI Y, GHAMBARIAN M, et al. Automated preconcentration and analysis of organic compounds by on-line hollow fiber liquid-phase microextraction-high performance liquid chromatography[J]. Journal of Chromatography A, 2012, 1262: 27-33.
[26] MEMON Z M, YILMAZ E, SHAH A M, et al. A green ultrasonic-assisted liquid-liquid microextraction technique based on deep eutectic solvents for flame atomic absorption spectrometer determination of trace level of lead in tobacco and food samples[J]. Journal of the Iranian Chemical Society, 2018, 16(4): 687-694.
[27] EL Sheikh R, HASSAN W S, YOUSSEF A M, et al. Eco-friendlyultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction of nickel in water, food and tobacco samples prior to FAAS determination[J]. International Journal of Environmental Analytical Chemistry, 2020, 102(4): 899-910.
[28] XIE J, YIN J, SUN S, et al. Extraction and derivatization in single drop coupled to MALDI-FTICR-MS for selective determination of small molecule aldehydes in single puff smoke[J]. Analytica Chimica Acta, 2009, 638(2): 198-201.
[29] SHA Y, MENG J, ZHANG Y, et al. Determination of volatile organic acids in tobacco by single-drop microextraction with in-syringe derivatization followed by GC-MS[J]. Journal of Separation Science, 2010, 33(2): 212-217.
[30] LI P, ZHU X, HONG S, et al. Ultrasound-assisted extraction followed by dispersive liquid-liquid microextraction before gas chromatography-mass spectrometry for the simultaneous determination of flavouring compounds in tobacco additives[J]. Analytical Methods, 2012, 4(4): 995-1000.
[31] 朱曉蘭,洪深求,李盼盼,等. 分散液液微萃取/氣相色譜-質(zhì)譜法同時(shí)測(cè)定煙用添加劑中8種烷基苯類香味有害物[J]. 分析測(cè)試學(xué)報(bào),2012, 31(3): 351-354, 358.
ZHU Xiaolan, HONG Shenqiu, LI Panpan, et al. Simultaneous determination of allkenylbenzenes and other flavor-related compounds in tobacco additives by dispersive liquid-liquid microextraction and GC-MS[J]. Journal of Instrumental Analysis, 2012, 31(3): 351-354, 358.
[32] ZHU X, XU Y, GAO Y, et al. Pressurized liquid extraction combined with dispersive liquid-liquid micro-extraction as an efficient sample preparation method for determination of volatile components in tobacco[J]. Journal of the Chinese Chemical Society, 2012, 59(7): 909-916.
[33] TABRIZI A B, ABDOLLAHI A. Dispersive liquid-liquid microextraction for the high performance liquid chromatographic determination of aldehydes in cigarette smoke and injectable formulations[J]. Journal of Hazardous Materials, 2013, 254-255: 390-396.
[34] ALOTHMAN Z A, HABILA M A, YILMAZ E, et al. Lead preconcentration as rac-(E,E)-N,N'-bis(2-chlorobenzylidene)cyclohexane-1,2-diamine complexes from water and tobacco samples by dispersive liquid-liquid microextraction[J]. Journal of Analytical Chemistry, 2015, 70(6): 691-695.
[35] 陳曉水,楊洋,湯曉東,等. 分散液液微萃取-GC-MS/MS法測(cè)定卷煙主流煙氣粒相物中的農(nóng)藥殘留[J]. 煙草科技,2017, 50(1): 58-66.
CHEN Xiaoshui, YANG Yang, TANG Xiaodong, et al. Determination of pesticide residues in particulate matter of mainstream cigarette smoke by dispersive liquid-liquid microextraction and gas chromatography-tandem mass spectrometry[J]. Tobacco Science & Technology, 2017, 50(1): 58-66.
[36] 秦云華,吳億勤,張承明,等. 分散液液微萃取-微量分光光度法測(cè)定再造煙葉廢水中煙堿[J]. 分析試驗(yàn)室,2018, 37(6): 696-700.
QIN Yunhua, WU Yiqin, ZHANG Chengming, et al. Determination of nicotine in reconstituted tobacco wastewater using dispersive liquid.liquid microextraction combined with microscopic spectrophotometry[J]. Chinese Journal of Analysis Laboratory, 2018, 37(6): 696-700.
[37] CHEN M, QIN Y, WANG S, et al. Electromembrane extraction of nicotine in inhaled aerosols from tobacco cigarettes, electronic cigarettes, and heated tobacco products[J]. Journal of Chromatography B, 2022, 1208: 123391.
[38] GHAMBARIAN M, YAMINI Y, ESRAFILI A. Developments in hollow fiber based liquid-phase microextraction: Principles and applications[J]. Microchimica Acta, 2012, 177(3-4): 271-294.
[39] OLSEN K N, ASK K S, PEDERSEN-BJERGAARD S, et al. Parallel artificial liquid membrane extraction of psychoactive analytes: A novel approach in therapeutic drug monitoring[J]. Bioanalysis, 2018, 10(6): 385-395.
[40] GJELSTAD A. Three-phase hollow fiber liquid-phase microextraction and parallel artificial liquid membrane extraction[J]. TRAC Trends in Analytical Chemistry, 2019, 113: 25-31.
[41] TABRIZI A B, ABDOLLAHI A. Dispersive liquid-liquid microextraction for the high performance liquid chromatographic determination of aldehydes in cigarette smoke and injectable formulations[J]. Journal of Hazardous Materials, 2013, 254-255: 390-396.
[42] WAN L, GAO H, GAO H, et al. Selective extraction and determination of steroidal glycoalkaloids in potato tissues by electromembrane extraction combined with LC-MS/MS[J]. Food Chemistry, 2022, 367: 130724.
[43] GAO H, CHEN M, GAO H, et al. Determination of ractopamine residue in animal derived foods using electromembrane extraction followed by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2022, 1675: 463179.
[44] WAN L, GAO H, LIU X, et al. Electromembrane extraction of clenbuterol from swine urine for monitoring illegal use in livestock[J]. Journal of Separation Science, 2022, 45(21): 1-8.
Progress in the application of liquid-phase microextraction technique in tobacco analysis
SHI Linping1,2, CHEN Mantang1, ZHAO Ge1, LIU Ruihong1, XIE Fuwei1*
1 Zhengzhou Tobacco Research of CNTC, Zhengzhou 450001, China;2 Zhengzhou University, Zhengzhou 450001, China
The use of rapid and efficient sample pretreatment methods for tobacco component analysis can reduce the influence of tobacco matrices on the analytical process. Liquid-phase microextraction technique is a simple, fast, and environmentally friendly sample pretreatment method. This paper introduces the principles of liquid-phase microextraction technology, analyzes the factors that affect extraction efficiency, and summarizes the progress in the application of liquid-phase microextraction technology in tobacco analysis. Addressing the shortcomings of liquid-phase microextraction technology in the pre-treatment of tobacco samples, the paper offers a perspective on its future applications.
liquid-phase microextraction; sample pre-treatment; tobacco analysis
. Email:xiefuwei@sina.com
國家自然科學(xué)基金“三維多孔碳基凈化材料對(duì)農(nóng)殘及共存基質(zhì)的競(jìng)爭吸附機(jī)制研究”(32202166);鄭州煙草研究創(chuàng)新專項(xiàng)“基于三維多孔碳籠凈化煙草基質(zhì)的農(nóng)殘快速篩查和定量分析研究”(312020CR0300);國家煙草專賣局創(chuàng)新平臺(tái)科研活動(dòng)穩(wěn)定支持專項(xiàng)(312021AW0420)
時(shí)林平(1999—),在讀碩士研究生,主要從事煙草化學(xué)研究,Tel:0371-67672690,Email:slphxy@163.com
謝復(fù)煒(1973—),Tel:0371-67672502,Email:xiefuwei@sina.com
2023-04-14;
2023-11-10
時(shí)林平,陳滿堂,趙閣,等. 液相微萃取技術(shù)在煙草分析中的應(yīng)用進(jìn)展[J]. 中國煙草學(xué)報(bào),2024,30(1). SHI Linping, CHEN Mantang, ZHAO Ge, et al. Progress in the application of liquid-phase microextraction technique in tobacco analysis[J]. Acta Tabacaria Sinica, 2024,30(1). doi:10.16472/j.chinatobacco.2023.T0058