胡唯伊 王運(yùn)濤 徐友才 張世全
非Kerr光纖中的亮孤子的演化可以用具有三次-五次競(jìng)爭(zhēng)非線性項(xiàng)的非線性薛定諤方程來(lái)描述. 為數(shù)值求解該方程的初值問(wèn)題,本文將無(wú)界區(qū)域截?cái)酁橛薪鐓^(qū)域,根據(jù)亮孤子在遠(yuǎn)場(chǎng)的漸近行為構(gòu)造了合理的邊界條件,從而將該初值問(wèn)題轉(zhuǎn)換為初邊值問(wèn)題. 對(duì)這個(gè)初邊值問(wèn)題,本文分別提出了Crank-Nicolson有限差分(Crank-Nicolson Finite Difference, CNFD)格式和時(shí)間分裂有限差分(Time-Splitting Finite Difference, TSFD)格式. 這兩種格式在空間和時(shí)間維度上都具有二階精度,其中CNFD格式是全隱格式,可以守恒離散能量和質(zhì)量,TSFD是線性隱式格式,可以守恒離散質(zhì)量. 在以數(shù)值算例驗(yàn)證兩種方法的計(jì)算效率后,本文用TSFD格式研究了非Kerr光纖中亮孤子的穩(wěn)定性與相互作用.
亮孤子; 薛定諤方程; 三次-五次非線性; 非Kerr光纖
O241.82 A 2024.011001
Stability and interaction of bright solitons in non-Kerr fiber
HU Wei-Yi ?1 , WANG Yun-Tao ?2 , XU You-Cai ?1,2 , ZHANG Shi-Quan ?1
(1. School of Mathematics, Sichuan University, Chengdu 610064, China;
2. Tianfu Engineering-Oriented Numerical Simulation & Software Innovation Center, Chengdu 610207, China)
Dynamical behaviors of bright solitons can be described by the nonlinear Schrdinger equation (NLSE) with cubic-quintic competing nonlinear terms. In this paper, to numerically solve the initial value problem of the NLSE, two difference schemes are proposed. Firstly, we transfer the initial value problem into the initial value problem with boundary conditions, truncate the unbounded region into a bounded region and constructe a reasonable boundary condition based on the asymptotic behaviors of bright solitons in the far field. Then we design the Crank-Nicolson finite difference (CNFD) and time-splitting finite difference (TSFD). The CNFD scheme is fully implicit and can conserve discrete energy and mass. Meanwhile, the TSFD scheme is linear implicit and can only conserve discrete mass. Finally, after the performance of the two schemes is compared by some examples, we explore the stability and interaction of bright solitons by using the TSFD scheme.
Bright soliton; Schrodinger equation; Cubic-quintic nonlinearity; Non-Kerr fiber
(2010 MSC 65M60)
5 結(jié) 論
本文對(duì)具有三次-五次非線性項(xiàng)的非線性薛定諤方程初邊值問(wèn)題提出了兩種差分格式,并對(duì)比了它們的計(jì)算效率. CNFD格式在時(shí)間和空間方向都具有二階精度.因其是全隱格式,計(jì)算過(guò)程更耗時(shí),計(jì)算量更大. TSFD格式在時(shí)間和空間方向也都具有二階精度.對(duì)于固定的網(wǎng)格尺寸 h ,時(shí)間步長(zhǎng) τ 取不同值時(shí)TSFD格式的離散誤差小于CNFD格式,因而TSFD格式在時(shí)間維度上具有更高精度. 同時(shí),因TSFD格式是線性隱式格式,計(jì)算效率較高,計(jì)算時(shí)間明顯低于CNFD格式,因而計(jì)算效率更好. 另一方面,CNFD格式可以守恒離散能量和質(zhì)量而 TSFD格式只守恒離散質(zhì)量,所以在守恒性上CNFD格式更好.
然后,我們利用TSFD格式研究了非克爾光纖中亮孤子的穩(wěn)定性與相互作用.結(jié)果表明:首先,亮孤子的演化是動(dòng)態(tài)穩(wěn)定的;其次,兩個(gè)亮孤子在碰撞后可以完全分離,分離后仍保持勻速運(yùn)動(dòng),密度分布均勻,且亮孤子的速度越快則碰撞后產(chǎn)生的振蕩越強(qiáng)烈.
參考文獻(xiàn):
[1] ??Pelinovsky ?D, Kivshar Y, Afanasjev V. Instability-induced dynamics of dark solitons [J]. Phys Rev, 1996, 54: 2015.
[2] ?Khater A, Callebaut D, Seadawy A. General soliton solutions of an ?N -dimensional complex Ginzburg-Landau equation [J]. Phys Scr, 2000, 62: 353.
[3] ?Khater A, Seadawy A, Helal M. General soliton solutions of an ?N -dimensional nonlinear Schrodinger equation [J]. Nuov Ciment B, 2000, 115: 1303.
[4] ?Khater A, Callebaut D, Helal M, ?et al . Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line [J]. J Phys B, 2006, 39: 237.
[5] ?Seadawy ?A, Sayed A. Soliton solutions of cubic-quintic nonlinear Schrodinger and variant Boussinesq equations by the first integral method [J]. Filomat, 2017, 31: 4199.
[6] ?Kim W, Moon H. Dark and bright soliton exchange in a nonlinear dispersive medium [J]. J Korean Phys Soc, 2001, 38: 558.
[7] ?Youssoufa ?M, Dafounansou O, Mohamadou A. Bright, dark and kink solitary waves in a cubic-quintic-septic-nonical medium, nonlinear optics—from solitons to similaritons [M]. Britain: Intech Open, 2020.
[8] ?Kudryashov N. Traveling wave solutions of the generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity [J]. Optik, 2019, 188: 27.
[9] ?Serkin V, Belyaeva T, Alexandrov I, et al . Optical pulse and beam propagation (Ⅲ) [J]. SPIE Proc, 2001, 4271: 292.
[10] ?Antoine ?X, Bao W Z, Besse C. Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J]. Comput Phys Commun, 2013, 184: 2621.
[11] Shen J, Tang T, Wang L. Spectral methods: algorithms, analysis and applications [M]. Berlin: Springer, 2011.
[12] Seshu P. Textbook of finite element analysis [M]. New Deli: PHI Learning Private Ltd, 2012.
[13] ?Li X. Luo J F. Feng M F. A nonllnear 1ocal projection-based finite element method for unsteady Navier-Stokes equations [J]. J Sichuan Univ(Nat Sci Ed), 2021. 58: 031002.[李西, 羅加福, 馮民富. 非定常Navier-Stokes方程的一種非線性局部投影穩(wěn)定化有限元方法[J]. 四川大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 58: 031002.]
[14] Delfour M, Fortin M, Payr G. Finite-difference solutions of a non-linear Schrodinger equation [J]. J Comput Phys, 1981, 44:277.
[15] Akrivis G. Finite difference discretization of the cubic Schrodinger equation [J]. IMA J Numer Anal, 1993, 13: 115.
[16] Akrivis G, Dougalis V A, Karakashian O. Solving the systems of equations arising in the discretization ofsome nonlinear PDEs by implicit Runge-Kutta methods [J]. ESAIM Math Model Num, 1997, 31: 251.
[17] Karakashian O, Akrivis G, Dougalis V. On optimal order error estimates for the nonlinear Schrodinger equation [J]. SIAM J Numer Anal, 1993, 30: 377.
[18] Loscalzo F, Talbot T. Spline function approximations for solutions of ordinary differential equations [J]. SIAM J Numer Anal, 1967, 4: 433.
[19] McLachlan R, Quispel G. Splitting methods [J]. Acta Numer, 2002, 11: 341.
收稿日期: ?2023-02-16
基金項(xiàng)目: ?國(guó)家重大專項(xiàng)(GJXM92579); 四川省自然科學(xué)基金(2023NSFSC0075)
作者簡(jiǎn)介: ??胡唯伊(1998-), 女, 碩士研究生, 主要研究方向?yàn)槲⒎址匠虜?shù)值解.E-mail: huweiyi2020@163.com
通訊作者: ?徐友才. E-mail: xyc@scu.edu.cn
四川大學(xué)學(xué)報(bào)(自然科學(xué)版)2024年1期