国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

川南地區(qū)五峰組—龍馬溪組沉積環(huán)境演化及其對(duì)頁(yè)巖發(fā)育的控制

2024-05-13 07:11:18韓豫操應(yīng)長(zhǎng)梁超吳偉朱逸青武瑾趙梓龍唐晴
關(guān)鍵詞:紋層

韓豫 操應(yīng)長(zhǎng) 梁超 吳偉 朱逸青 武瑾 趙梓龍 唐晴

收稿日期:2023-02-05

基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(42172165,41902134);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(22CX06001A);泰山學(xué)者計(jì)劃(TSQN201812030)

第一作者:韓豫(1991-),男,博士研究生,研究方向?yàn)槌练e學(xué)。E-mail: b20010017@s.upc.edu.cn。

通信作者:操應(yīng)長(zhǎng)(1969-),男,教授,博士,研究方向?yàn)槌练e學(xué)和油氣儲(chǔ)層地質(zhì)學(xué)。E-mail: caoych@upc.edu.cn。

梁超(1986-),男,教授,博士,研究方向?yàn)榧?xì)粒沉積學(xué)。E-mail: liangchao0318@163.com。

文章編號(hào):1673-5005(2024)02-0011-13??? doi:10.3969/j.issn.1673-5005.2024.02.002

摘要:基于巖心觀察、薄片觀察、電鏡觀察、XRF元素掃描以及全巖X-衍射、ICP-MS元素分析、總有機(jī)碳含量測(cè)試等手段,對(duì)川南地區(qū)五峰組—龍馬溪組頁(yè)巖巖相類型及其沉積環(huán)境演化進(jìn)行分析,并探討沉積環(huán)境高頻演化對(duì)巖相的控制作用。將川南地區(qū)五峰組—龍馬溪組頁(yè)巖劃分為富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖、富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖、中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖6種巖相類型。在巖相識(shí)別基礎(chǔ)上借助特征元素比值Sr/Ba、U/Th、V/Cr、V/Ni、Ni/Co、Sr/Cu及Mo、Cu、Sr含量變化進(jìn)行古沉積環(huán)境恢復(fù),劃分出7個(gè)演化階段。結(jié)果表明:五峰組沉積早期氣候溫暖潮濕、水體較為氧化、鹽度較低;五峰組沉積中期水體還原性增強(qiáng)、古生產(chǎn)力提高;五峰組晚期氣候干冷,水體較為氧化,經(jīng)歷了赫南特冰期;龍馬溪組自下而上古氣候經(jīng)歷了暖濕—相對(duì)干熱—暖濕—相對(duì)干熱的演化,同時(shí)古水體也經(jīng)歷了還原—相對(duì)氧化—還原—相對(duì)氧化的演化。沉積環(huán)境高頻演化對(duì)頁(yè)巖巖相發(fā)育以及有機(jī)質(zhì)富集具有明顯的控制作用,不同巖相有機(jī)質(zhì)含量與海洋古生產(chǎn)力和水體還原性均呈現(xiàn)良好的正相關(guān)性,其中在古生產(chǎn)力較高、水體還原性較強(qiáng)的階段沉積的富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖和富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖有機(jī)質(zhì)最為富集,且石英含量最高,是頁(yè)巖氣勘探開發(fā)的優(yōu)勢(shì)巖相。

關(guān)鍵詞:頁(yè)巖巖相; 紋層; 沉積環(huán)境演化; 有機(jī)質(zhì)富集; 五峰組—龍馬溪組

中圖分類號(hào):P 586??? 文獻(xiàn)標(biāo)志碼:A

引用格式:韓豫,操應(yīng)長(zhǎng),梁超,等.川南地區(qū)五峰組—龍馬溪組沉積環(huán)境演化及其對(duì)頁(yè)巖發(fā)育的控制[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(2):11-23.

HAN Yu, CAO Yingchang, LIANG Chao, et al. Sedimentary environment evolution of Wufeng Formation-Longmaxi Formation and its control on shale deposition in the southern Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2):11-23.

Sedimentary environment evolution of Wufeng Formation-Longmaxi Formation and its control on shale deposition in the southern Sichuan Basin

HAN Yu1,2, CAO Yingchang1,2, LIANG Chao1,2, WU Wei3, ZHU Yiqing3, WU Jin4, ZHAO Zilong2, TANG Qing2

(1.Key Laboratory of Deep Oil and Gas in China University of Petroleum(East China), Qingdao 266580, China;

2.School of Geosciences in China University of Petroleum(East China), Qingdao 266580, China;

3.Shale Gas Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China;

4.PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China)

Abstract: Based on core observation, thin section analysis, electron microscope examination, XRF scanning, whole rock X-ray diffraction, ICP-MS analysis, and total organic carbon content measurement, we analyzed the shale facies types and sedimentary environment evolution of Wufeng-Longmaxi Formation in southern Sichuan area, and discussed the controlling effect of high-frequency sedimentary environment evolution on lithofacies. The Wufeng-Longmaxi shale in southern Sichuan area can be divided into six lithofacies types: organic-rich layered biosiliceous shale, organic-rich laminated (felsic-calcareous) silty shale, organic-rich (calcareous) silty shale, organic-rich laminated calcareous shale, medium-organic laminated (felsic-calcareous) silty shale, and medium-organic massive mudstone. The paleo-sedimentary environment is reconstructed utilizing characteristic element ratios Sr/Ba, U/Th, V/Cr, V/Ni, Ni/Co, Sr/Cu, as well as the content of Mo, Cu, Sr, and seven evolutionary stages are delineated: the lower Wufeng Formation deposited under warm,humid conditions, with relatively oxidized,low salinity water; the upper Wufeng Formation witnessed increased water reduction and enhanced paleoproductivity. The top of the Wufeng Formation experienced mass extinction during the Hirnantian glaciation, characterizedby arid and cold paleoclimate. From bottom to top, the paleoclimates of Longmaxi Formation experienced the evolution of "warm/wet"-"relatively arid/hot"-"warm/wet"-"relatively arid/hot" and the ancient water body also experienced the evolution from reduction to relative oxidation. The sedimentary environment significantly influences shale lithofacies and organic matter enrichment. The content of organic matter in different lithofacies is positively correlated with marine paleoproductivity and water reducibility. Organic-rich layered biosiliceous shale and organic-rich laminated (felsic-calcareous) silty shale, deposited during stages of high paleoproductivity and strong water reduction, display abundant organic matter and? high quartz content, making them favorable targets for shale gas exploration and development. This study provides a theoretical foundation for further exploration and development of shale gas and the investigation of fine-grained sedimentary rocks.

Keywords: shale lithofacies; laminae; sedimentary environment evolution; organic matter accumulation; Wufeng Formation-Longmaxi Formation

近年來(lái),中國(guó)海相頁(yè)巖氣勘探開發(fā)已在四川盆地獲得巨大突破,已建成全球除北美地區(qū)之外最大的頁(yè)巖氣生產(chǎn)基地[1-3]。四川盆地頁(yè)巖氣資源潛力巨大,2020年五峰組—龍馬溪組頁(yè)巖氣產(chǎn)量達(dá)200.4×108 m3,截至2023年四川盆地頁(yè)巖氣已探明地質(zhì)儲(chǔ)量達(dá)3.14×1012m3[4]。頁(yè)巖巖相垂向高頻演化、優(yōu)勢(shì)巖相時(shí)空分布差異性大,是目前“甜點(diǎn)段”勘探需要面臨的挑戰(zhàn)[5-6]。頁(yè)巖的沉積與其沉積環(huán)境密不可分,而沉積環(huán)境的演化受到一系列復(fù)雜因素的控制,包括盆地構(gòu)造背景、沉積物供給、古氣候、水體鹽度、水體氧化還原狀態(tài)等[7-8]。頁(yè)巖沉積物的形成對(duì)沉積環(huán)境變化十分敏感,且沉積環(huán)境具有垂向高頻演化的特點(diǎn),然而目前對(duì)頁(yè)巖沉積環(huán)境高頻演化特征及其對(duì)巖相控制作用的研究仍相對(duì)較少。晚奧陶世—早志留世期間,地表沉積環(huán)境演化復(fù)雜,經(jīng)歷了冰川事件、生物絕滅、火山噴發(fā)等一系列地質(zhì)事件[9-10],全球廣泛發(fā)育黑色頁(yè)巖,其中五峰組—龍馬溪組沉積厚度大、生物化石筆石帶保存完整[11-12],是研究該時(shí)期古沉積環(huán)境演化、頁(yè)巖巖相特征及成因的良好載體。頁(yè)巖巖相具有類型復(fù)雜、垂向高頻演變的特點(diǎn)[13],其背后是沉積環(huán)境經(jīng)歷了高頻演化,厘清這種沉積環(huán)境高頻演變的過(guò)程并闡明其對(duì)頁(yè)巖巖相發(fā)育的控制,對(duì)于細(xì)粒沉積巖沉積規(guī)律的研究具有重要意義[12]。筆者通過(guò)巖心觀察、薄片觀察、電鏡觀察、XRF元素掃描以及全巖X-衍射、ICP-MS元素分析、總有機(jī)碳含量(TOC)測(cè)試等手段對(duì)川南地區(qū)五峰組—龍馬溪組頁(yè)巖巖相類型及其沉積環(huán)境演化進(jìn)行分析,并探討沉積環(huán)境高頻演化對(duì)巖相的控制作用。

1? 區(qū)域地質(zhì)概況

四川盆地位于中國(guó)西南部(圖1)[14],是揚(yáng)子板塊內(nèi)的一個(gè)次級(jí)克拉通盆地,在晚奧陶世揚(yáng)子板塊處于岡瓦納大陸北緣的赤道海域[15]。東南部華夏板塊的匯聚擠壓作用使得揚(yáng)子地臺(tái)南緣的黔中、雪峰古隆起發(fā)生抬升,并與西南緣的康滇古陸相連形成滇黔桂古陸;同時(shí)北部的被動(dòng)大陸邊緣向華北板塊俯沖擠壓,板塊西緣的川中古隆起范圍也不斷擴(kuò)大,揚(yáng)子地塊形成了“三隆夾一坳”的構(gòu)造格局,大部分中上揚(yáng)子海域被古隆起圍限,成為半封閉、低能的局限海盆[16]。

奧陶紀(jì)早期,揚(yáng)子地區(qū)沉積大套海相碳酸鹽巖,至晚奧陶世發(fā)育了五峰組黑色富有機(jī)質(zhì)頁(yè)巖,其硅質(zhì)含量高,并含有豐富的筆石、放射蟲、海綿骨針等化石[17-19]。在晚奧陶世—早志留世之交,由于赫南特冰期的影響,海平面大幅度下降,四川盆地沉積了一層生物介殼灰?guī)r“觀音橋段”,其富含底棲赫南特動(dòng)物群[20]。早志留世中上揚(yáng)子地區(qū)廣泛發(fā)育了龍馬溪組深灰色—黑色富有機(jī)質(zhì)頁(yè)巖,龍馬溪組下部硅質(zhì)含量高,向上由于構(gòu)造抬升作用水體變淺,砂質(zhì)含量上升、筆石化石減少[21]。另外五峰組和龍馬溪組內(nèi)部均發(fā)育多層薄層凝灰?guī)r。

2? 巖相類型及特征

2.1? 組分特征

川南地區(qū)五峰組—龍馬溪組頁(yè)巖礦物組成主要為石英、黏土礦物、方解石、白云石、長(zhǎng)石和黃鐵礦(圖2)。其中石英含量最高,質(zhì)量分?jǐn)?shù)平均為42.7%,最高可達(dá)71.7%。石英來(lái)源較為復(fù)雜,有陸源輸入帶來(lái)的外源石英,呈不規(guī)則棱角狀,粒徑20~50? μm(圖3(a));有生物化石(硅質(zhì)海綿骨針、硅質(zhì)放射蟲)成因的石英,呈隱晶質(zhì),粒度50~200? μm(圖3(b));以及成巖階段形成粒狀微晶石英,粒度小于20? μm(圖3(b))。方解石質(zhì)量分?jǐn)?shù)為2.9%~15.6%,平均為 8.9%,以不規(guī)則顆粒狀或成巖作用形成的亮晶方解石紋層形式存在(圖3(d),(e));白云石質(zhì)量分?jǐn)?shù)為3.5%~42.2%,平均為15.1%,自形程度較高(圖3(f));長(zhǎng)石質(zhì)量分?jǐn)?shù)為1.6%~6.8%,平均為3.6%,以陸源輸入的斜長(zhǎng)石為主,呈不規(guī)則棱角狀,粒徑20~50? μm,可見聚片雙晶(圖3(g));黏土礦物質(zhì)量分?jǐn)?shù)為11.4%~61.1%,平均為25.7%,主要為伊蒙混層、伊利石和綠泥石(圖3(h));黃鐵礦質(zhì)量分?jǐn)?shù)為1.3%~17.7%,平均為4.6%,以草莓狀黃鐵礦集合體和自形顆粒狀存在(圖3(i))。研究區(qū)五峰組—龍馬溪組頁(yè)巖TOC較高,質(zhì)量分?jǐn)?shù)為2%~9.25%,平均為4.72%。

2.2? 頁(yè)巖巖相類型

研究區(qū)巖相類型以富硅質(zhì)頁(yè)巖為主,且硅質(zhì)來(lái)源復(fù)雜,有陸源碎屑石英、生物化石成因的石英及自生微晶石英,此外還存在灰?guī)r(五峰組頂部生物介殼灰?guī)r、重力滑塌形成的泥灰?guī)r)、廣泛分布的凝灰?guī)r以及龍馬溪組上部分布的粉砂巖等。本文中以五峰組—龍馬溪組的頁(yè)巖為研究對(duì)象,對(duì)頁(yè)巖組分構(gòu)成、沉積結(jié)構(gòu)、紋層特征進(jìn)行分析,參考石英+長(zhǎng)石、碳酸鹽礦物和黏土礦物的三端元?jiǎng)澐址桨覆⒔Y(jié)合石英、碳酸鹽礦物的不同來(lái)源,以有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為2%和4%為中有機(jī)質(zhì)和富有機(jī)質(zhì)界線,將研究區(qū)頁(yè)巖劃分為富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖、富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖、中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖和中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖共6種巖相(表1)。

2.2.1? 富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖(BS)

富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖手標(biāo)本顏色較深,一般為黑色—灰黑色,硬度較大,硅質(zhì)生物(主要為硅質(zhì)放射蟲和海綿骨針)富集成層,層厚0.1~2 cm不等,對(duì)巖心進(jìn)行XRF元素掃描可見其Si元素含量明顯高于上下層(圖4(a))。生物硅質(zhì)層上下為富有機(jī)質(zhì)黏土層,生物硅質(zhì)層與富有機(jī)質(zhì)黏土層的界面呈現(xiàn)突變接觸(圖4(b))。鏡下可見放射蟲化石由隱晶質(zhì)石英構(gòu)成(圖4(c))。該巖相硅質(zhì)含量較高,石英質(zhì)量分?jǐn)?shù)往往大于50%,可高達(dá)71.7%,平均為60.7%,黏土礦物質(zhì)量分?jǐn)?shù)平均為17.6%,碳酸鹽礦物質(zhì)量分?jǐn)?shù)平均為16.9%,有機(jī)質(zhì)含量較高,TOC平均為6.36%。該類巖相主要發(fā)育在研究區(qū)龍馬溪組底部。

2.2.2? 富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖(LS-1)

富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖顏色多為深灰色,硬度相對(duì)較大,手標(biāo)本和巖心XRF元素掃描圖像可見水平層理(圖4(d))。鏡下可見紋層發(fā)育較好,主要為亮色的石英-方解石混積紋層和暗色的富有機(jī)質(zhì)黏土紋層的紋層組合(圖4(e))。其中石英-方解石混合紋層厚度100~500 μm,石英、長(zhǎng)石以碎屑顆粒為主,呈現(xiàn)棱角狀,粒徑20~50 μm,方解石顆粒亦呈碎屑顆粒形狀,粒徑50~100 μm(圖4(f));富有機(jī)質(zhì)黏土紋層顏色較暗,厚度200~500 μm,主要為有機(jī)質(zhì)和黏土礦物的混合,可見黃鐵礦顆粒或草莓狀黃鐵礦集合體。該巖相硅質(zhì)含量仍然較高,平均為49.58%,黏土礦物次之,平均為24.1%,碳酸鹽質(zhì)量分?jǐn)?shù)平均為18.28%,黃鐵礦質(zhì)量分?jǐn)?shù)平均為4.5%,有機(jī)質(zhì)含量較高,TOC平均為5.5%。該類巖相主要發(fā)育在龍馬溪組底部和中部。

2.2.3? 富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖(CS)

富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖手標(biāo)本層理不可見(圖5(a)),XRF元素掃描圖像可見微弱層理(圖5(b))。鏡下紋層模糊或不發(fā)育,石英、方解石、長(zhǎng)石均呈現(xiàn)碎屑顆粒外形,分選較好,粒徑50~100 μm,白云石顆粒自形程度較好(圖5(c))。該巖相石英質(zhì)量分?jǐn)?shù)平均為27.29%,碳酸鹽礦物含量較高,質(zhì)量分?jǐn)?shù)平均為39.13%,黏土礦物質(zhì)量分?jǐn)?shù)平均為23.27%,黃鐵礦質(zhì)量分?jǐn)?shù)平均為7.46%,TOC平均為4.68%。該類巖相主要發(fā)育在五峰組上部和龍馬溪組中下部。

2.2.4? 富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖(LC)

富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖顏色多為灰黑色,手標(biāo)本可見清晰的淺色亮晶方解石層平行順層分布(圖5(d)),XRF掃描圖像可見Ca元素富集薄層(圖5(e))。鏡下可見紋層發(fā)育較好,主要為淺色的亮晶方解石紋層和暗色的富有機(jī)質(zhì)黏土紋層的紋層組合。其中亮晶方解石紋層厚度100~200 μm,由成巖作用形成的纖柱狀方解石構(gòu)成(圖5(f));富有機(jī)質(zhì)黏土紋層顏色較暗,可見石英顆粒(粒徑10~

20 μm)懸浮分布其中。該巖相石英質(zhì)量分?jǐn)?shù)平均為50.7%,碳酸鹽礦物質(zhì)量分?jǐn)?shù)平均為20.5%,黏土礦物質(zhì)量分?jǐn)?shù)平均為19.17%,黃鐵礦質(zhì)量分?jǐn)?shù)平均為5.87%,TOC平均為5.47%。該類巖相主要發(fā)育在龍馬溪組中部。

2.2.5? 中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖(LS-2)

中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖與LS-1巖相特征相似,顏色多為灰色—深灰色(圖6(a)),XRF元素掃描圖像可見水平層理(圖6(b))。鏡下可見紋層發(fā)育較好,主要為亮色的石英-方解石混合紋層和暗色的含有機(jī)質(zhì)黏土紋層的紋層組合(圖6(c))。石英、長(zhǎng)石、方解石呈現(xiàn)碎屑顆粒形狀,偶見黃鐵礦顆?;虿葺疇铧S鐵礦集合體。該巖相石英質(zhì)量分?jǐn)?shù)平均為36%,碳酸鹽礦物質(zhì)量分?jǐn)?shù)平均為21.1%,黏土礦物質(zhì)量分?jǐn)?shù)平均為34.9%,黃鐵礦質(zhì)量分?jǐn)?shù)平均為3.84%,有機(jī)質(zhì)含量下降,TOC平均為2.82%。該類巖相主要發(fā)育在龍馬溪組中上部。

2.2.6? 中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖(MM)

中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖顏色多為灰黑色,硬度較小,塊狀構(gòu)造(圖6(d))。鏡下紋層不發(fā)育(圖6(e)),可見黏土礦物絮凝團(tuán)塊,絮凝團(tuán)塊呈現(xiàn)透鏡狀,尺寸一般為150 μm×50 μm,團(tuán)塊內(nèi)由黏土礦物、石英、方解石組成,內(nèi)部顆粒粒徑在2~20 μm,多小于10 μm(圖6(f))。該巖相黏土礦物質(zhì)量分?jǐn)?shù)較高,平均為50%,主要為伊利石、伊蒙混層和少量綠泥石,石英質(zhì)量分?jǐn)?shù)平均為33.7%,碳酸鹽礦物質(zhì)量分?jǐn)?shù)較低,平均為9.55%,黃鐵礦質(zhì)量分?jǐn)?shù)較低,平均為1.7%,TOC平均為2.58%。該類巖相主要發(fā)育在五峰組下部和龍馬溪組上部。

2.3? 巖相垂向序列

以W213井為例,根據(jù)礦物含量以及TOC變化,對(duì)巖相的垂向演變進(jìn)行了分析(圖7)。五峰組下部黏土礦物含量較高,大于50%,石英含量平均為33.7%,方解石、白云石、長(zhǎng)石均較少,TOC較低,主要發(fā)育巖相MM;五峰組上部石英、方解石、白云石含量上升,黏土礦物含量下降,主要發(fā)育巖相CS;五峰組頂部在赫南特冰期下經(jīng)歷生物大滅絕,沉積了一層生物介殼灰?guī)r;龍馬溪組底部石英質(zhì)量分?jǐn)?shù)升至平均61.9%,黏土礦物質(zhì)量分?jǐn)?shù)降至平均18.6%,TOC達(dá)到峰值,平均為7.69%,主要發(fā)育巖相BS和LS-1;向上石英質(zhì)量分?jǐn)?shù)降至平均26.6%,方解石質(zhì)量分?jǐn)?shù)增至平均12.8%,白云石質(zhì)量分?jǐn)?shù)平均29.1%,TOC降至平均4.7%,主要發(fā)育巖相CS;向上石英質(zhì)量分?jǐn)?shù)增至平均44.6%,方解石質(zhì)量分?jǐn)?shù)降至平均8.7%,白云石質(zhì)量分?jǐn)?shù)降至平均16%,TOC略有升高,主要發(fā)育巖相BS、LS-1和CS;龍馬溪組上部石英質(zhì)量分?jǐn)?shù)下降至平均40.5%,黏土礦物質(zhì)量分?jǐn)?shù)升至31.6%,TOC降至2.06%,主要發(fā)育巖相LS-2和LC。

3? 沉積環(huán)境演化

3.1? 古沉積環(huán)境恢復(fù)

古生產(chǎn)力高低的判別可借助于Mo、Cu等元素含量,研究發(fā)現(xiàn)海相黑色頁(yè)巖中Mo主要與富硫無(wú)定形有機(jī)質(zhì)結(jié)合在一起沉淀下來(lái)[22],Cu可以有機(jī)金屬絡(luò)合物的形式保留在沉積物中[23],因而Mo、Cu含量越高,表明古生產(chǎn)力越高。五峰組—龍馬溪組Cu、Mo含量具有一致的變化特征,整體古生產(chǎn)力較高,Mo含量平均56.1 μg/g,在龍馬溪組底部達(dá)到峰值,Mo含量達(dá)184 μg/g,到龍馬溪組中上部Mo含量逐漸下降至20 μg/g以下(圖8)。

古氣候條件的判識(shí)可借助于Sr和Cu的含量變化及比值,Sr元素更易于在干燥條件下沉積而Cu元素更易于在潮濕環(huán)境下保存[24],故Sr含量和Sr/Cu比值升高指示了更為干燥的古氣候條件。五峰組沉積時(shí)古氣候較為暖濕,Sr/Cu比值平均1.28,五峰組頂部于赫南特冰期沉積了一層生物介殼灰?guī)r(觀音橋段),此時(shí)古氣候較為干冷,龍馬溪組沉積時(shí)古氣候體現(xiàn)出暖濕—相對(duì)干熱—暖濕—相對(duì)干熱的階段性變化。

古鹽度高低的判別常用Sr和Ba含量比值來(lái)指示,Sr相對(duì)于Ba具有更大的活動(dòng)性,在搬運(yùn)過(guò)程中不易被吸附或形成化學(xué)沉淀,而Ba更易被黏土礦物、有機(jī)質(zhì)等吸附[25],隨鹽度增大,Sr才得以沉淀,因而Sr/Ba比值與古鹽度具有一定的正相關(guān)性。五峰組—龍馬溪組Sr/Ba比值變化幅度小,在0.08~0.33,平均為0.16,整體具有穩(wěn)定的古鹽度。

水體氧化還原性變化可以通過(guò)U/Th、V/Cr、V/Ni以及Ni/Co等比值進(jìn)行判識(shí)。Th在地表不易發(fā)生遷移,而U在還原水體中易以四價(jià)態(tài)離子的形式沉淀[26]; V往往在還原條件下以四價(jià)態(tài)的形式與有機(jī)質(zhì)結(jié)合,而Cr往往富集于陸源碎屑中;隨水體還原性增強(qiáng),V相比于Ni更易于被吸附而沉淀[27];Ni與Co均與黃鐵礦相結(jié)合而沉淀,且其比值大于1[28],因此隨著水體還原性增強(qiáng),U/Th、V/Cr、V/Ni以及Ni/Co比值均會(huì)升高。五峰組下部沉積時(shí)水體還原性較弱,U/Th比值平均0.45,五峰組上部以及龍馬溪組下部古還原性均較強(qiáng),U/Th比值大于2,向上還原性逐漸減弱,U/Th比值降至0.5以下。

3.2? 沉積環(huán)境演化

本文中選取川南地區(qū)W213井38塊樣品通過(guò)ICP-MS獲取Mo、Cu、Sr、Ba、U、Th、V、Cr、Ni、Co等元素含量,通過(guò)上述地球化學(xué)元素指標(biāo)并結(jié)合巖相類型變化,將W213井五峰組—龍馬溪組頁(yè)巖的沉積環(huán)境演化劃分為7個(gè)階段,其中五峰組3個(gè)演化階段,龍馬溪組4個(gè)演化階段(圖8)。

階段Ⅰ:五峰組沉積早期,Sr/Cu比值平均1.28,指示此時(shí)處于溫暖濕潤(rùn)的氣候;Sr/Ba比值平均為0.09,指示此時(shí)水體古鹽度較低;U/Th比值小于0.5,指示此時(shí)水體為富氧的氧化環(huán)境;此時(shí)Mo含量平均為2.22 μg/g,表明古生產(chǎn)力相對(duì)較低;TOC約為2%,主要發(fā)育中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖。階段Ⅱ:五峰組沉積中期氣候溫暖潮濕,水體還原性增強(qiáng),古生產(chǎn)力升高,TOC大于4%,主要發(fā)育富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖。階段Ⅲ:五峰組沉積晚期整體處于寒冷干燥的氣候,屬于赫南特冰期,水體古鹽度整體較低,水平面下降,水體處于氧化環(huán)境,此時(shí)TOC較低,主要發(fā)育富含赫南特貝的生物介殼灰?guī)r。階段Ⅳ:龍馬溪組沉積早期,Sr/Cu比值平均為1.2,指示此時(shí)處于溫暖濕潤(rùn)的氣候;Sr/Ba比值平均為0.1,表明此時(shí)水體古鹽度較低;U/Th>1.25,Ni/Co>7,V/Cr>4.25,均指示水體處于缺氧的還原環(huán)境,此時(shí)冰期結(jié)束水體較深;Mo含量平均為110.8 μg/g,最高可達(dá)184 μg/g,指示此時(shí)古生產(chǎn)力較高;TOC較高,在5%~10%,該階段主要發(fā)育富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖和富有機(jī)質(zhì)(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖。階段Ⅴ:龍馬溪組沉積早中期古氣候由溫濕向干熱轉(zhuǎn)化,Sr/Cu比值升至4.87;Sr/Ba比值升至0.33,表明古鹽度逐漸升高;U/Th、Ni/Co、V/Cr比值減小,指示水體還原性減弱,水深變淺;Mo含量降至60.7 μg/g,表明古生產(chǎn)力降低,該階段主要發(fā)育富有機(jī)質(zhì)(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖和富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖。階段Ⅵ:龍馬溪組沉積中期,Sr/Cu比值下降至1.3,指示此時(shí)氣候溫暖潮濕;水體古鹽度變化不明顯;U/Th>1.25,Ni/Co比值在5~8,V/Cr比值為4~5,指示此時(shí)水體缺氧-貧氧;Mo含量升高至75 μg/g,指示古生產(chǎn)力升高;TOC在4%~5%,該階段主要發(fā)育富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖和富有機(jī)質(zhì)(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖。階段Ⅶ:龍馬溪組沉積中晚期,Sr/Cu比值增大至4.1,指示氣候由溫濕向干熱轉(zhuǎn)化;Sr/Ba比值降至0.1,表明水體古鹽度較低;U/Th、Ni/Co、V/Cr比值均減小指示水體還原性減弱,水深變淺;Mo含量降至20 μg/g以下,表明古生產(chǎn)力降低,該階段主要發(fā)育中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖和富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖,并夾有濁流沉積的粉砂巖。

4? 沉積模式

在晚奧陶世—早志留世期間,“三隆夾一坳”的構(gòu)造格局使得四川盆地南部形成了半滯留的海相沉積環(huán)境,海相硅質(zhì)生物大量繁殖,生物成因的硅質(zhì)沉積物在深水區(qū)沉積了大量富硅質(zhì)頁(yè)巖[29]。通過(guò)古沉積環(huán)境恢復(fù),五峰組下部沉積時(shí)水體還原性弱,古生產(chǎn)力低,主要在懸浮作用下沉積了中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖;五峰組上部沉積時(shí)水體還原性增強(qiáng),古生產(chǎn)力提高,在懸浮作用下沉積了富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖;到五峰組頂部,赫南特冰期事件使得水體深度快速下降,還原性減弱,沉積一層標(biāo)志性的生物介殼灰?guī)r;龍馬溪組中下部沉積時(shí)整體水深增加,水體分層底部形成厭氧環(huán)境,同時(shí)暖濕氣候下海洋生物大量繁殖,在上升流和懸浮作用下沉積了富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖和富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖等巖相;龍馬溪組上部沉積時(shí),由于揚(yáng)子板塊受到擠壓而抬升,研究區(qū)水體逐漸變淺,水體還原性減弱,古生產(chǎn)力下降,在懸浮作用下沉積了中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖,并伴有濁流和底流作用下沉積的粉砂巖薄層。綜合巖相類型、沉積作用以及前文所述沉積環(huán)境演化特征建立了川南地區(qū)五峰組—龍馬溪組頁(yè)巖的沉積模式(圖9)。

前人對(duì)海相頁(yè)巖中有機(jī)質(zhì)富集機(jī)制開展了廣泛研究,其中有機(jī)質(zhì)富集是“生產(chǎn)力模式”主導(dǎo)還是“保存條件模式”主導(dǎo)一直在學(xué)術(shù)界處于爭(zhēng)論之中[30- 31],越來(lái)越多的研究認(rèn)為有機(jī)質(zhì)富集在實(shí)際情況下受到多種因素的共同控制[15,32],較高的初始生產(chǎn)力和良好的有機(jī)質(zhì)保存條件對(duì)于有機(jī)質(zhì)富集缺一不可[33]。圖10(a)可見五峰組—龍馬溪組不同頁(yè)巖巖相的TOC與古生產(chǎn)力指標(biāo)Mo含量具有較好的正相關(guān)性,表明古生產(chǎn)力越高,頁(yè)巖的有機(jī)質(zhì)含量越高,其中富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖巖相沉積時(shí)具有最高的古生產(chǎn)力,Mo含量平均為81.74 μg/g,富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖次之,Mo含量平均值分別為71.11、45.18、40.7 μg/g,中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖和中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖沉積時(shí)古產(chǎn)生力較低,Mo含量平均值分別為24.63、2.22 μg/g。

同時(shí)TOC與古氧化還原指標(biāo)U/Th比值也具有較好的正相關(guān)性(圖10(b)),表明頁(yè)巖有機(jī)質(zhì)含量隨水體還原性增強(qiáng)而升高,缺氧的水底環(huán)境利于有機(jī)質(zhì)的保存。其中富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖巖相沉積時(shí)水體還原性最強(qiáng),富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖次之,該4種巖相U/Th平均值均大于1.25,指示沉積時(shí)缺氧的還原環(huán)境[24],中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖U/Th平均值為1.02,指示沉積時(shí)的貧氧環(huán)境,中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖U/Th平均值為0.45,表明其沉積時(shí)水體較為富氧。

TOC與古鹽度指標(biāo)Sr/Ba比值沒(méi)有明顯的相關(guān)性(圖10(c)),表明在海相沉積環(huán)境下,古鹽度對(duì)有機(jī)質(zhì)富集可能沒(méi)有明顯的控制作用。五峰組—龍馬溪組中下部沉積時(shí)陸源輸入較少,且硅質(zhì)海洋生物廣泛分布,其頁(yè)巖中石英主要為生物成因[34]。圖10(d)可見頁(yè)巖中石英含量與有機(jī)質(zhì)含量具有正相關(guān)性,其中富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖、富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖石英含量較高,質(zhì)量分?jǐn)?shù)平均值分別為60.73%、49.58%、50.77%,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)也均大于4%。同時(shí)石英含量越高,儲(chǔ)層脆性和可壓裂性越好,是作為良好頁(yè)巖氣儲(chǔ)層的標(biāo)志。

綜上所述,在各巖相類型中富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖巖相沉積時(shí)具有最高的古生產(chǎn)力、強(qiáng)水體還原性,因而有機(jī)質(zhì)最為富集,此外富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖也為有機(jī)質(zhì)較為富集的巖相,中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖沉積時(shí)古產(chǎn)生力較低、水體還原性弱,因而有機(jī)質(zhì)含量下降。

5? 結(jié)? 論

(1)根據(jù)礦物組分含量、沉積構(gòu)造以及有機(jī)質(zhì)含量,將川南地區(qū)五峰組—龍馬溪組頁(yè)巖劃分為6種巖相類型:富有機(jī)質(zhì)層狀生物硅質(zhì)頁(yè)巖、富有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)(鈣質(zhì))粉砂頁(yè)巖、富有機(jī)質(zhì)紋層狀鈣質(zhì)頁(yè)巖、中有機(jī)質(zhì)紋層狀(長(zhǎng)英質(zhì)-鈣質(zhì))粉砂頁(yè)巖和中有機(jī)質(zhì)塊狀黏土質(zhì)頁(yè)巖,并對(duì)其宏觀、微觀特征進(jìn)行了詳細(xì)刻畫。

(2)沉積環(huán)境演化對(duì)巖相發(fā)育具有控制作用,研究區(qū)五峰組—龍馬溪組共劃分7個(gè)演化階段:五峰組下部在溫暖潮濕的氣候、較為氧化的水體和較低的鹽度下主要沉積了巖相MM;五峰組上部水體還原性增強(qiáng)、古生產(chǎn)力提高,主要沉積了巖相CS;五峰組頂部在赫南特冰期下經(jīng)歷生物大滅絕,沉積了一層生物介殼灰?guī)r;龍馬溪組自下而上古氣候經(jīng)歷了暖濕—相對(duì)干熱—暖濕—相對(duì)干熱的演化,同時(shí)古水體也經(jīng)歷了還原—相對(duì)氧化—還原—相對(duì)氧化的演化,依次沉積了“BS+LS-1”“LS-1+CS”“BS+LS-1”“LS-2+LC”的巖相組合。

(3)沉積環(huán)境對(duì)頁(yè)巖有機(jī)質(zhì)的富集也具有明顯的控制作用,不同巖相有機(jī)質(zhì)含量與海洋古生產(chǎn)力和水體還原性均呈現(xiàn)良好的正相關(guān)性,其中在古生產(chǎn)力較高、水體還原性較強(qiáng)的階段沉積的巖相BS和LS-1有機(jī)質(zhì)最為富集,且石英含量最高,是頁(yè)巖氣勘探開發(fā)的優(yōu)勢(shì)巖相。

參考文獻(xiàn):

[1]? 鄒才能,趙群,王紅巖,等.中國(guó)海相頁(yè)巖氣主要特征及勘探開發(fā)主體理論與技術(shù)[J].天然氣工業(yè),2022,42(8):1-13.

ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry, 2022,42(8): 1-13.

[2]? 金之鈞,白振瑞,高波,等.中國(guó)迎來(lái)頁(yè)巖油氣革命了嗎?[J].石油與天然氣地質(zhì),2019,40(3):451-458.

JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology,2019,40(3):451-458.

[3]? 黎茂穩(wěn),馬曉瀟,金之鈞,等.中國(guó)海、陸相頁(yè)巖層系巖相組合多樣性與非常規(guī)油氣勘探意義[J].石油與天然氣地質(zhì),2022,43(1):1-25.

LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J].Oil & Gas Geology,2022,43(1):1-25.

[4]? 姜鵬飛,吳建發(fā),朱逸青,等.四川盆地海相頁(yè)巖氣富集條件及勘探開發(fā)有利區(qū)[J].石油學(xué)報(bào),2023,44(1):91-109.

JIANG Pengfei, WU Jianfa, ZHU Yiqing, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2023,44(1):91-109.

[5]? 馬新華,謝軍,雍銳,等.四川盆地南部龍馬溪組頁(yè)巖氣儲(chǔ)集層地質(zhì)特征及高產(chǎn)控制因素[J].石油勘探與開發(fā),2020,47(5):841-855.

MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2020,47(5):841-855.

[6]? 王光付,李鳳霞,王海波,等. 四川盆地非常規(guī)氣藏地質(zhì)-工程一體化壓裂實(shí)踐與認(rèn)識(shí)[J]. 石油與天然氣地質(zhì),2022,43(5):1221-1237.

WANG Guangfu, LI Fengxia, WANG Haibo, et al. Application of an integrated geology-reservoir engineering approach to fracturing in unconventional gas reservoirs,Sichuan Basin and some insights[J]. Oil & Gas Geology,2022, 43(5): 1221-1237.

[7]? WU W, LIU W Q, MOU C L, et al. Organic-rich siliceous rocks in the upper Permian Dalong Formation (NW middle Yangtze): provenance, paleoclimate and paleoenvironment[J]. Marine and Petroleum Geology, 2021,123:104728.

[8]? LIU W Q, ZHANG X X, QIAO Y, et al. Climate-driven paleoceanography change controls on petrology and organic matter accumulation in the upper Permian Dalong Formation, western Hubei Province, southern China[J]. Sedimentary Geology, 2022,440:106259.

[9]? 陸揚(yáng)博,馬義權(quán),王雨軒,等.上揚(yáng)子地區(qū)五峰組-龍馬溪組主要地質(zhì)事件及巖相沉積響應(yīng)[J].地球科學(xué),2017,42(7):1169-1184.

LU Yangbo, MA Yiquan, WANG Yuxuan, et al. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area[J]. Earth Science,2017,42(7):1169-1184.

[10]? 朱逸青,陳更生,劉勇,等.四川盆地南部凱迪階-埃隆階層序地層與巖相古地理演化特征[J].石油勘探與開發(fā),2021,48(5):974-985.

ZHU Yiqing, CHEN Gengsheng, LIU Yong, et al. Sequence stratigraphy and lithofacies paleogeographic evolution of Katian Stage-Aeronian Stage in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021,48(5):974-985.

[11]? 陳旭,樊雋軒,張?jiān)獎(jiǎng)?,?五峰組及龍馬溪組黑色頁(yè)巖在揚(yáng)子覆蓋區(qū)內(nèi)的劃分與圈定[J].地層學(xué)雜志,2015,39(4):351-358.

CHEN Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy,2015,39(4):351-358.

[12]? 周曉峰,郭偉,李熙喆,等.四川盆地五峰組—龍馬溪組有機(jī)質(zhì)類型與有機(jī)孔配置的放射蟲硅質(zhì)頁(yè)巖巖石學(xué)證據(jù)[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,46(5):12-22.

ZHOU Xiaofeng, GUO Wei, LI Xizhe, et al. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),2022,46(5):12-22.

[13]? 韓超,吳明昊,吝文,等.川南地區(qū)五峰組—龍馬溪組黑色頁(yè)巖儲(chǔ)層特征[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,41(3):14-22.

HAN Chao, WU Minghao, LIN Wen, et al. Characteristics of black shale reservoir of Wufeng-Longmaxi Formation in the Southern Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),2017,41(3):14-22.

[14]? 梁超.含油氣細(xì)粒沉積巖沉積作用與儲(chǔ)層形成機(jī)理[D]. 北京:中國(guó)地質(zhì)大學(xué)(北京),2015.

LIANG Chao. The sedimentation and reservoir formation mechanism of hydrocarbon-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2015.

[15]? 何龍.四川盆地東南緣五峰組—龍馬溪組頁(yè)巖有機(jī)質(zhì)富集機(jī)制及沉積環(huán)境演化[D].廣州:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院廣州地球化學(xué)研究所),2020.

HE Long. Organic matter enrichment and evolution of sedimentary environment of the Wufeng-Longmaxi shale in southeastern margins of the Sichuan Basin[D]. Guangzhou: University of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2020.

[16]? LU Y B, HAO F, LU Y C, et al. Lithofacies and depositional mechanisms of the Ordovician-Silurian Wufeng-Longmaxi organic-rich shales in the Upper Yangtze area, southern China[J]. AAPG Bulletin, 2020,104(1):97-129.

[17]? 陸揚(yáng)博.上揚(yáng)子五峰組和龍馬溪組富有機(jī)質(zhì)頁(yè)巖巖相定量表征及沉積過(guò)程恢復(fù)[D]. 武漢:中國(guó)地質(zhì)大學(xué)(武漢),2020.

LU Yangbo. Quantitative characterization of lithofacies and reconstruction of the sedimentary process for Upper Yangtze Wufeng and Longmaxi organic-rich shales[D]. Wuhan:China University of Geosciences(Wuhan), 2020.

[18]? 胡宗全,杜偉,朱彤,等.四川盆地及其周緣五峰組—龍馬溪組細(xì)粒沉積的層序地層與巖相特征[J].石油與天然氣地質(zhì),2022,43(5):1024-1038.

HU Zongquan, DU Wei, ZHU Tong, et al. Sequence stratigraphy and lithofacies characteristics of fine-grained deposits of Wufeng-Longmaxi Formations in the Sichuan Basin and on its periphery[J]. Oil & Gas Geology,2022,43(5):1024-1038.

[19]? 王濡岳,胡宗全,龍勝祥,等.四川盆地上奧陶統(tǒng)五峰組-下志留統(tǒng)龍馬溪組頁(yè)巖儲(chǔ)層特征與演化機(jī)制[J].石油與天然氣地質(zhì),2022,43(2):353-364.

WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J].Oil & Gas Geology,2022,43(2):353-364.

[20]? 葛祥英.四川盆地東部奧陶-志留紀(jì)交替時(shí)期事件沉積與有機(jī)質(zhì)富集[D].北京:中國(guó)地質(zhì)大學(xué)(北京),2020.

GE Xiangying. The events across the Ordovician-Silurian transition and the organic enrichment of black shales in the east of Sichuan Basin[D]. Beijing: China University of Geosciences (Beijing), 2020.

[21]? LIANG C, WU J, JIANG Z X, et al. Sedimentary environmental controls on petrology and organic matter accumulation in the upper fourth member of the Shahejie Formation (Paleogene, Dongying Depression, Bohai Bay Basin, China)[J]. International Journal of Coal Geology, 2018,186:1-13.

[22]? TRIBOVILLARD N, RIBOULLEAU A, LYONS T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales[J]. Chemical Geology, 2004,213:385-401.

[23]? WEI C, DONG T, HE Z L, et al. Major, trace-elemental and sedimentological characterization of the Upper Ordovician Wufeng-Lower Silurian Longmaxi formations, Sichuan Basin, South China: insights into the effect of relative sea-level fluctuations on organic matter accumulation in shales[J]. Marine and Petroleum Geology, 2021,126:104905.

[24]? 王彤,朱筱敏,董艷蕾,等.基于微量元素分析的古沉積背景重建:以準(zhǔn)噶爾盆地西北緣古近系安集海河組為例[J].地質(zhì)學(xué)報(bào),2020,94(12):3830-3851.

WANG Tong, ZHU Xiaomin, DONG Yanlei, et al. Trace elements as paleo sedimentary environment indicators: a case study of the Paleogene Anjihaihe Formation in the northwestern Junggar Basin[J]. Acta Geologica Sinica, 2020, 94(12): 3830-3851.

[25]? WANG A, WANG Z, LIU J, et al. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta[J]. Chemical Geology, 2021,559:1-15.

[26]? LI D L, LI R X, ZHU Z W, et al. Elemental characteristics and paleoenvironment reconstruction: a case study of the Triassic lacustrine Zhangjiatan oil shale, southern Ordos Basin, China[J]. Acta Geochimica, 2018,37(1):134-150.

[27]? KIMURAH, WATANABE Y. Ocean anoxia at the Precambrian-Cambrian boundary[J]. Geology,2001,29:995-998.

[28]? ZHANG L C, XIAO D S, LU S F, et al. Effect of sedimentary environment on the Formation of organic-rich marine shale: insights from major/trace elements and shale composition[J]. International Journal of Coal Geology, 2019,204:34-50.

[29]? CHEN L, LU Y C, LI J, et al. Comparative study on the Lower Silurian Longmaxi marine shale in the Jiaoshiba shale gas field and the Pengshui area in the southeast Sichuan Basin, China[J]. Geosciences Journal, 2020,24(1):61-71.

[30]? YANG S C, HU W X, YAO S P, et al. Constraints on the accumulation of organic matter in Upper Ordovician-Lower Silurian black shales from the Lower Yangtze region, South China[J]. Marine and Petroleum Geology, 2020,120:104544.

[31]? LI Y F, ZHANG T W, ELLIS G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017,466:252-264.

[32]? ZHOU L, ALGEO T J, SHEN J, et al. Changes in marine productivity and redox conditions during the late Ordovician Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,420:223-234.

[33]? WU L Y, LU Y C, JIANG S, et al. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area[J]. Marine and Petroleum Geology, 2019,102:74-85.

[34]? ZHAO J H, JIN Z K, JIN Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: implications for pore evolution[J]. Journal of Natural Gas Science & Engineering, 2017,38:21-38.

(編輯? 修榮榮)

猜你喜歡
紋層
鄂爾多斯盆地延長(zhǎng)組長(zhǎng)72 油層組陸相頁(yè)巖紋層及裂縫分布特征的量化表征
湖泊年紋層研究進(jìn)展與展望
滄東凹陷孔二段頁(yè)巖紋層結(jié)構(gòu)類型及其對(duì)儲(chǔ)集性能的影響
威遠(yuǎn)地區(qū)五峰組—龍馬溪組頁(yè)巖紋層發(fā)育特征及地質(zhì)意義
海相頁(yè)巖紋層特征、成因機(jī)理及其頁(yè)巖氣意義
中國(guó)中西部盆地典型陸相頁(yè)巖紋層結(jié)構(gòu)與儲(chǔ)層品質(zhì)評(píng)價(jià)
頁(yè)巖紋層與破裂方式實(shí)驗(yàn)研究
渤海灣盆地東營(yíng)凹陷湖相富有機(jī)質(zhì)頁(yè)巖紋層特征和儲(chǔ)集性能
海相頁(yè)巖紋層特征及其對(duì)頁(yè)巖儲(chǔ)層發(fā)育的影響
——以川南長(zhǎng)寧地區(qū)龍馬溪組為例
斷塊油氣田(2021年2期)2021-06-07 16:00:28
含氣頁(yè)巖不同紋層及組合儲(chǔ)集層特征差異性及其成因
——以四川盆地下志留統(tǒng)龍馬溪組一段典型井為例
芦溪县| 宁武县| 平塘县| 崇礼县| 鞍山市| 和顺县| 措美县| 崇阳县| 扶沟县| 奎屯市| 彭阳县| 绍兴市| 大田县| 溧水县| 石台县| 张家界市| 娄底市| 常熟市| 伊通| 白银市| 新晃| 大姚县| 西城区| 武汉市| 彰化市| 安多县| 兴化市| 任丘市| 汉寿县| 察哈| 津市市| 宽城| 穆棱市| 洪泽县| 孟津县| 娄底市| 西平县| 同江市| 邯郸市| 手游| 海原县|