毛藝錕 王士雷 吳秀云 趙芹 李瑜
[摘要] ?目的??探討七氟烷后處理對(duì)大鼠腦缺血再灌注(I/R)損傷的保護(hù)作用及其機(jī)制。
方法選擇SPF級(jí)成年健康雄性SD大鼠80只,隨機(jī)分為假手術(shù)組(S組)、腦缺血再灌注組(I/R組)、腦I/R+七氟烷后處理組(ISP組)、腦I/R+七氟烷后處理+核因子E2相關(guān)因子2(Nrf2)抑制劑組(ISPB組),每組20只。除S組外,其余組大鼠均用線栓法閉塞大腦中動(dòng)脈2 h并再灌注24 h的方法制備腦I/R損傷大鼠模型(S組大鼠只在大腦中動(dòng)脈下穿線不結(jié)扎)。ISP組大鼠于再灌注即刻吸入3%七氟烷30 min,ISPB組在缺血前30 min腹腔注射Nrf2抑制劑鴉膽子苦醇(2 mg/kg),其余處理同ISP組。建模成功后通過神經(jīng)功能評(píng)分評(píng)估各組大鼠神經(jīng)功能損害程度。隨后獲取大鼠左心室血及腦組織病理切片,以2,3,5-氯化三苯基四氮唑(TTC)染色測(cè)定各組大鼠腦梗死體積百分比,采用酶聯(lián)免疫吸附試驗(yàn)檢測(cè)大鼠血清中炎癥因子白細(xì)胞介素-1β(IL-1β)、腫瘤壞死因子-α(TNF-α)和氧化應(yīng)激相關(guān)因子丙二醛(MDA)及超氧化物歧化酶(SOD)水平,采用免疫印跡實(shí)驗(yàn)檢測(cè)大鼠腦組織中凋亡相關(guān)蛋白B細(xì)胞淋巴瘤-2(Bcl-2)、Bcl-2相關(guān)聯(lián)x(Bax)、半胱胺酸天冬氨酸蛋白酶-3(Caspase-3)及Nrf2信號(hào)通路相關(guān)蛋白Nrf2和血紅素加氧酶1(HO-1)表達(dá),采用免疫熒光實(shí)驗(yàn)檢測(cè)大鼠腦組織細(xì)胞核內(nèi)外Nrf2表達(dá)。
結(jié)果與I/R組相比,ISP組大鼠神經(jīng)功能缺損評(píng)分、腦梗死體積百分比,以及血清IL-1β、TNF-α、MDA水平和腦組織總蛋白Bax、Caspase-3水平均下降(t=5.76~18.39,P<0.05);血清中SOD水平及腦組織總蛋白Nrf2、HO-1、Bcl-2水平均升高(t=5.73~14.08,P<0.05),Nrf2免疫熒光強(qiáng)度增強(qiáng)。與ISP組相比,ISPB組神經(jīng)功能缺損評(píng)分、腦梗死體積百分比,以及血清中IL-1β、TNF-α、MDA水平和腦組織總蛋白Bax、Caspase-3水平均升高(t=3.06~8.19,P<0.05);血清中SOD水平和腦組織總蛋白Nrf2、HO-1、Bcl-2水平均下降(t=2.67~9.01,P<0.05),Nrf2免疫熒光強(qiáng)度減弱。
結(jié)論七氟烷后處理可以通過激活Nrf2信號(hào)通路抑制氧化應(yīng)激、炎癥反應(yīng)和細(xì)胞凋亡,減輕大鼠腦I/R損傷。
[關(guān)鍵詞] ?七氟烷;缺血后處理;腦缺血;再灌注損傷;NF-E2相關(guān)因子2;信號(hào)傳導(dǎo);大鼠,Sprague-Dawley
[中圖分類號(hào)] ?R619.9;R743.31
[文獻(xiàn)標(biāo)志碼] ?A
Protective effect of sevoflurane postconditioning against cerebral ischemia/reperfusion injury in rats
MAO Yikun, WANG Shilei, WU Xiuyun, ZHAO Qin, LI Yu
(Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China)
;[ABSTRACT]?Objective?To investigate the protective effect of sevoflurane postconditioning against cerebral ischemia/reperfusion (I/R) injury in rats and its mechanism of action.
Methods?A total of 80 specific pathogen-free healthy adult male Sprague-Dawley rats were selected and randomly divided into sham-operation group (S group), cerebral I/R group (I/R group), cerebral I/R+sevoflurane postconditioning group (ISP group), and cerebral I/R+sevoflurane
postconditioning+nuclear factor ery-throid 2-related factor 2 (Nrf2) inhibitor group (ISPB group), with 20 rats in each group. All rats except those in the S group were used to establish a rat model of cerebral I/R injury using the suture method for occlusion of the middle cerebral artery for 2 h, followed by reperfusion for 24 h, and for the rats in the S group, threading was performed below the middle cerebral artery without ligation. The rats in the ISP group were given inhalation of 3% sevoflurane immediately after reperfusion for 30 min, and those in the ISPB group were given intraperitoneal injection of the Nrf2 inhibitor brusatol (2 mg/kg) at 30 min before ischemia in addition to the treatment in the ISP group. After successful modeling, neurological deficit score was used to eval-
uate the degree of neurological impairment. Left ventricular blood samples and pathological sections of brain tissue were obtained, and 2,3,5-triphenyltetrazolium chloride staining was used to determine the percentage of cerebral infarct volume; enzyme-linked immunosorbent assay was used to measure the serum levels of inflammatory factors (interleukin-1β [IL-1β] and tumor necrosis factor-α [TNF-α]) and oxidative stress-related factors (malondialdehyde [MDA] and superoxide dismutase [SOD]); Western blotting was used to mea-sure the expression of apoptosis-related proteins (B-cell lymphoma-2 [Bcl-2], Bcl-2 related x [Bax], and Caspase-3) and Nrf2 signaling pathway-related proteins (Nrf2 and heme oxygenase-1 [HO-1]) in brain tissue; immunofluorescence assay was used to measure the expression of Nrf2 inside and outside the nucleus of brain tissue cells.
Results?Compared with the I/R group, the ISP group had significant reductions in neurological deficit score, the percentage of cerebral infarct volume, the serum levels of IL-1β, TNF-α, and MDA, and the levels of Bax and Caspase-3 in brain tissue (t=5.76-18.39,P<0.05) and significant increases in the serum level of SOD and the levels of Nrf2, HO-1, and Bcl-2 in brain tissue (t=5.73-14.08,P<0.05), as well as a significant increase in Nrf2 immunofluorescence intensity. Compared with the ISP group, the ISPB group had significant increases in neurological deficit score, the percentage of cerebral infarct volume, the se-
rum levels of IL-1β, TNF-α, and MDA, and the levels of Bax and Caspase-3 in brain tissue (t=3.06-8.19,P<0.05) and significant reductions in the serum level of SOD and the levels of Nrf2, HO-1, and Bcl-2 in brain tissue (t=2.67-9.01,P<0.05), as well as a reduction in Nrf2 immunofluorescence intensity.
Conclusion?Sevoflurane postconditioning can inhibit oxidative stress, inflammatory response, and cell apoptosis by activating the Nrf2 signaling pathway, thereby alleviating cerebral I/R injury in rats.
[KEY WORDS]?Sevoflurane; Ischemic postconditioning; Brain ischemia; Reperfusion injury; NF-E2-related factor 2; Signal transduction; Rats, Sprague-Dawley
腦缺血再灌注(I/R)損傷大多發(fā)生在大腦主要?jiǎng)用}閉塞的情況下,缺血后血管再通往往會(huì)給機(jī)體造成更大損害。大量實(shí)驗(yàn)均采用大腦中動(dòng)脈閉塞(MCAO)模型來研究腦I/R的機(jī)制[1]。當(dāng)前,缺血性腦卒中在臨床中的發(fā)生率和致殘率仍較高,其病理?yè)p傷所涉及的分子機(jī)制復(fù)雜多樣,例如炎癥反應(yīng)、細(xì)胞自噬、線粒體自噬、氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激、鈣超載、血腦屏障破壞等[2-3],因此臨床上目前缺少針對(duì)腦I/R損傷的有效治療方案。
核因子E2相關(guān)因子2(Nrf2)是堿性亮氨酸拉鏈蛋白家族的成員之一,也是維持組織和細(xì)胞動(dòng)態(tài)平衡的重要防御因子。有研究表明在腦I/R損傷等中樞神經(jīng)系統(tǒng)急性損傷的病理過程中,Nrf2發(fā)揮了重要的神經(jīng)保護(hù)作用,其中包括抑制氧化應(yīng)激反應(yīng),減輕炎癥反應(yīng),抑制細(xì)胞凋亡等[4]。既往有研究證實(shí),腦組織中Nrf2的上調(diào)可一定程度改善缺血后腦神經(jīng)損傷[5]。七氟烷作為吸入麻醉劑,因其起效快、誘導(dǎo)平穩(wěn)等優(yōu)點(diǎn),在臨床得到廣泛應(yīng)用。許多研究表明I/R開始時(shí)對(duì)缺血組織進(jìn)行七氟烷處理(即七氟烷后處理)具有抑制活性氧的過度釋放、抑制氧化應(yīng)激平衡失調(diào)、減輕炎癥反應(yīng)、防止細(xì)胞內(nèi)鈣超載、減少神經(jīng)元凋亡和穩(wěn)定神經(jīng)細(xì)胞膜等神經(jīng)保護(hù)作用[6-7],但七氟烷保護(hù)作用的具體機(jī)制尚未完全清楚。本研究擬通過建立大鼠MCAO模型,探討七氟烷對(duì)大鼠腦I/R損傷的保護(hù)作用及其機(jī)制。
1 材料與方法
1.1 實(shí)驗(yàn)材料
SPF級(jí)成年健康雄性SD大鼠80只(體質(zhì)量230~250 g)購(gòu)自濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司,鴉膽子苦醇購(gòu)自北京索萊寶科技有限公司,2,3,5-氯化三苯基四氮唑(TTC)染色液購(gòu)自上海源葉生物科技有限公司,血清超氧化物歧化酶(SOD)及丙二醛(MDA)ELISA試劑盒購(gòu)江蘇蘇酶科生物科技有限公司,腫瘤壞死因子-α(TNF-α)及白細(xì)胞介素-1β(IL-1β)的ELISA試劑盒購(gòu)自武漢愛博泰克生物科技有限公司,B細(xì)胞淋巴瘤-2(Bcl-2)購(gòu)自英國(guó)Abcam公司,Nrf2及Bcl-2相關(guān)聯(lián)x(Bax)購(gòu)自武漢三鷹生物技術(shù)有限公司,半胱氨酸天冬氨酸蛋白酶-3(Caspase-3)購(gòu)買自北京博奧森生物技術(shù)有限公司,β-actin購(gòu)自武漢伊萊瑞特生物科技有限公司。
1.2 分組與處理
將大鼠飼養(yǎng)在SPF動(dòng)物房中,12 h/12 h晝夜環(huán)境,溫度控制在(22±2)℃,可以自由獲取水和食物。按簡(jiǎn)單隨機(jī)分組將大鼠分為假手術(shù)組(S組)、腦I/R組(I/R組)、腦I/R+七氟烷后處理組(ISP組)、腦I/R+七氟烷后處理+Nrf2抑制劑組(ISPB組),每組20只。
將各組大鼠禁食12 h,麻醉后仰臥位固定,常規(guī)暴露并分離大鼠的右側(cè)頸總動(dòng)脈、頸外動(dòng)脈和頸內(nèi)動(dòng)脈。動(dòng)脈夾夾閉頸外動(dòng)脈,結(jié)扎頸總動(dòng)脈和頸內(nèi)動(dòng)脈,間隔為1 cm左右。I/R、ISP及ISPB組大鼠于兩結(jié)扎點(diǎn)中間動(dòng)脈段上剪一小口,將備好的線栓插入至大腦中動(dòng)脈起始處,線栓插入深度為17~18 mm,S組大鼠結(jié)扎中間不做處理,結(jié)扎消毒后縫合各組大鼠組織皮膚。MCAO 2 h后將線栓拔出,使頭端退到頸總動(dòng)脈,即可恢復(fù)血流再灌注,大鼠出現(xiàn)偏癱癥狀視為造模成功。ISP組大鼠再灌注開始時(shí)暴露于3%七氟烷30 min,ISPB組大鼠MCAO前30 min腹腔注射Nrf2信號(hào)通路抑制劑鴉膽子苦醇(溶于1 mL生理鹽水中)2 mg/kg,再灌注開始時(shí)暴露于3%七氟烷30 min。
1.3 神經(jīng)功能缺損評(píng)分
再灌注24 h后,每組中隨機(jī)選取4只大鼠,參照Z(yǔ)ea-longa評(píng)分標(biāo)準(zhǔn)[8]評(píng)估神經(jīng)功能缺損情況。
1.4 腦梗死體積百分比測(cè)定
再灌注24 h后麻醉各組大鼠,左心室采血(每只3~5 mL),置于離心機(jī)中以3 500 r/min離心15 min,取上清液保存?zhèn)溆?;隨后使用PBS對(duì)大鼠進(jìn)行心臟灌注,待大鼠肺和口唇黏膜等由紅潤(rùn)變?yōu)樯n白,心臟和肝臟等由深紅變?yōu)闇\紅時(shí)結(jié)束灌注,冰上斷頭取腦備用。每組隨機(jī)選取3只大鼠的腦組織,置于-20 ℃冰箱冷凍30 min后,由前向后間隔2 mm進(jìn)行冠狀切片,共切5片。將切片置于2% TTC染色液中,37 ℃下避光孵育30 min,切片變色后將其置于4%多聚甲醛中固定并拍照。用Image J軟件計(jì)算每層的梗死體積,并計(jì)算腦梗死體積百分比。腦梗死體積百分比(%)=梗塞體積/(梗塞體積+非梗塞體積)×100%。
1.5酶聯(lián)免疫吸附試驗(yàn)檢測(cè)大鼠血清中氧化應(yīng)激相關(guān)因子SOD、MDA以及炎癥因子TNF-α、IL-1β水平 每組隨機(jī)采集4只大鼠的血清,按照ELISA試劑盒按照說明書要求測(cè)定各組大鼠血清中SOD、MDA、TNF-α及IL-1β水平。
1.6免疫印跡法檢測(cè)腦組織中Nrf2、HO-1、Bcl-2、Bax、Caspase-3表達(dá)
每組隨機(jī)選取4只大鼠腦組織,切片后選取梗死部位,加入含蛋白酶抑制劑的組織裂解液將腦組織裂解,并提取腦梗死區(qū)域總蛋白。使用BCA試劑盒測(cè)定蛋白濃度,上樣30 μg蛋白,80 V下于凝膠中電泳30 min,待蛋白到達(dá)分離膠后,調(diào)整為120 V下于凝膠中電泳60 min;通過濕轉(zhuǎn)法按290 mA、120 min將蛋白轉(zhuǎn)至PVDF膜,用含體積分?jǐn)?shù)0.05脫脂奶粉的TBST緩沖液于室溫封閉2 h,洗膜后分別加入Nrf2(1∶5 000)、Bax(1∶15 000)、Bcl-2(1∶2 000)及Caspase-3(1∶1 000)一抗,4 ℃下孵育過夜;次日加入辣根過氧化物酶標(biāo)記的山羊抗兔多克隆抗體(1∶5 000)或者抗鼠多克隆抗體(1∶5 000)室溫孵育1.5 h,條帶上滴加ECL化學(xué)發(fā)光液置于凝膠成像儀顯影。用Image J軟件測(cè)定蛋白條帶灰度值,以目的蛋白條帶灰度值和內(nèi)參β-actin(1∶1 000)條帶灰度值比值代表各目的蛋白的相對(duì)表達(dá)水平。
1.7免疫熒光實(shí)驗(yàn)檢測(cè)腦組織中Nrf2表達(dá)
每組隨機(jī)選取4只大鼠腦組織,在冠狀平面由前向后以4 μm厚切片,石蠟包埋并脫水,用EDTA抗原修復(fù)緩沖液將脫水后的組織切片進(jìn)行抗原修復(fù);再用體積分?jǐn)?shù)0.10的驢血清封閉30 min,甩干封閉液后加入Nrf2一抗(1∶500),4 ℃下孵育過夜;洗滌之后再加入Cy3標(biāo)記山羊抗兔二抗(1∶300),避光室溫孵育1 h;再加入DAPI染液,避光室溫下孵育10 min,甩干后封片,將切片置于熒光顯微鏡下觀察并采集圖像。
1.8 統(tǒng)計(jì)學(xué)方法
采用GraphPad Prism 8.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析。符合正態(tài)分布的計(jì)量資料以 ±s表示,多組間比較采用單因素方差分析,兩兩比較采用Tukey檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 四組大鼠神經(jīng)功能缺損評(píng)分和腦梗死體積百分比比較
S組、I/R組、ISP組及ISPB組大鼠的神經(jīng)功能缺損評(píng)分分別為0、(3.70±0.61)、(1.10±0.10)、(2.43±0.49)分,以上四組腦梗死體積百分比分別為0、(33.44±2.55)%、(12.50±0.88)%和(24.47±2.67)%。I/R組大鼠神經(jīng)功能缺損評(píng)分及腦梗死體積百分比均顯著高于S組及ISP組(F=49.67、176.20,t=7.31~22.74,P<0.05),ISP組神經(jīng)功能缺損評(píng)分以及腦梗死體積百分比顯著低于ISPB組(t=4.59、7.37,P<0.05)。見圖1。
2.2四組大鼠血清中IL-1β、TNF-α、MDA、SOD水平比較
I/R組大鼠血清中IL-1β、TNF-α和MDA水平顯著高于S、ISP組(F=60.58~126.70,t=6.16~28.74,P<0.05),SOD水平顯著低于S、ISP組(F=208.00,t=14.08、21.90,P<0.05);ISP組IL-1β、TNF-α和MDA水平顯著低于ISPB組(t=3.06~8.19,P<0.05),SOD水平則顯著高于ISPB組(t=7.79,P<0.05)。見表1。
2.3四組大鼠腦組織當(dāng)中Bax、Bcl-2、Caspase-3、Nrf2、HO-1蛋白水平比較
I/R組大鼠腦組織中Bax、Caspase-3蛋白的水平顯著高于S、ISP組(F=26.05、31.95,t=5.44~12.19,P<0.05),Bcl-2、Nrf2、HO-1蛋白水平低于S組、ISP組(F=23.55~65.14,t=5.73~11.43,P<0.05);ISP組Bax、Caspase-3蛋白水平顯著低于ISPB組(t=3.06、3.41,P<0.05),Bcl-2、Nrf2、HO-1蛋白水平顯著高于ISPB組(t=2.67~9.01,P<0.05)。見表2、圖2。
2.4四組大鼠腦組織中Nrf2表達(dá)的比較
免疫熒光實(shí)驗(yàn)檢測(cè)結(jié)果顯示,ISP組大鼠腦組織中Nrf2免疫熒光強(qiáng)度高于S、ISP及ISPB組。見圖3。
3 討 ?論
腦I/R損傷會(huì)造成機(jī)體一系列應(yīng)激反應(yīng),如氧化應(yīng)激平衡失調(diào)、炎癥反應(yīng)發(fā)生、細(xì)胞出現(xiàn)凋亡和自噬等。既往研究表明,I/R模型造模前30 min腹腔注射Nrf2抑制劑鴉膽子苦醇會(huì)減少腦組織中Nrf2的表達(dá)[9],本課題組前期的預(yù)實(shí)驗(yàn)也得出了同樣結(jié)論,因此本研究參考以上結(jié)論設(shè)置了ISPB組。
本研究結(jié)果顯示,與ISP組相比,ISPB組大鼠的神經(jīng)功能缺損評(píng)分增加,腦梗死體積百分比增加,血清中MDA、IL-1β以及TNF-α水平均升高,SOD水平降低,腦組織總蛋白Bax、Caspase-3水平升高,Bcl-2、Nrf2和HO-1水平降低,腦組織Nrf2免疫熒光強(qiáng)度下降,提示七氟烷后處理可以通過激活Nrf2信號(hào)通路,從而抑制氧化應(yīng)激、炎癥反應(yīng)和細(xì)胞凋亡,減輕大鼠腦I/R損傷。
正常情況下,機(jī)體內(nèi)活性氧(ROS)的生成與細(xì)胞抗氧化機(jī)制相平衡。當(dāng)暴露于有害刺激時(shí),ROS會(huì)大量生成而打破平衡,導(dǎo)致氧化應(yīng)激平衡失調(diào)。氧化應(yīng)激通過多種不同途徑參與腦缺血損傷,破壞細(xì)胞結(jié)構(gòu),損害細(xì)胞正常功能,進(jìn)而導(dǎo)致細(xì)胞壞死和凋亡??寡趸到y(tǒng)的激活是機(jī)體對(duì)各類氧化損傷的反應(yīng)機(jī)制,以減少氧化應(yīng)激帶來的損害。SOD和谷胱甘肽等通過維持細(xì)胞和組織的氧化還原平衡發(fā)揮抗氧化作用[10]。SOD和MDA是衡量氧化應(yīng)激反應(yīng)的兩個(gè)重要的指標(biāo),SOD能夠清除體內(nèi)的氧自由基,MDA則是衡量膜脂過氧化程度的常用指標(biāo)之一[8]。ROS能夠?qū)е录?xì)胞膜脂質(zhì)的過氧化,生成MDA,進(jìn)而加重血腦屏障等結(jié)構(gòu)的損傷[11]。腦I/R損傷可以引起炎癥級(jí)聯(lián)反應(yīng),包括氧化應(yīng)激、免疫細(xì)胞浸潤(rùn)和炎癥因子產(chǎn)生等。被激活的免疫細(xì)胞中促炎M1表型小膠質(zhì)細(xì)胞能夠釋放TNF-α、IL-1β和IL-6等炎癥因子,加劇腦損傷[12-13]。作為堿性亮氨酸家族成員之一,Nrf2可結(jié)合抗氧化反應(yīng)元件激活轉(zhuǎn)錄因子(如HO-1等),募集炎癥細(xì)胞促進(jìn)抗炎過程,Nrf2的上調(diào)能夠抑制TNF-α和IL-1β等炎癥因子的過度產(chǎn)生,并遏制慢性炎癥性疾病進(jìn)程。Nrf2也參與細(xì)胞及組織氧化還原平衡的調(diào)節(jié)過程,Nrf2能夠激活多種抗氧化蛋白的表達(dá),減少ROS導(dǎo)致的細(xì)胞損傷[14]。有研究表明,腦I/R損傷后,Nrf2被激活,一系列抗氧化基因開始轉(zhuǎn)錄,HO-1等表達(dá)增加[15]。HO-1可催化氧化性血紅素分解代謝的關(guān)鍵步驟[16],增強(qiáng)腦組織對(duì)缺血導(dǎo)致氧化損傷的耐受程度[17]。既往研究表明,Nrf2和HO-1的表達(dá)能夠抑制細(xì)胞炎癥反應(yīng),在腦I/R過程中發(fā)揮神經(jīng)保護(hù)作用[18]。本研究中,與I/R組相比,ISP組大鼠血清中MDA水平下降,SOD水平上升,血清中IL-1β和TNF-α水平下降,腦組織總蛋白Nrf2和HO-1水平上升,腦組織Nrf2免疫熒光強(qiáng)度增強(qiáng),表明在腦I/R損傷過程中,七氟烷后處理激活了大鼠Nrf2信號(hào)通路,減弱了I/R導(dǎo)致的炎癥反應(yīng),并在一定程度上抑制了氧化應(yīng)激反應(yīng)。
I/R過程可通過細(xì)胞凋亡導(dǎo)致細(xì)胞死亡,而細(xì)胞凋亡則導(dǎo)致缺血組織產(chǎn)生大量炎癥反應(yīng)[19]。細(xì)胞凋亡分為內(nèi)源性和外源性兩種途徑,其中外源性途徑是指在病理?xiàng)l件下,細(xì)胞膜表面被激活的死亡配體與受體結(jié)合誘發(fā)的一系列級(jí)聯(lián)反應(yīng)。腦I/R損傷引起的炎癥反應(yīng)和氧化應(yīng)激能夠激活巨噬細(xì)胞,巨噬細(xì)胞分泌TNF-α,其與細(xì)胞表面Toll樣受體結(jié)合后,激活Caspase-8,Caspase-8進(jìn)一步激活Caspase-3,引發(fā)外源性細(xì)胞凋亡[20]。細(xì)胞內(nèi)部的多種因素如DNA損傷、存活因子缺少或內(nèi)質(zhì)網(wǎng)應(yīng)激等均可引起內(nèi)源性凋亡,促凋亡蛋白Bax和抗凋亡蛋白Bcl-2是內(nèi)源性凋亡途徑中的關(guān)鍵蛋白,其平衡在I/R誘導(dǎo)的細(xì)胞凋亡中起關(guān)鍵作用[21]。Nrf2信號(hào)通路可通過抑制細(xì)胞凋亡在I/R過程中起到腦保護(hù)作用,Nrf2可誘導(dǎo)抗凋亡蛋白Bcl-2表達(dá)并且抑制Bax易位至線粒體,從而降低細(xì)胞色素c的釋放。另外,Nrf2受體的依賴性激活能夠通過抑制Caspase-3的激活而減少腦缺血造成的細(xì)胞凋亡。本研究結(jié)果顯示,ISP組較I/R組大鼠腦組織總蛋白Bax、Caspase-3水平下降,Bcl-2水平上升,表明七氟烷后處理抑制了I/R誘導(dǎo)的神經(jīng)細(xì)胞凋亡。
綜上所述,七氟烷后處理可以通過激活Nrf2信號(hào)通路抑制氧化應(yīng)激反應(yīng)、炎癥反應(yīng)和細(xì)胞凋亡,減輕大鼠腦I/R損傷。
倫理批準(zhǔn)和動(dòng)物權(quán)利聲明: 本研究涉及的所有動(dòng)物實(shí)驗(yàn)均已通過青島大學(xué)附屬醫(yī)院實(shí)驗(yàn)動(dòng)物福利倫理委員會(huì)的審核批準(zhǔn)(文件號(hào)AH-QU-MAL20220218)。所有實(shí)驗(yàn)過程均遵照《實(shí)驗(yàn)動(dòng)物管理與使用指南》的條例進(jìn)行。
作者聲明: 毛藝錕、王士雷、李瑜參與了研究設(shè)計(jì);毛藝錕、王士雷、吳秀云、趙芹、李瑜參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文,且均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]PARK Y H, PARK H P, KIM E, et al. The antioxidant effect of preischemic dexmedetomidine in a rat model: Increased expression of Nrf2/HO-1 via the PKC pathway[J]. Braz J Anesthesiol, 2023,73(2):177-185.
[2] HITOMI E, SIMPKINS A N, LUBY M, et al. Blood-ocular barrier disruption in patients with acute stroke[J]. Neurology, 2018,90(11):e915-e923.
[3] FAN Y Y, HU W W, NAN F, et al. Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia[J]. Neurochem Int, 2017,107:43-56.
[4] YUAN Q H, YUAN Y, ZHENG Y, et al. Anti-cerebral ischemia reperfusion injury of polysaccharides: A review of the mechanisms[J]. Biomed Pharmacother, 2021,137:111303.
[5] WANG L, ZHANG X, XIONG X, et al. Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke[J]. Antioxidants, 2022,11(12):2377-2377.
[6] WANG H L, LI P Y, XU N, et al. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke[J]. Med Gas Res, 2016,6(4):194-205.
[7] YANG T, SUN Y, ZHANG F. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury[J]. Med Gas Res, 2016,6(4):223-226.
[8] SINGH L, SINGH A P, BHATTI R. Mechanistic interplay of various mediators involved in mediating the neuroprotective effect of daphnetin[J]. Pharmacol Rep, 2021,73(5):1220-1229.
[9] JIANG S, DENG C, LV J J, et al. Nrf2 weaves an elaborate network of neuroprotection against stroke[J]. Mol Neurobiol, 2017,54(2):1440-1455.
[10] SHANG S J, SUN F Q, ZHU Y L, et al. Sevoflurane preconditioning improves neuroinflammation in cerebral ischemia/reperfusion induced rats through ROS-NLRP3 pathway[J]. Neurosci Lett, 2023,801:137164.
[11] LI L, PENG L, ZHU J, et al. DJ-1 alleviates oxidative stress injury by activating the Nrf2 pathway in rats with cerebral ischemia-reperfusion injury[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2021,41(5):679-686.
[12] DING Y, CHEN M C, WANG M M, et al. Posttreatment with 11-keto-β-boswellic acid ameliorates cerebral ischemia-reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism[J]. Mol Neurobiol, 2015,52(3):1430-1439.
[13] SUN Y, YANG X, XU L J, et al. The role of Nrf2 in relieving cerebral ischemia-reperfusion injury[J]. Curr Neuropharmacol, 2023,21(6):1405-1420.
[14] PARK H R, LEE H, LEE J J, et al. Protective effects of spatholobi caulis extract on neuronal damage and focal ischemic stroke/reperfusion injury[J]. Mol Neurobiol, 2018,55(6):4650-4666.
[15]SINGH S, NAGALAKSHMI D, SHARMA K K, et al. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review[J]. Heliyon, 2021,7(2):e06216.
[16] JURCAU A, SIMION A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysio-
logy to therapeutic strategies[J]. Int J Mol Sci, 2021,23(1):14.
[17] LOU J, CAO G X, LI R R, et al. β-caryophyllene attenuates focal cerebral ischemia-reperfusion injury by Nrf2/HO-1 pathway in rats[J]. Neurochem Res, 2016,41(6):1291-1304.
[18] CHEN W W, TENG X, DING H M, et al. Nrf2 protects against cerebral ischemia-reperfusion injury by suppressing programmed necrosis and inflammatory signaling pathways[J]. Ann Transl Med, 2022,10(6):285.
[19] LIU H, JING X B, DONG A Q, et al. Overexpression of TIMP3 protects against cardiac ischemia/reperfusion injury by inhibiting myocardial apoptosis through ROS/mapks pathway[J]. Cell Physiol Biochem, 2017,44(3):1011-1023.
[20] SAHA S, BUTTARI B, PANIERI E, et al. An overview of Nrf2 signaling pathway and its role in inflammation[J]. Molecules, 2020,25(22):5474.
[21] XU Q, CHEUNG R T F. Melatonin mitigates type 1 diabetes-aggravated cerebral ischemia-reperfusion injury through anti-inflammatory and anti-apoptotic effects[J]. Brain Behav, 2023,13(9):e3118.
(本文編輯 范睿心 厲建強(qiáng))