付亞萌 張光明
【摘要】內(nèi)皮功能障礙作為動(dòng)脈粥樣硬化的早期關(guān)鍵事件,不僅貫穿動(dòng)脈粥樣硬化病變?nèi)?,還與其他多種心血管疾病的發(fā)病密切相關(guān)。近年來有研究發(fā)現(xiàn),內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)相關(guān)蛋白在心血管疾病中的表達(dá)呈上升趨勢(shì),ERS可能通過促進(jìn)內(nèi)皮功能障礙加重心血管疾病的進(jìn)展?,F(xiàn)總結(jié)ERS與內(nèi)皮功能障礙及動(dòng)脈粥樣硬化發(fā)病機(jī)制的關(guān)系,并介紹一些緩解ERS的藥物,有望為臨床實(shí)現(xiàn)內(nèi)皮功能障礙及心血管疾病的治療提供一定參考價(jià)值。
【關(guān)鍵詞】內(nèi)質(zhì)網(wǎng)應(yīng)激;未折疊蛋白質(zhì)反應(yīng);內(nèi)皮功能障礙;動(dòng)脈粥樣硬化
【DOI】10.16806/j.cnki.issn.1004-3934.2024.03.012
The Relationship Between Endoplasmic Reticulum Stress and Endothelial Dysfunction and Its Clinical Treatment
FU Yameng,ZHANG Guangming
(Department of Cardiology,The Second Hospital of Hebei Medical University,Shijiazhuang 050000,Hebei,China)
【Abstract】As an early critical event in atherosclerosis (AS), endothelial dysfunction runs throughout the AS process and is closely related to the pathogenesis of many other cardiovascular diseases.It has been found that the expression of endoplasmic reticulum stress (ERS)-related proteins is increasing in cardiovascular disease,and ERS may exacerbate the progression of cardiovascular disease by promoting endothelial dysfunction.ERS may aggravate the progression of cardiovascular disease by promoting endothelial dysfunction.This article summarizes the research progress of the relationship between ERS and endothelial dysfunction and AS,and introduces some drugs to alleviate ERS,which is expected to provide certain reference value for the clinical treatment of endothelial dysfunction and cardiovascular diseases.
【Keywords】Endoplasmic reticulum stress;Unfolded protein response;Endothelial dysfunction;Atherosclerosis
動(dòng)脈粥樣硬化(atherosclerosis,AS)作為冠心病最重要的病理改變,是一種發(fā)生在大動(dòng)脈和中動(dòng)脈內(nèi)膜的慢性炎癥反應(yīng)和退行性病變。內(nèi)皮功能障礙與AS發(fā)病密切相關(guān),現(xiàn)已證實(shí)可作為冠心病的獨(dú)立危險(xiǎn)預(yù)測(cè)因子。生理情況下,機(jī)體通過特殊機(jī)制維持蛋白質(zhì)的合成穩(wěn)定性。當(dāng)機(jī)體長期處于高血糖、高血脂、氧化應(yīng)激等病理?xiàng)l件下時(shí),細(xì)胞蛋白質(zhì)合成穩(wěn)定性受損,發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)。ERS不僅參與內(nèi)皮功能障礙,加重AS進(jìn)展,在缺血性心臟病、糖尿病心肌病、心力衰竭、血管鈣化、高血壓等其他心血管疾病的發(fā)病中同樣發(fā)揮著重要作用[1]。緩解ERS有助于減緩心血管疾病進(jìn)展,ERS涉及的多種反應(yīng)通路有望成為未來治療心血管疾病的重要靶點(diǎn)。
1 內(nèi)質(zhì)網(wǎng)及其生理功能
20世紀(jì)中期,Porter等[2]在光學(xué)顯微鏡下觀察雞細(xì)胞時(shí)第一次在鏡下發(fā)現(xiàn)“延展整個(gè)細(xì)胞質(zhì)的細(xì)花邊狀物質(zhì)”。1954年,Palade和Porter[3]將其命名為內(nèi)質(zhì)網(wǎng)。內(nèi)質(zhì)網(wǎng)主要由分支小管和扁平囊組成,參與細(xì)胞合成、折疊和轉(zhuǎn)運(yùn)各種分泌蛋白和膜蛋白[4]。除了調(diào)控蛋白質(zhì)生物合成外,內(nèi)質(zhì)網(wǎng)在鈣儲(chǔ)存、脂質(zhì)生物合成、解毒和能量代謝以及細(xì)胞核-細(xì)胞質(zhì)信號(hào)傳導(dǎo)中也發(fā)揮著重要作用。
內(nèi)質(zhì)網(wǎng)作為體內(nèi)蛋白質(zhì)合成的重要場(chǎng)所,蛋白質(zhì)生物合成的異常升高、二硫鍵形成的抑制、代謝能耗竭以及N-糖基化的擾動(dòng)等任何蛋白質(zhì)合成過程的異常中斷,都會(huì)導(dǎo)致錯(cuò)誤折疊蛋白的形成,且蛋白質(zhì)錯(cuò)誤折疊速率與合成蛋白質(zhì)的復(fù)雜程度和數(shù)量成正比[5]。為了幫助多肽正確折疊或選擇性降解錯(cuò)誤折疊的蛋白,細(xì)胞衍生出一套內(nèi)質(zhì)網(wǎng)質(zhì)量控制系統(tǒng)控制蛋白質(zhì)合成。葡萄糖調(diào)節(jié)蛋白78(glucose regulated protein 78,GRP78),又稱為免疫球蛋白重鏈結(jié)合蛋白質(zhì)(immunoglobulin heavy chain binding protein,BiP),作為內(nèi)質(zhì)網(wǎng)質(zhì)量控制系統(tǒng)中最重要的一種伴侶分子,對(duì)錯(cuò)誤蛋白質(zhì)的識(shí)別具有高度敏感性,在蛋白質(zhì)合成過程中發(fā)揮著重要作用[6]。
2 內(nèi)質(zhì)網(wǎng)蛋白穩(wěn)定調(diào)控中心
多種遺傳和環(huán)境有害因素破壞細(xì)胞正確折疊和修飾蛋白質(zhì)的能力,造成細(xì)胞器中大量未折疊或錯(cuò)誤折疊蛋白異常累積,擾亂內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài),引起經(jīng)典意義上的ERS[7]。ERS影響細(xì)胞內(nèi)功能性轉(zhuǎn)錄和翻譯過程,與多種臨床疾病的發(fā)生密切相關(guān)[8]。當(dāng)細(xì)胞受高血脂、氧化應(yīng)激、高血糖等因素刺激時(shí),首先激活細(xì)胞內(nèi)一種被稱為未折疊蛋白質(zhì)反應(yīng)(unfolded protein response,UPR)的信號(hào)傳導(dǎo)途徑。
哺乳動(dòng)物UPR傳感器分為肌醇需求酶1α(inositol-requiring enzyme 1α, IRE1α)、PKR樣內(nèi)質(zhì)網(wǎng)激酶(PKR-like endoplasmic reticulum kinase,PERK)和 轉(zhuǎn)錄激活因子(activating transcription factor,ATF)6[9]。UPR傳感器主要與BiP相結(jié)合維持其非活性狀態(tài)[6]。IRE1α的胞質(zhì)尾區(qū)為絲氨酸/蘇氨酸激酶結(jié)構(gòu)域和核糖核酸內(nèi)切酶結(jié)構(gòu)域。細(xì)胞發(fā)生ERS時(shí),錯(cuò)誤折疊蛋白與BiP結(jié)合,IRE1α與BiP解離并發(fā)生磷酸化,磷酸化IRE1α的核糖核酸內(nèi)切酶從編碼X盒結(jié)合蛋白1(X-box binding protein 1,XBP-1)轉(zhuǎn)錄因子的mRNA中切除26 nt內(nèi)含子形成XBP-1s。隨后XBP-1s轉(zhuǎn)位到細(xì)胞核誘導(dǎo)多種基因的轉(zhuǎn)錄,增加內(nèi)質(zhì)網(wǎng)功能,初步恢復(fù)內(nèi)質(zhì)網(wǎng)的穩(wěn)態(tài)。PERK作為一種內(nèi)質(zhì)網(wǎng)跨膜蛋白,包括腔內(nèi)內(nèi)質(zhì)網(wǎng)應(yīng)力傳感結(jié)構(gòu)域和胞質(zhì)激酶結(jié)構(gòu)域,含有單一胞質(zhì)激酶。ERS時(shí),BiP與錯(cuò)誤折疊蛋白結(jié)合,PERK與BiP解離發(fā)生自磷酸化。磷酸化的PERK進(jìn)一步選擇性磷酸化真核翻譯起始因子2α(eukaryotic initiation factor 2α,eIF2α),eIF2α控制蛋白質(zhì)的合成,eIF2α磷酸化導(dǎo)致細(xì)胞內(nèi)蛋白質(zhì)翻譯速度減慢,細(xì)胞獲得更多的時(shí)間進(jìn)行蛋白重新折疊。BiP結(jié)合錯(cuò)誤折疊的蛋白,致使ATF6與BiP解離并易位到高爾基體,被位點(diǎn)-1和位點(diǎn)-2蛋白酶裂解以釋放其胞質(zhì)尾區(qū)所含ATF6(N)轉(zhuǎn)錄因子。被切割的ATF6-p50繼而進(jìn)入到細(xì)胞核后,促進(jìn)有關(guān)GRP78合成、蛋白折疊以及內(nèi)質(zhì)網(wǎng)相關(guān)蛋白降解(endoplasmic reticulum-associated degradation,ERAD)相關(guān)基因的轉(zhuǎn)錄表達(dá),以增強(qiáng)蛋白質(zhì)的折疊、分泌、修飾功能。
UPR作為細(xì)胞內(nèi)蛋白穩(wěn)定性的調(diào)控中心,維持內(nèi)質(zhì)網(wǎng)內(nèi)蛋白折疊的穩(wěn)定性。UPR通路的激活在ERS早期初步恢復(fù)細(xì)胞的蛋白合成穩(wěn)定性,有助于細(xì)胞存活(見圖1)。但在不可補(bǔ)救的ERS環(huán)境中,UPR將轉(zhuǎn)變?yōu)橐环N被稱為終末UPR的替代信號(hào)平臺(tái),主動(dòng)促進(jìn)細(xì)胞死亡[10]。
3 ERS與內(nèi)皮功能障礙
內(nèi)皮細(xì)胞參與調(diào)節(jié)血管張力、免疫反應(yīng)、炎癥反應(yīng)、止血、物質(zhì)交換等重要生理過程。其分泌的舒血管性因子、縮血管性因子、血小板活化因子及纖溶酶原激活物抑制劑等物質(zhì)生理?xiàng)l件下維持動(dòng)態(tài)平衡。內(nèi)皮細(xì)胞受各種因素刺激發(fā)生功能障礙,不僅引起上述因子的失衡,還與臨床多種心血管疾病的發(fā)生和發(fā)展密切相關(guān)。且內(nèi)皮功能障礙發(fā)生先于顯性心血管疾病的臨床表現(xiàn),可作為心血管事件及死亡率的強(qiáng)有力的獨(dú)立預(yù)測(cè)因子[11]。
Gargalovic等[12]最早發(fā)現(xiàn)ERS與內(nèi)皮細(xì)胞功能紊亂之間存在相關(guān)性。ERS可能通過直接作用于內(nèi)皮衍生的血管活性物質(zhì)或通過激活其他致病細(xì)胞網(wǎng)絡(luò)如炎癥和氧化應(yīng)激來破壞內(nèi)皮功能。UPR慢性激活引起的ERS已被證實(shí)是內(nèi)皮功能障礙的重要發(fā)病機(jī)制之一。
在對(duì)肥胖成年人建立內(nèi)皮功能障礙的研究[13]發(fā)現(xiàn),UPR的三種傳感器PERK、IRE1α和ATF6均不同程度地參與內(nèi)皮功能障礙的發(fā)生。當(dāng)各種因素刺激引起細(xì)胞內(nèi)發(fā)生不可挽救的ERS時(shí),IRE1α發(fā)生同源寡聚化,這將引起數(shù)百個(gè)內(nèi)質(zhì)網(wǎng)定位的含有N-末端信號(hào)序列的mRNA的核酸內(nèi)裂解衰變,加劇細(xì)胞ERS。同時(shí),IRE1α與腫瘤壞死因子受體相關(guān)因子2相互作用,通過活化核因子κB(nuclear factor-κB,NF-κB)促進(jìn)炎癥因子的產(chǎn)生及內(nèi)皮細(xì)胞炎癥反應(yīng)[14]。腫瘤壞死因子受體相關(guān)因子2還可進(jìn)一步刺激細(xì)胞凋亡信號(hào)調(diào)節(jié)激酶1,增強(qiáng)p38絲裂原活化蛋白激酶的活性,觸發(fā)腫瘤壞死因子受體相關(guān)因子2/細(xì)胞凋亡信號(hào)調(diào)節(jié)激酶1/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信號(hào)通路,抑制凋亡蛋白B細(xì)胞淋巴瘤-2基因在內(nèi)等多種編碼抗凋亡蛋白基因的表達(dá),最終引起下游炎癥信號(hào)的激活以及內(nèi)皮細(xì)胞凋亡[15]。ERS時(shí),PERK選擇性磷酸化eIF2α的同時(shí)也減弱了NF-κB的抑制劑IκB的翻譯,這一結(jié)果導(dǎo)致細(xì)胞核內(nèi)NF-κB水平升高,同樣促進(jìn)細(xì)胞發(fā)生炎癥反應(yīng)[14]。ATF4作為一種翻譯效率較高的轉(zhuǎn)錄因子,控制細(xì)胞內(nèi)氨基酸合成與轉(zhuǎn)運(yùn)、促凋亡等基因的表達(dá),其活性不受eIF2α磷酸化的影響。eIF2α被PERK磷酸化后上調(diào)ATF4的表達(dá),ATF4轉(zhuǎn)位入核,促進(jìn)細(xì)胞核內(nèi)CCAAT/增強(qiáng)子結(jié)合蛋白同源蛋白(CCAAT/enhancer-binding protein homologous protein,CHOP)的轉(zhuǎn)錄。細(xì)胞內(nèi)PERK/eIF2α/ATF4/CHOP通路的持續(xù)激活,其最終結(jié)果是引起CHOP過表達(dá)導(dǎo)致的細(xì)胞凋亡[9]。同樣,ATF6轉(zhuǎn)位到細(xì)胞核后,在促進(jìn)蛋白折疊相關(guān)基因轉(zhuǎn)錄的同時(shí)也將促進(jìn)CHOP和NF-κB的轉(zhuǎn)錄,一定程度上也參與細(xì)胞凋亡和炎癥反應(yīng)的發(fā)生(見圖2)[14]。除此之外,UPR還可作為與其他因素引起內(nèi)皮功能障礙的共同反應(yīng)通路。同型半胱氨酸作為甲硫氨酸在體內(nèi)的主要代謝產(chǎn)物,具有誘導(dǎo)內(nèi)皮細(xì)胞炎癥反應(yīng)與凋亡的作用,已被多項(xiàng)研究證實(shí)參與血管內(nèi)皮功能障礙,是心血管疾病的獨(dú)立危險(xiǎn)因素。近年來有研究[16]發(fā)現(xiàn),同型半胱氨酸誘導(dǎo)的內(nèi)皮功能障礙可能與PERK和IRE1α磷酸化、CHOP表達(dá)水平以及炎癥因子的增加有關(guān)。
ERS還可通過影響體內(nèi)其他分子水平引起內(nèi)皮功能障礙。內(nèi)皮細(xì)胞通過釋放一氧化氮(nitric oxide,NO)參與調(diào)節(jié)血管張力,其活性依賴于內(nèi)皮細(xì)胞的完整性。ERS增加內(nèi)皮細(xì)胞炎癥反應(yīng)與凋亡,引起NO生物利用度降低,損傷血管內(nèi)皮依賴性舒張功能。環(huán)氧二十碳三烯酸作為內(nèi)皮細(xì)胞產(chǎn)生的一種具有內(nèi)皮源性超極化因子特性的強(qiáng)效血管擴(kuò)張劑,具有抑制炎癥和血小板聚集以及維持血管穩(wěn)態(tài)的重要作用。環(huán)氧二十碳三烯酸在體內(nèi)被可溶性環(huán)氧化合物水解酶(soluble epoxide hydrolase,sEH)水解失去生理活性。有研究[17]發(fā)現(xiàn),ERS通過介導(dǎo)血管緊張素Ⅱ誘導(dǎo)的血管內(nèi)皮細(xì)胞sEH的上調(diào),增加環(huán)氧二十碳三烯酸水解,損傷血管功能。在另一項(xiàng)對(duì)缺血再灌注小鼠模型的研究[18]發(fā)現(xiàn),ERS可能通過IRE1α/JNK-c-Jun/AP-1-sEH信號(hào)軸上調(diào)sEH表達(dá),引起心肌損傷與內(nèi)皮依賴性舒張功能受損,進(jìn)一步證實(shí)了ERS在內(nèi)皮功能障礙發(fā)病機(jī)制中的作用。
4 ERS與AS
AS的形成和發(fā)展包括內(nèi)皮功能障礙、局部炎癥反應(yīng)、動(dòng)脈壁脂質(zhì)堆積和斑塊破裂等病理過程。脂質(zhì)攝取、泡沫細(xì)胞形成和炎癥反應(yīng)是啟動(dòng)AS的關(guān)鍵事件,同時(shí)提供了觸發(fā)細(xì)胞ERS的條件。
越來越多的證據(jù)表明ERS在AS發(fā)病過程中發(fā)揮著重要作用。不同的心血管疾病雖然有不同的臨床表現(xiàn),但其發(fā)病機(jī)制均與蛋白質(zhì)穩(wěn)態(tài)破壞導(dǎo)致的內(nèi)質(zhì)網(wǎng)中未折疊或錯(cuò)誤折疊蛋白異常累積相關(guān)[19]。氧化低密度脂蛋白作為一種重要致病因素參與AS病理過程。有研究[20]發(fā)現(xiàn),氧化低密度脂蛋白通過上調(diào)細(xì)胞凋亡信號(hào)調(diào)節(jié)激酶1表達(dá)和誘導(dǎo)內(nèi)皮細(xì)胞ERS,激活NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3炎癥小體,損傷內(nèi)皮細(xì)胞。CHOP與ATF4在AS早期階段的平滑肌細(xì)胞和巨噬細(xì)胞中高度表達(dá),與NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3炎癥小體激活后介導(dǎo)的基質(zhì)金屬蛋白酶上調(diào)共同作用促進(jìn)斑塊破裂,與臨床急性冠脈綜合征的發(fā)生密切相關(guān)[21]。正常血管壁彈性維持一定張力,血液與管壁之間形成低剪切應(yīng)力可直接誘導(dǎo)內(nèi)皮ERS[22]。低剪切應(yīng)力增加內(nèi)皮細(xì)胞對(duì)ERS的敏感性,加速AS的炎癥反應(yīng)[23]。除此之外,低剪切應(yīng)力還可能參與白細(xì)胞介素-1受體相關(guān)激酶2/CHOP信號(hào)通路介導(dǎo)的ERS,引起動(dòng)脈內(nèi)皮細(xì)胞凋亡。
5 總結(jié)和展望
內(nèi)皮功能障礙是AS發(fā)生和進(jìn)展的標(biāo)志,與AS病變周圍的炎癥、活性氧(reactive oxygen species,ROS)和細(xì)胞凋亡增加以及NO生物利用度降低密切相關(guān)[24]。ERS參與內(nèi)皮功能障礙,加重AS的進(jìn)展,還與其他多種心血管疾病的發(fā)病密切相關(guān),可作為心血管疾病的調(diào)節(jié)因子[25]。近年來有研究發(fā)現(xiàn),部分藥物或化合物通過抑制ERS,可以有效改善內(nèi)皮功能障礙,發(fā)揮抗AS作用,進(jìn)一步證實(shí)了ERS與內(nèi)皮功能障礙及AS的發(fā)病關(guān)系,同時(shí)也為未來可能開展的針對(duì)內(nèi)皮功能障礙的治療提供一定的臨床指導(dǎo)價(jià)值(見表1和圖2)。下調(diào)ERS對(duì)于改善血管內(nèi)皮功能障礙和延緩心血管疾病的進(jìn)展具有重要意義,有望為未來心血管疾病的治療提供潛在治療價(jià)值。
利益沖突 所有作者均申明無利益沖突
作者貢獻(xiàn)聲明 付亞萌:文章內(nèi)容構(gòu)思、文獻(xiàn)查找與閱讀、文章撰寫;張光明:文章的內(nèi)容審核、修訂,對(duì)文章整體負(fù)責(zé),全程監(jiān)督
參考文獻(xiàn)
[1]Liu MQ,Chen Z,Chen LX.Endoplasmic reticulum stress:a novel mechanism and therapeutic target for cardiovascular diseases[J].Acta Pharmacol Sin,2016,37(4):425-443.
[2]Porter KR,Claude A,F(xiàn)ullam EF.A study of tissue culture cells by electron microscopy:methods and preliminary observations[J].J Exp Med,1945,81(3):233-246.
[3]Palade GE,Porter KR.Studies on the endoplasmic reticulum.I.Its identification in cells in situ[J].J Exp Med,1954,100(6):641-656.
[4]Yang Y,Zhou Q,Gao A,et al.Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease[J].Clin Chim Acta,2020,504:125-137.
[5]Hasnain SZ,Lourie R,Das I,et al.The interplay between endoplasmic reticulum stress and inflammation[J].Immunol Cell Biol,2012,90(3):260-270.
[6]Brocchieri L,Conway de Macario E,Macario AJ.Hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions[J].BMC Evol Biol,2008,8:19.
[7]Ajoolabady A,Kaplowitz N,Lebeaupin C,et al.Endoplasmic reticulum stress in liver diseases[J].Hepatology,2023,77(2):619-639.
[8]Back SH,Kaufman RJ.Endoplasmic reticulum stress and type 2 diabetes[J].Ann Rev Biochem,2012,81:767-793.
[9]Tabas I,Ron D.Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress[J].Nat Cell Biol,2011,13(3):184-190.
[10]So JS.Roles of endoplasmic reticulum stress in immune responses[J].Mol Cells,2018,41(8):705-716.
[11]Widlansky ME,Gokce N,Keaney JF Jr,et al.The clinical implications of endothelial dysfunction[J].J Am Coll Cardiol,2003,42(7):1149-1160.
[12]Gargalovic PS,Gharavi NM,Clark MJ,et al.The unfolded protein response is an important regulator of inflammatory genes in endothelial cells[J].Arterioscler Thromb Vasc Biol,2006,26(11):2490-2496.
[13]Kaplon RE,Chung E,Reese L,et al.Activation of the unfolded protein response in vascular endothelial cells of nondiabetic obese adults[J].J Clin Endocrinol Metab,2013,98(9):E1505-E1509.
[14]Osman A,Benameur T,Korashy HM,et al.Interplay between endoplasmic reticulum stress and large extracellular vesicles (microparticles) in endothelial cell dysfunction[J].Biomedicines,2020,8(10):409.
[15]Cao SS,Kaufman RJ.Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease[J].Antioxid Redox Signal,2014,21(3):396-413.
[16]Ji C,Yi H,Huang J,et al.Propofol alleviates inflammation and apoptosis in HCY-induced HUVECs by inhibiting endoplasmic reticulum stress[J].Mol Med Rep,2021,23(5):333.
[17]Mak SK,Yu CM,Sun WT,et al.Tetramethylpyrazine suppresses angiotensin Ⅱ-induced soluble epoxide hydrolase expression in coronary endothelium via anti-ER stress mechanism[J].Toxicol Appl Pharmacol,2017,336:84-93.
[18]Xue HM,Sun WT,Chen HX,et al.Targeting IRE1α-JNK-c-Jun/AP-1-sEH signaling pathway improves myocardial and coronary endothelial function following global myocardial ischemia/reperfusion[J].Int J Med Sci,2022,19(9):1460-1472.
[19]Ren J,Bi Y,Sowers JR,et al.Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases[J].Nat Rev Cardiol,2021,18(7):499-521.
[20]Hang L,Peng Y,Xiang R,et al.Ox-LDL causes endothelial cell injury through ASK1/NLRP3-mediated inflammasome activation via endoplasmic reticulum stress[J].Drug Des Devel Ther,2020,14:731-744.
[21]Li W,Jin K,Luo J,et al.NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis[J].Front Cardiovasc Med,2022,9:988266.
[22]Chung J,Kim KH,Lee SC,et al.Ursodeoxycholic acid (UDCA) exerts anti-atherogenic effects by inhibiting endoplasmic reticulum (ER) stress induced by disturbed flow[J].Mol Cells,2015,38(10):851-858.
[23]Bailey KA,Moreno E,Haj FG,et al.Mechanoregulation of p38 activity enhances endoplasmic reticulum stress-mediated inflammation by arterial endothelium[J].FASEB J,2019,33(11):12888-12899.
[24]Hong J,Park E,Lee J,et al.Exercise training mitigates ER stress and UCP2 deficiency-associated coronary vascular dysfunction in atherosclerosis[J].Sci Rep,2021,11(1): 15449.
[25]Shanahan CM,F(xiàn)urmanik M.Endoplasmic reticulum stress in arterial smooth muscle cells:a novel regulator of vascular disease[J].Curr Cardiol Rev,2017,13(2): 94-105.
[26]Chen C,Kassan A,Castaeda D,et al.Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway[J].Hypertens Res,2019,42(7): 960-969.
[27]Campeau MA,Leask RL.Empagliflozin mitigates endothelial inflammation and attenuates endoplasmic reticulum stress signaling caused by sustained glycocalyx disruption[J].Sci Rep,2022,12(1):12681.
[28]Cao Q,Xu D,Chen Y,et al.Sitagliptin reduces endothelial dysfunction and apoptosis induced by high-fat diet and palmitate in thoracic aortas and endothelial cells via ROS-ER stress-CHOP pathway[J].Front Pharmacol,2021,12:670389.
[29]Bretón-Romero R,Weisbrod RM,F(xiàn)eng B,et al.Liraglutide treatment reduces endothelial endoplasmic reticulum stress and insulin resistance in patients with diabetes mellitus[J].J Am Heart Assoc,2018,7(18):e009379.
[30]Menikdiwela KR,Ramalingam L,Allen L,et al.AngiotensinⅡincreases endoplasmic reticulum stress in adipose tissue and adipocytes[J].Sci Rep,2019,9(1):8481.
[31]Eisvand F,Tajbakhsh A,Seidel V,et al.Quercetin and its role in modulating endoplasmic reticulum stress:a review[J].Phytother Res,2022,36(1):73-84.
[32]Zhou Y,Wang Y,Vong CT,et al.Jatrorrhizine improves endothelial function in diabetes and obesity through suppression of endoplasmic reticulum stress[J].Int J Mol Sci,2022,23(20):12064.
[33]Sim WC,Han I,Lee W,et al.Inhibition of homocysteine-induced endoplasmic reticulum stress and endothelial cell damage by l-serine and glycine[J].Toxicol In Vitro,2016,34:138-145.
[34]Ei ZZ,Benjakul S,Buamard N,et al.Shrimp lipid prevents endoplasmic reticulum-mediated endothelial cell damage[J].Foods,2022,11(19):3076.
[35]Zhang X,Zhou C,Miao L,et al.Panax notoginseng protects against diabetes-associated endothelial dysfunction:comparison between ethanolic extract and total saponin[J].Oxid Med Cell Longev,2021,2021:4722797.收稿日期:2023-06-27
基金項(xiàng)目:2020河北省直醫(yī)療衛(wèi)生機(jī)構(gòu)老年病防治項(xiàng)目(303163320)
通信作者:張光明,E-mail:zhangguangming76@sina.com