冉黔松 周厚榮
【摘要】缺血性心臟病嚴(yán)重危害人類身體健康,心肌缺血再灌注損傷(MIRI)是其最常見的一種病理生理損害,如何預(yù)防或減輕其損害已成為關(guān)鍵問題。以往的研究結(jié)果表明,細(xì)胞氧化誘導(dǎo)、炎癥反應(yīng)、細(xì)胞凋亡和自噬對MIRI的發(fā)病和病理生理過程有重要影響。自噬在其中起關(guān)鍵作用,適度的自噬有助于維持心臟的正常功能。長鏈非編碼RNA能通過調(diào)控自噬參與MIRI進(jìn)程,其異常表達(dá)及功能受到更多關(guān)注,但目前具體作用機(jī)制仍不明確,臨床應(yīng)用局限。因此通過綜述長鏈非編碼RNA調(diào)節(jié)自噬在MIRI中的研究進(jìn)展,對改善MIRI治療策略、發(fā)現(xiàn)新的治療靶點(diǎn)來保護(hù)心肌提供一定的理論基礎(chǔ)。
【關(guān)鍵詞】長鏈非編碼RNA;自噬;心肌缺血再灌注損傷;心肌損傷
【DOI】10.16806/j.cnki.issn.1004-3934.2024.03.011
Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury
RAN Qiansong1,ZHOU Hourong2
(1.Guizhou Medical University,Guiyang 550001,Guizhou,China;2.Department of General Medicine,Peoples Hospital Affiliated to Guizhou Medical University,Guiyang 550002,Guizhou,China)
【Abstract】Ischemic heart disease seriously endangers human health.Myocardial ischemia-reperfusion injury(MIRI) is the most common pathophysiological damage.How to prevent or reduce its damage has become a key issue.Previous research results have shown that cellular oxidative induction,inflammation,apoptosis and autophagy have an important impact on the pathogenesis and pathophysiological process of MIRI.Autophagy plays a key role,and moderate autophagy helps maintain the normal function of the heart.Long noncoding RNA can participate in the MIRI by regulating autophagy,and its abnormal expression and function have attracted more attention.However,the specific mechanism of action is still unclear and its clinical application is limited.Therefore,by reviewing the research progress of long non-coding RNA regulating autophagy in MIRI,it provides a certain theoretical basis for improving MIRI treatment strategies and discovering new therapeutic targets to protect myocardium.
【Keywords】Long non-coding RNA;Autophagy;Myocardial ischemia-reperfusion injury;Myocardial injury
心血管疾?。╟ardiovascular disease,CVD)是導(dǎo)致成人死亡和殘疾的主要原因,其中缺血性心臟病為主要類型之一,表現(xiàn)為冠狀動脈血流中斷和心肌供氧需求失衡,心肌血流灌注減少,心肌細(xì)胞能量代謝紊亂,最終導(dǎo)致心肌損傷、心臟功能下降,嚴(yán)重危害人類生命健康[1-2]。臨床上通過經(jīng)皮冠狀動脈介入治療、冠狀動脈旁路移植術(shù)和藥物溶栓治療,能改善缺血心肌的血液循環(huán),提高心肌細(xì)胞存活率,但再灌注期間可能會誘發(fā)心肌損傷進(jìn)一步加重,導(dǎo)致心肌缺血再灌注損傷(myocardial ischemia-reperfusion injury,MIRI),最終導(dǎo)致死亡率增加[3]。因此,如何減輕MIRI成為治療CVD亟需解決的問題之一。研究表明,自噬是細(xì)胞的一種分解代謝過程,可維持細(xì)胞的穩(wěn)態(tài)和存活,可修復(fù)受損的心肌細(xì)胞。長鏈非編碼RNA(long noncoding RNA,lncRNA)在MIRI中的表達(dá)明顯失調(diào),其分子調(diào)控與自噬密切相關(guān),在MIRI的發(fā)病機(jī)制和病理生理中發(fā)揮重要作用[4-5]?,F(xiàn)總結(jié)并討論自噬在MIRI中的作用機(jī)制以及l(fā)ncRNA調(diào)節(jié)自噬對MIRI的作用,以期對MIRI的分子靶向治療提供參考。
1 自噬概念
1963年,Christian de Duve把生物細(xì)胞中包裹細(xì)胞質(zhì)和細(xì)胞器的膜泡現(xiàn)象定義為自噬,直到1993年,Ohsumi和Tsukada首次在酵母中發(fā)現(xiàn)自噬相關(guān)基因(autophagy-related gene,ATG)[6-7]。自此,人類對自噬的研究逐漸展開。自噬是一種依賴溶酶體消除衰老、受損蛋白質(zhì)和細(xì)胞器的方式,缺氧、能量消耗、內(nèi)質(zhì)網(wǎng)應(yīng)激等方式可誘發(fā),在生理和病理?xiàng)l件下對維持細(xì)胞穩(wěn)態(tài)有至關(guān)重要的作用[8]。根據(jù)底物進(jìn)入溶酶體的方式不同,至少存在三種類型的自噬:微自噬、分子伴侶介導(dǎo)的自噬、巨自噬。微自噬是一種非選擇性溶酶體降解的過程,溶酶體直接吞噬胞漿內(nèi)的內(nèi)容物;分子伴侶介導(dǎo)的自噬是選擇性溶酶體降解的過程,主要針對蛋白質(zhì)進(jìn)行降解;而巨自噬是真核細(xì)胞轉(zhuǎn)化、利用和降解受損蛋白質(zhì)和細(xì)胞器的主要機(jī)制(本文描述為巨自噬)[9-10]。自噬作為一種重要的分解代謝過程,對維持細(xì)胞穩(wěn)定是一種動態(tài)平衡過程。
2 自噬的啟動機(jī)制
目前為止,發(fā)現(xiàn)了至少40個關(guān)鍵的ATG,Beclin-1(ATG6)是自噬啟動過程中重要的調(diào)節(jié)因子,在自噬的膜泡運(yùn)輸重組中發(fā)揮重要作用,Beclin-1能調(diào)節(jié)激酶活性,提高自噬水平,啟動自噬過程[11]。p62是選擇性自噬重要的接頭蛋白,在選擇性自噬與泛素化信號轉(zhuǎn)導(dǎo)之間起作用,與泛素化蛋白聚集體結(jié)合并與ATG8結(jié)合,使吞噬細(xì)胞能吞噬細(xì)胞溶質(zhì)成分,最終減少自噬小體數(shù)量[12]。
自噬參與許多疾病的發(fā)生,在MIRI的不同階段涉及不同的過程。自噬機(jī)制的激活受兩種中樞調(diào)節(jié)劑,即哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)和單磷酸腺苷活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)調(diào)節(jié)。mTOR是一種絲氨酸/蘇氨酸激酶,通過調(diào)節(jié)自噬上游信號激活自噬,與一定數(shù)量的伴侶蛋白結(jié)合形成mTORC-1和mTORC-2兩種不同的復(fù)合體,mTORC-1能抑制自噬反應(yīng)的啟動,導(dǎo)致ATG13和ULK1 (ATG1)的失活,使啟動失?。?3]。AMPK作為心肌缺血中重要的自噬啟動因子,當(dāng)心肌缺血時心肌細(xì)胞的供血減少,ATP生成低,導(dǎo)致供血和能量需求失衡,AMPK被較低的ATP水平激活后,可直接磷酸化并激活ULK1[13],從而在心肌缺血過程中啟動自噬,保護(hù)心肌細(xì)胞免受缺血導(dǎo)致的損傷。
3 自噬在MIRI中的作用機(jī)制
自噬在MIRI發(fā)生過程中發(fā)揮“雙刃劍”作用,受多種因素的調(diào)控。一方面,心肌缺血時,適當(dāng)激活自噬對細(xì)胞存活和心臟功能維持至關(guān)重要;另一方面,心肌再灌注過程中,自噬高度激活,且伴隨自噬小體清除不足,自噬過度增加,細(xì)胞進(jìn)行性死亡,從而導(dǎo)致心臟功能惡化[14]。有研究[15]表明,在MIRI中,心肌細(xì)胞自噬過程作為一種應(yīng)激反應(yīng)機(jī)制,上調(diào)可導(dǎo)致再灌注期間自噬小體溶酶體融合關(guān)鍵蛋白——溶酶體相關(guān)膜蛋白2水平迅速下降、Beclin-1上調(diào)、活性氧產(chǎn)生和線粒體通透性增加,從而導(dǎo)致心肌細(xì)胞死亡。通過恢復(fù)溶酶體相關(guān)膜蛋白2水平和部分降低Beclin-1水平可減輕缺氧/復(fù)氧(hypoxia/reoxygenation,H/R)損傷誘導(dǎo)的細(xì)胞死亡。MIRI期間心臟自噬小體數(shù)量增加,缺血誘導(dǎo)的自噬增強(qiáng)導(dǎo)致?lián)p傷進(jìn)一步加重。
4 自噬參與MIRI相關(guān)通路
4.1 PI3K/Akt/mTOR通路
人參皂苷Rb1對心血管系統(tǒng)有保護(hù)作用,研究[16]發(fā)現(xiàn)加入3-MA(一種自噬抑制劑)處理后可增強(qiáng)人參皂苷Rb1在H/R損傷期間對H9c2心肌細(xì)胞的保護(hù)作用,后續(xù)發(fā)現(xiàn)人參皂苷Rb1通過PI3K/Akt/mTOR信號通路抑制心肌細(xì)胞自噬,可作為MIRI的保護(hù)劑。金合歡素是中草藥酸棗仁的有效成分,已被證明具有保護(hù)MIRI的作用。金合歡素誘導(dǎo)的自噬標(biāo)志物(包括LC3Ⅱ、Beclin-1和p62)呈劑量依賴性增加,可通過促進(jìn)自噬來保護(hù)H9c2心肌細(xì)胞免受H/R損傷,由于PI3K/Akt/mTOR信號通路激活,參與了對心肌細(xì)胞的保護(hù),從而抑制細(xì)胞代謝,促進(jìn)細(xì)胞增殖[17]。
4.2 AMPK/mTOR通路
蟲草素是從傳統(tǒng)中藥蟲草中提取出的一種核苷類抗生素,具有抗炎、抗氧化和抑制細(xì)胞分化等心血管保護(hù)作用。Xu等[18]研究結(jié)果顯示,蟲草素可顯著減少細(xì)胞凋亡,縮小梗死面積,改善小鼠的MIRI,同時增強(qiáng)自噬作用。進(jìn)一步研究發(fā)現(xiàn)蟲草素是通過AMPK/mTOR信號通路增強(qiáng)自噬,發(fā)揮心肌保護(hù)作用。京尼平苷是從中藥梔子花中提取的,具有廣泛的藥理作用。研究[19]提示京尼平苷對MIRI有保護(hù)作用,在MIRI模型中,京尼平苷干預(yù)降低了Beclin-1水平并參與抑制自噬,這可能是激活A(yù)MPK/mTOR信號通路的結(jié)果。
4.3 SIRT3通路
SIRT3是組蛋白脫乙酰酶蛋白家族中功能最為廣泛的通路,有報道[20]稱西格列汀顯著減輕H/R損傷誘導(dǎo)的心肌細(xì)胞自噬過度活化,并伴有SIRT3的上調(diào),H/R損傷誘導(dǎo)的自噬和心肌細(xì)胞損傷的保護(hù)效應(yīng)由于SIRT3的敲低而作用降低。表明西格列汀通過介導(dǎo)SIRT3和自噬改善H/R損傷誘導(dǎo)的心肌細(xì)胞損傷[20]。BaP是研究最廣泛的多環(huán)芳烴且與CVD有關(guān)。Huang等[21]發(fā)現(xiàn)BaP通過芳香烴受體激活p53-BNIP3途徑以減少自噬小體的清除,揭示了參與自噬調(diào)節(jié)的p53-BNIP3途徑是BaP誘導(dǎo)的MIRI的潛在治療靶點(diǎn)。
4.4 BNIP3通路
BNIP3是一種促凋亡蛋白,屬于Bcl2家族成員,據(jù)報道[14]可能在自噬-溶酶體融合的調(diào)節(jié)中發(fā)揮重要作用。BNIP3是缺氧誘導(dǎo)因子-1α的靶分子,可在缺氧或缺血條件下誘導(dǎo)表達(dá),Zhang等[22]證明H9c2心肌細(xì)胞在H/R環(huán)境中,缺氧誘導(dǎo)因子-1α可同步調(diào)節(jié)BNIP3通路,增加BNIP3的表達(dá),從而增強(qiáng)H9c2心肌細(xì)胞的自噬能力,減輕MIRI。
5 lncRNA與自噬信號通路在MIRI中的關(guān)系
5.1 lncRNA概念與作用
lncRNA是非編碼RNA的一類,其長度>200個核苷酸,存在于細(xì)胞核中且不能被翻譯為蛋白質(zhì),按照lncRNA與轉(zhuǎn)錄組的位置可將其分為正義鏈lncRNA、反義鏈 lncRNA、雙向lncRNA、基因間lncRNA、內(nèi)含子lncRNA[23]。
lncRNA參與生物的細(xì)胞功能、生長發(fā)育和疾病發(fā)生發(fā)展等過程,在生理和病理?xiàng)l件下發(fā)揮重要作用。與編碼蛋白質(zhì)的
信使RNA(messenger RNA,mRNA)相比,lncRNA最重要的特征是它的序列、功能、結(jié)構(gòu)具有高度保守性且在體內(nèi)的表達(dá)量低,但其組織特異性高,在基因的轉(zhuǎn)錄和轉(zhuǎn)錄后發(fā)揮作用,可調(diào)控細(xì)胞周期、影響細(xì)胞分化并作為疾病的診斷標(biāo)志物等,其在基因組中的轉(zhuǎn)錄位置決定其作用機(jī)制和相關(guān)功能[24]。lncRNA還可和蛋白質(zhì)、DNA和RNA等細(xì)胞內(nèi)的大分子相互作用,參與廣泛的生物過程,在
微RNA(microRNA,miRNA)的穩(wěn)定性、翻譯、miRNA和RNA結(jié)合蛋白的結(jié)合以及可用性等方面也發(fā)揮作用,從而影響其定位和活性[25]。
5.2 lncRNA調(diào)節(jié)自噬對MIRI的作用
lncRNA和自噬之間的關(guān)系已被證明參與疾病的進(jìn)展,并可能參與許多疾病的預(yù)防,lncRNA作為 miRNA的前體或宿主,通過競爭性結(jié)合或海綿效應(yīng)直接/間接影響miRNA[26]。一些實(shí)驗(yàn)已證明lncRNA通過miRNA調(diào)節(jié)自噬信號通路,從而影響MIRI的發(fā)生發(fā)展。
5.2.1 lncRNA過表達(dá)促進(jìn)自噬保護(hù)MIRI
lncRNA功能失調(diào)是MIRI的關(guān)鍵因素,而自噬維持細(xì)胞內(nèi)環(huán)境穩(wěn)定。姜酚是生姜的核心成分,對CVD有緩解作用。通過構(gòu)建H/R模型發(fā)現(xiàn),姜酚作用與lncRNA調(diào)節(jié)密切相關(guān),通過上調(diào)lncRNA H19可促進(jìn)自噬而減少心肌細(xì)胞損傷,lncRNA H19的過度表達(dá)通過下調(diào)miR-143來增加ATG7的表達(dá),因此lncRNA H19-miR-143-ATG7調(diào)節(jié)軸可促進(jìn)自噬并保護(hù)MIRI[4]。內(nèi)質(zhì)網(wǎng)應(yīng)激是MIRI的發(fā)病機(jī)制之一。Li等[27]在H9c2心肌細(xì)胞中發(fā)現(xiàn),lncRNA識別拮抗非蛋白編碼 (lncRNA Dancr)過度表達(dá)會抑制細(xì)胞凋亡并增強(qiáng)細(xì)胞自噬,通過lncRNA Dancr-miR-6324保護(hù)心肌細(xì)胞免受內(nèi)質(zhì)網(wǎng)應(yīng)激損傷,進(jìn)而恢復(fù)受損心肌。因此,lncRNA功能失調(diào)與自噬調(diào)節(jié)MIRI密切相關(guān)。
5.2.2 lncRNA過表達(dá)促進(jìn)自噬加重MIRI
lncRNA通過促進(jìn)自噬相關(guān)蛋白和自噬信號通路導(dǎo)致心肌細(xì)胞自噬增加,將進(jìn)一步加重MIRI。lncRNA心臟肥大相關(guān)因子(cardiac hypertrophy related factor,CHRF)是心臟疾病的重要調(diào)節(jié)因子。Mo等[28]在體內(nèi)和體外MIRI模型中發(fā)現(xiàn),lncRNA CHRF下調(diào)miR-182-5p,而ATG7的mRNA和蛋白表達(dá)由于miR-182-5p的下調(diào)而增加。抑制lncRNA CHRF會導(dǎo)致自噬水平降低,而過表達(dá)lncRNA CHRF將導(dǎo)致自噬增加。因此,lncRNA CHRF-miR-182-5p-ATG7軸調(diào)節(jié)自噬加重心肌損傷。lncRNA轉(zhuǎn)移相關(guān)肺腺癌轉(zhuǎn)錄本1(metastasis-associated lung adenocarcinoma transcript 1,MALAT1) 控制關(guān)鍵的生物學(xué)過程,在各種器官缺血再灌注損傷的進(jìn)展中發(fā)現(xiàn)了lncRNA MALAT1的異常表達(dá) 。Wang等[29]研究顯示,過表達(dá)lncRNA MALAT1通過lncRNA MALAT1-miR-20b-Beclin-1調(diào)節(jié)軸的表達(dá),增加細(xì)胞自噬,導(dǎo)致心肌損傷加重。
5.2.3 lncRNA過表達(dá)抑制自噬保護(hù)MIRI
lncRNA過表達(dá)對于MIRI是一把“雙刃劍”,即可以促進(jìn)自噬,也能抑制自噬。p53是一種腫瘤抑制蛋白,與自噬關(guān)系密切;心肌素是一種核蛋白,也是一種轉(zhuǎn)錄輔助激活因子,在平滑肌和心肌中特異性表達(dá),心肌素與p53結(jié)合對維持心臟功能具有重要作用。lncRNA心臟自噬抑制因子(cardiac autophagy inhibitory factor,CAIF)直接與p53蛋白結(jié)合,阻斷p53介導(dǎo)的心肌素轉(zhuǎn)錄,降低心肌素表達(dá),通過lncRNA CAIF-p53/肌鈣蛋白調(diào)節(jié)抑制自噬減輕MIRI[30]。尿路上皮癌相關(guān)基因1(urothelial carcinoma-associated 1,UCA1)為膀胱移行細(xì)胞癌的生物標(biāo)志物,在人類疾病中起重要作用。Chen等[31]發(fā)現(xiàn)lncRNA UCA1能抑制miR-128的表達(dá),使LC3-Ⅱ/LC3-Ⅰ降低、Beclin-1表達(dá)下調(diào)抑制自噬進(jìn)程,而熱激蛋白(heat shock protein,HSP)70通過抑制MIRI過程中的自噬來保護(hù)心肌細(xì)胞,從而成為缺血性心臟病新的保護(hù)性生物標(biāo)志物[32],miR-128能靶向調(diào)節(jié)HSP70的表達(dá),可通過lncRNA UCA1-miR-128-Beclin-1軸調(diào)節(jié)自噬減少心臟凋亡,進(jìn)一步減輕心臟損傷。
本文通過綜述lncRNA調(diào)控自噬參與MIRI的分子機(jī)制,為MIRI的靶向治療提供新思路,其具體信號通路見表1。
6 總結(jié)與展望
近年來缺血性心臟病的發(fā)病率及死亡率逐年升高,雖然通過再灌注治療獲得良好的療效,但同時也會引發(fā)惡性心律失常、心肌梗死、心功能不全等不良后果[48]。心肌梗死后最重要的治療是及時再灌注,限制梗死面積,挽救缺血心肌。目前,臨床上仍缺乏針對MIRI的有效防治措施,本文通過總結(jié)lncRNA調(diào)控自噬參與MIRI的發(fā)生發(fā)展,尋找減輕MIRI的干預(yù)靶點(diǎn),對以后探索其保護(hù)機(jī)制具有重要的指導(dǎo)意義。
lncRNA與MIRI密切相關(guān),參與了MIRI的病理生理過程,但目前仍未完全闡明其機(jī)制。一方面,lncRNA的生物學(xué)研究仍面臨著許多挑戰(zhàn),如動物模型不能正確地模擬人類的心臟疾病,選擇合適的動物和尋找有效的方法建立模型對研究人類疾病具有重要價值。而且關(guān)于lncRNA的動物實(shí)驗(yàn)結(jié)果還需臨床進(jìn)一步的驗(yàn)證。另一方面,由于lncRNA具有較高組織特異性且保守性較差,
迫切需尋找有效地靶向lncRNA的工具。通常自噬參與MIRI的大部分研究多針對單一的信號通路,而在MIRI發(fā)生發(fā)展的各個環(huán)節(jié)中是涉及多條信號途徑共同完成調(diào)控,因此對多條信號通路之間的交互作用仍需深入探索,為探索MIRI的有效干預(yù)提供更多的靶點(diǎn)和更直接的依據(jù)。
參考文獻(xiàn)
[1]Ferraro R,Latina JM,Alfaddagh A,et al.Evaluation and management of patients with stable angina:beyond the ischemia paradigm:JACC state-of-the-art review[J].J Am Coll Cardiol,2020,76(19):2252-2266.
[2]Severino P,DAmato A,Pucci M,et al.Ischemic heart disease pathophysiology paradigms overview:from plaque activation to microvascular dysfunction[J].Int J Mol Sci,2020,21(21):8118.
[3]Mehta SR,Wood DA,Storey RF,et al.Complete revascularization with multivessel PCI for myocardial infarction[J].N Engl J Med,2019,381(15):1411-1421.
[4]Lv XW,Wang MJ,Qin QY,et al.6-Gingerol relieves myocardial ischaemia/reperfusion injury by regulating lncRNA H19/miR-143/ATG7 signaling axis-mediated autophagy[J].Lab Invest,2021,101(7):865-877.
[5]Gatica D,Chiong M,Lavandero S,et al.The role of autophagy in cardiovascular pathology[J].Cardiovasc Res,2022,118(4):934-950.
[6]Helgason GV,Holyoake TL,Ryan KM.Role of autophagy in cancer prevention,development and therapy[J].Essays Biochem,2013,55:133-151.
[7]Tsukada M,Ohsumi Y.Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J].FEBS Lett,1993,333(1-2):169-174.
[8]Wang K,Li Y,Qiang T,et al.Role of epigenetic regulation in myocardial ischemia/reperfusion injury[J].Pharmacol Res,2021,170:105743.
[9]Mizushima N,Levine B.Autophagy in human diseases[J].N Engl J Med,2020,383(16):1564-1576.
[10]Ichimiya T,Yamakawa T,Hirano T,et al.Autophagy and autophagy-related diseases:a review[J].Int J Mol Sci,2020,21(23):8974.
[11]Tran S,F(xiàn)airlie WD,Lee EF.BECLIN1:protein structure,function and regulation[J].Cells,2021,10(6):1522.
[12]Vargas JNS,Hamasaki M,Kawabata T,et al.The mechanisms and roles of selective autophagy in mammals[J].Nat Rev Mol Cell Biol,2023,24(3):167-185.
[13]Ballesteros-lvarez J,Andersen JK.mTORC2:the other mTOR in autophagy regulation[J].Aging Cell,2021,20(8):e13431.
[14]Popov SV,Mukhomedzyanov AV,Voronkov NS,et al.Regulation of autophagy of the heart in ischemia and reperfusion[J].Apoptosis,2023,28(1-2):55-80.
[15]Ma X,Liu H,F(xiàn)oyil SR,et al.Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury[J].Circulation,2012,125(25):3170-3181.
[16]Qin GW,Lu P,Peng L,et al.Ginsenoside Rb1 inhibits cardiomyocyte autophagy via PI3K/Akt/mTOR signaling pathway and reduces myocardial ischemia/reperfusion injury[J].Am J Chin Med,2021,49(8):1913-1927.
[17]Liu C,Zhang M,Ye S,et al.Acacetin protects myocardial cells against hypoxia-reoxygenation injury through activation of autophagy[J].J Immunol Res,2021,2021:9979843.
[18]Xu H,Cheng J,He F.Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway[J].J Physiol Biochem,2022,78(2):401-413.
[19]Luo X,Wu S,Jiang Y,et al.Inhibition of autophagy by geniposide protects against myocardial ischemia/reperfusion injury[J].Int Immunopharmacol,2020,85:106609.
[20]Yang M,Xi N,Gao M,et al.Sitagliptin mitigates hypoxia/reoxygenation(H/R)-induced injury in cardiomyocytes by mediating sirtuin 3(SIRT3) and autophagy[J].Bioengineered,2022,13(5):13162-13173.
[21]Huang KY,Liu S,Yu YW,et al.3,4-benzopyrene aggravates myocardial ischemia-reperfusion injury-induced pyroptosis through inhibition of autophagy-dependent NLRP3 degradation[J].Ecotoxicol Environ Saf,2023,254:114701.
[22]Zhang Y,Liu D,Hu H,et al.HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury[J].Biomed Pharmacother,2019,120:109464.
[23]Li M,Duan L,Li Y,et al.Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases[J].Life Sci,2019,233:116440.
[24]Nojima T,Proudfoot NJ.Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics[J].Nat Rev Mol Cell Biol,2022,23(6):389-406.
[25]Bridges MC,Daulagala AC,Kourtidis A.LNCcation:lncRNA localization and function[J].J Cell Biol,2021,220(2):e202009045.
[26]Barangi S,Hayes AW,Reiter R,et al.The therapeutic role of long non-coding RNAs in human diseases:a focus on the recent insights into autophagy[J].Pharmacol Res,2019,142:22-29.
[27]Li J,Xie J,Wang YZ,et al.Overexpression of lncRNA Dancr inhibits apoptosis and enhances autophagy to protect cardiomyocytes from endoplasmic reticulum stress injury via sponging microRNA-6324[J].Mol Med Rep,2021,23(2):116.
[28]Mo Y,Wu H,Zheng X,et al.LncRNA CHRF aggravates myocardial ischemia/reperfusion injury by enhancing autophagy via modulation of the miR-182-5p/ATG7 pathway[J].J Biochem Mol Toxicol,2021,35(4):e22709.
[29]Wang S,Yao T,Deng F,et al.LncRNA MALAT1 promotes oxygen-glucose deprivation and reoxygenation induced cardiomyocytes injury through sponging miR-20b to enhance beclin1-mediated autophagy[J].Cardiovasc Drugs Ther,2019,33(6):675-686.
[30]Liu CY,Zhang YH,Li RB,et al.LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription[J].Nat Commun,2018,9(1):29.
[31]Chen Z,Liu R,Niu Q,et al.Morphine postconditioning alleviates autophage in ischemia-reperfusion induced cardiac injury through up-regulating lncRNA UCA1[J].Biomed Pharmacother,2018,108:1357-1364.
[32]Liu X,Zhang C,Zhang C,et al.Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury[J].In Vitro Cell Dev Biol Anim,2016,52(6):690-698.
[33]Li X,Chen R,Wang L,et al.Molecular mechanism of CAIF inhibiting myocardial infarction by sponging miR-488 and regulating AVEN expression[J].Mol Med Rep,2022,26(2):270.
[34]Wang K,Liu CY,Zhou LY,et al.APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p[J].Nat Commun,2015,6:6779.
[35]Yu SY,Dong B,F(xiàn)ang ZF,et al.Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy[J].J Cell Mol Med,2018,22(10):4886-4898.
[36]Xu X,Huang CY,Oka SI.LncRNA KCNQ1OT1 promotes Atg12-mediated autophagy via inhibiting miR-26a-5p in ischemia reperfusion[J].Int J Cardiol,2021,339:132-133.
[37]Li Z,Zhang Y,Ding N,et al.Inhibition of lncRNA XIST improves myocardial I/R injury by targeting miR-133a through inhibition of autophagy and regulation of SOCS2[J].Mol Ther Nucleic Acids,2019,18:764-773.
[38]Chen YQ,Yang X,Xu W,et al.Knockdown of lncRNA TTTY15 alleviates myocardial ischemia-reperfusion injury through the miR-374a-5p/FOXO1 axis[J].IUBMB Life,2021,73(1):273-285.
[39]張冠鑫,叢濱海,張加俊,等.長鏈非編碼RNA HIF1A-AS1對大鼠心肌缺血再灌注損傷的調(diào)控作用[J].第二軍醫(yī)大學(xué)學(xué)報,2015,36(2):131-135.
[40]Wang JJ,Bie ZD,Sun CF.Long noncoding RNA AK088388 regulates autophagy through miR-30a to affect cardiomyocyte injury[J].J Cell Biochem,2019,120(6):10155-10163.
[41]Tong G,Wang Y,Xu C,et al.Long non-coding RNA FOXD3-AS1 aggravates ischemia/reperfusion injury of cardiomyocytes through promoting autophagy[J].Am J Transl Res,2019,11(9):5634-5644.
[42]Ouyang M,Lu J,Ding Q,et al.Knockdown of long non-coding RNA PVT1 protects human AC16 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis and autophagy by regulating miR-186/Beclin-1 axis[J].Gene,2020,754:144775.
[43]Su Q,Liu Y,Lv XW,et al.Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy[J].J Mol Cell Cardiol,2019,133:12-25.
[44]Zeng M,Wei X,He YL,et al.EGCG protects against myocardial I/RI by regulating lncRNA Gm4419-mediated epigenetic silencing of the DUSP5/ERK1/2 axis[J].Toxicol Appl Pharmacol,2021,433:115782.
[45]Han Y,Wang H,Wang Y,et al.Puerarin protects cardiomyocytes from ischemia-reperfusion injury by upregulating LncRNA ANRIL and inhibiting autophagy[J].Cell Tissue Res,2021,385(3):739-751.
[46]Diao L,Zhang Q.Transfer of lncRNA UCA1 by hUCMSCs-derived exosomes protects against hypoxia/reoxygenation injury through impairing miR-143-targeted degradation of Bcl-2[J].Aging (Albany NY),2021,13(4):5967-5985.
[47]Liang H,Su X,Wu Q,et al.LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting Mir26a[J].Autophagy,2020,16(6):1077-1091.
[48]Wang W,Hu M,Liu H,et al.Global Burden of Disease Study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease[J].Cell Metab,2021,33(10):1943-1956.e2.
收稿日期:2023-07-19
基金項(xiàng)目:貴州省科技廳科技項(xiàng)目(黔科合支撐[2022]一般195)
通信作者:周厚榮,E-mail:zhr1974@163.com