国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不平衡磁拉力作用下無(wú)刷雙饋電機(jī)的轉(zhuǎn)子振動(dòng)特性研究

2024-05-30 14:45:56任泰安吳霞吳松榮闞超豪田杰王群京
電機(jī)與控制學(xué)報(bào) 2024年4期

任泰安 吳霞 吳松榮 闞超豪 田杰 王群京

摘 要:

無(wú)刷雙饋電機(jī)長(zhǎng)時(shí)間運(yùn)行會(huì)出現(xiàn)轉(zhuǎn)軸彎曲、軸承磨損等狀況,導(dǎo)致氣隙動(dòng)偏心,并因此產(chǎn)生不平衡磁拉力,影響轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)特性。為了研究由不平衡磁拉力引起的轉(zhuǎn)子振動(dòng)特性問(wèn)題,建立Jeffcott轉(zhuǎn)子動(dòng)力學(xué)模型,得出考慮不平衡磁拉力作用下轉(zhuǎn)子系統(tǒng)的振動(dòng)微分方程組,并對(duì)其自由振動(dòng)響應(yīng)進(jìn)行了計(jì)算。以某型號(hào)無(wú)刷雙饋電機(jī)的樣機(jī)尺寸為例,分析氣隙動(dòng)偏心狀態(tài)下電機(jī)氣隙長(zhǎng)度、轉(zhuǎn)子材料及幾何尺寸等對(duì)電機(jī)振動(dòng)特性的影響,并利用Runge-Kutta法對(duì)振動(dòng)微分方程組進(jìn)行分析,結(jié)果表明:當(dāng)轉(zhuǎn)子動(dòng)偏心率較小時(shí),利用該轉(zhuǎn)子系統(tǒng)的振動(dòng)微分方程組計(jì)算出的解析解與數(shù)值計(jì)算結(jié)果吻合較好,轉(zhuǎn)子的一階振幅誤差僅為0.2%,二階振幅誤差為2%,具有較高的精度且計(jì)算較為簡(jiǎn)便,為電機(jī)的高可靠運(yùn)行提供理論支撐。

關(guān)鍵詞:無(wú)刷雙饋電機(jī);轉(zhuǎn)子系統(tǒng);動(dòng)偏心;振動(dòng)特性;不平衡磁拉力

DOI:10.15938/j.emc.2024.04.011

中圖分類(lèi)號(hào):TM30

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1007-449X(2024)04-0102-09

收稿日期: 2023-04-20

基金項(xiàng)目:磁浮技術(shù)與磁浮列車(chē)教育部重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題基金;中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)基金(JZ2021HGTA0157);湖北省機(jī)械傳動(dòng)與制造工程重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(MTMEOF2021B03);安徽省工業(yè)節(jié)電與用電安全重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(KFKT201905)

作者簡(jiǎn)介:任泰安(1992—),男,博士,講師,研究方向?yàn)樾滦吞胤N電機(jī)、電磁場(chǎng)計(jì)算;

吳 霞(1996—),男,碩士研究生,研究方向?yàn)殡姍C(jī)電磁場(chǎng)計(jì)算;

吳松榮(1977—),男,博士,副教授,研究方向?yàn)殡娏﹄娮优c電力傳動(dòng);

闞超豪(1974—),男,博士,副教授,研究方向?yàn)樾滦碗姍C(jī)的運(yùn)行理論及控制;

田 杰(1968—),男,博士,教授,研究方向?yàn)樾滦蜋C(jī)械傳動(dòng);

王群京(1960—),男,博士,教授,博士生導(dǎo)師,研究方向?yàn)樗欧姍C(jī)及其控制。

通信作者:吳松榮

Rotor vibration characteristics of brushless doubly-fed machine under unbalanced magnetic pull

REN Taian1,2,3, WU Xia1, WU Songrong2, KAN Chaohao1, TIAN Jie4, WANG Qunjing5

(1.School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China; 2.Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle Ministry of Education,Chengdu 610031,China;

3.Undergraduate School,Hefei University of Technology,Hefei 230009, China;

4.School of Mechanical Engineering,Hefei University of Technology,Hefei 230009, China; 5.School of Electrical Engineering and Automation,Anhui University,Hefei 230601 China)

Abstract:

When brushless dual feed is operated for a long time,the rotor shaft will bend and bear,which leads to the dynamic eccentricity of the air gap and the unbalanced magnetic pull, affecting the dynamic characteristics of the rotor system. In order to study the vibration characteristics of the rotor caused by the unbalanced magnetic pull, the Jeffcott rotor dynamic model was established to obtain the vibration differential equations of the rotor system considering the unbalanced magnetic pull, and then free vibration response was calculated. Taking a certain prototype of brushless doubly-fed machine (BDFM) as an example of size, the influence of the machines air gap length, rotor material and geometric size was analyzed on the machines vibration characteristics under the condition of air gap dynamic eccentricity, and the Runge-Kutta method was used to analyze the vibration differential equations. The results show that when the rotor eccentricity is small, the analytical results calculated by the vibration differential equations of the machine system are in good agreement with the numerical results, the first-order amplitude error of the rotor is only 0.2%, and the second-order amplitude error is 2%, which can be simply calculated with the high accuracy. The conclusions provide theoretical support for highly reliable operation of the machine.

Keywords:brushless doubly-fed machine (BDFM);rotor system;dynamic eccent-ricity;vibration characteristics;unbalanced magnetic pull

0 引 言

無(wú)刷雙饋電機(jī)具有調(diào)速范圍寬廣,功率因數(shù)可調(diào),較硬的機(jī)械特性,系統(tǒng)所需變頻器容量小等眾多優(yōu)勢(shì),在交流調(diào)速與變速恒頻發(fā)電領(lǐng)域的應(yīng)用前景較為明朗[1-4]。

無(wú)刷雙饋電機(jī)長(zhǎng)時(shí)間運(yùn)行時(shí)會(huì)出現(xiàn)轉(zhuǎn)軸彎曲、軸承磨損等狀況,從而引起轉(zhuǎn)子的不平衡,導(dǎo)致氣隙動(dòng)偏心,并因此產(chǎn)生不平衡磁拉力。不平衡磁拉力的存在使定轉(zhuǎn)子偏心進(jìn)一步增大,而偏心的增長(zhǎng)又將導(dǎo)致不平衡磁拉力變大,形成正反饋,造成電機(jī)的故障率增大,對(duì)電機(jī)安全穩(wěn)定運(yùn)行產(chǎn)生嚴(yán)重的影響[5-6]。

國(guó)內(nèi)外已有一些研究人員在不平衡磁拉力對(duì)傳統(tǒng)電機(jī)轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)特性的影響方面進(jìn)行了研究。ZHU等[7]針對(duì)單相電機(jī)轉(zhuǎn)子偏心引起的噪聲與振動(dòng)進(jìn)行了研究。GUO等[8]分析了不同極對(duì)數(shù)電機(jī)的不平衡磁拉力和離心力作用下轉(zhuǎn)子的徑向振動(dòng),并進(jìn)行了頻譜分析。CALLEECHARAN[9]對(duì)水力發(fā)電機(jī)轉(zhuǎn)子的徑向穩(wěn)定性展開(kāi)了研究。WU等[10]分析了同步電機(jī)轉(zhuǎn)子徑向振動(dòng)的穩(wěn)定性。上述文獻(xiàn)針對(duì)的研究對(duì)象是工作在額定轉(zhuǎn)速下的電機(jī),如水輪發(fā)電機(jī)等多通過(guò)數(shù)值積分的方法對(duì)電機(jī)的非線性振動(dòng)進(jìn)行分析[8,11]。無(wú)刷雙饋電機(jī)由于結(jié)構(gòu)的特殊性,電機(jī)內(nèi)部存在多種勵(lì)磁源[12-14],采用上述的數(shù)值積分法求解電機(jī)轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)特性問(wèn)題時(shí)較復(fù)雜,常通過(guò)忽略不平衡磁拉力的非線性項(xiàng)來(lái)簡(jiǎn)化求解過(guò)程,而目前對(duì)該電機(jī)轉(zhuǎn)子系統(tǒng)的解析求解和動(dòng)力學(xué)特性等內(nèi)容的研究文獻(xiàn)較少[15-16,20]。

本文推導(dǎo)不同極對(duì)數(shù)組合形式下轉(zhuǎn)子系統(tǒng)不平衡磁拉力的解析表達(dá)式,采用以單跨對(duì)稱彈性轉(zhuǎn)子模型模擬電機(jī)轉(zhuǎn)子,分析不同極對(duì)數(shù)組合形式下的轉(zhuǎn)子系統(tǒng)自由振動(dòng)響應(yīng),以某型號(hào)無(wú)刷雙饋電機(jī)的樣機(jī)尺寸為例,通過(guò)Runge-Kutta法對(duì)振動(dòng)微分方程組的解析解進(jìn)行驗(yàn)證。

為了驗(yàn)證上述解析結(jié)果的正確性,本文采用Runge-Kutta數(shù)值法對(duì)保留15階的泰勒級(jí)數(shù)高階項(xiàng)進(jìn)行求解,圖4、圖5、圖6分別給出了3種不同初始條件下,轉(zhuǎn)子沿x和y軸方向的位移響應(yīng)。

初始條件一:x(0)=0.02,y(0)=0.01,x·(0)=0,y·(0)=0,θ=π/3。

初始條件二:x(0)=0.05,y(0)=0.03,x·(0)=0,y·(0)=0,θ=π/3。

初始條件三:x(0)=0.2,y(0)=0.1,x·(0)=0,y·(0)=0,θ=π/3。

對(duì)比圖4(a)和圖5(a)、圖4(b)和圖5(b)可知,在初始條件較小的情況下,采用Runge-Kutta數(shù)值法按照前15階的計(jì)算結(jié)果與采用解析法按照前3階的計(jì)算結(jié)果誤差僅在0.5%以內(nèi)。對(duì)比圖4(a)和圖6(a)、圖4(b)和圖6(b)可知,隨著初始條件的增大,采用解析法按照前3階計(jì)算結(jié)果的相對(duì)誤差也隨之增加,但其波形趨勢(shì)基本相同。

通過(guò)對(duì)上述3種初始條件下得到的位移響應(yīng)波形進(jìn)行快速傅里葉變換,可得出各種情況下x和y軸方向的頻譜如圖7、圖8、圖9所示。

由圖7(a)和圖7(b)可知,在動(dòng)態(tài)偏心率較小時(shí),轉(zhuǎn)子的一階頻率與二階頻率吻合較好,轉(zhuǎn)子的一階振幅誤差為0.2%,二階振幅誤差為2%,說(shuō)明在動(dòng)態(tài)偏心率較小時(shí),解析法具有較高的精確度,計(jì)算較為簡(jiǎn)便。

由圖8(a)和圖8(b)可知,當(dāng)動(dòng)態(tài)偏心率略微增加時(shí),一階和二階頻率仍能較好的吻合,此時(shí),一階振幅的誤差僅為1%,而二階振幅誤差增加為14%,由于該條件下二階振幅對(duì)轉(zhuǎn)子系統(tǒng)振動(dòng)特性的影響較小,此時(shí)采用解析法仍具有較好的精確度。由圖9(a)和圖9(b)可知,當(dāng)動(dòng)態(tài)偏心率為22.5%時(shí),一階和二階頻率的誤差均在15%左右,一階振幅的誤差為10%,二階振幅誤差達(dá)到了38%,說(shuō)明在轉(zhuǎn)子動(dòng)態(tài)偏心率較大時(shí),該解析法有一定局限性,須采用數(shù)值法對(duì)轉(zhuǎn)子系統(tǒng)的振動(dòng)特性進(jìn)行分析。

4 結(jié) 論

本文對(duì)無(wú)刷雙饋電機(jī)的振動(dòng)特性進(jìn)行了研究,建立轉(zhuǎn)子的動(dòng)力學(xué)方程組,利用解析法推導(dǎo)出了轉(zhuǎn)子振動(dòng)的響應(yīng),并利用Runge-Kutta法對(duì)保留15階的不平衡磁拉力進(jìn)行了數(shù)值計(jì)算,得到以下結(jié)論:

1)無(wú)刷雙饋電機(jī)不平衡磁拉力與定子兩套繞組的極對(duì)數(shù)有關(guān),當(dāng)兩套繞組極對(duì)數(shù)均大于1時(shí),其不平衡磁拉力與定子兩套繞組的電流頻率無(wú)關(guān),當(dāng)兩套繞組極對(duì)數(shù)之差為2時(shí),初始相位差θ也會(huì)對(duì)不平衡磁拉力造成影響。

2)無(wú)刷雙饋電機(jī)的不平衡磁拉力與轉(zhuǎn)子半徑、氣隙長(zhǎng)度、兩套繞組的基波磁動(dòng)勢(shì)幅值及轉(zhuǎn)子的軸向長(zhǎng)度有關(guān)。

3)無(wú)刷雙饋電機(jī)兩套繞組極對(duì)數(shù)之差為2時(shí),轉(zhuǎn)子振動(dòng)響應(yīng)由兩階不同的頻率簡(jiǎn)諧波疊加而成,其頻率與轉(zhuǎn)子半徑,氣隙長(zhǎng)度,兩套繞組的基波幅值及轉(zhuǎn)子的軸向長(zhǎng)度有關(guān),每階固有頻率對(duì)應(yīng)的模態(tài)只與功率和控制繞組兩種合成磁動(dòng)勢(shì)的初始相位差有關(guān)。

4)轉(zhuǎn)子的振動(dòng)幅值與初始條件有關(guān),當(dāng)初始條件較小時(shí)其振動(dòng)幅值較小,初始條件增大時(shí),其振動(dòng)幅值也隨之增大,但轉(zhuǎn)子的固有頻率與初始條件無(wú)關(guān)。

5)在初始條件較小的情況下,按照前3階不平衡磁拉力計(jì)算的結(jié)果與按照前15階的計(jì)算結(jié)果誤差不大,但隨著初始條件的增大其誤差也隨之增大。

參 考 文 獻(xiàn):

[1] 姜云磊,程明,王青松,等. 不平衡負(fù)載下雙定子無(wú)刷雙饋發(fā)電機(jī)獨(dú)立運(yùn)行控制策略[J]. 電工技術(shù)學(xué)報(bào),2018,33(5): 998.

JIANG Yunlei,CHENG Ming,WANG Qingsong, et al. Control strategy of stand-alone brushless doubly fed induction generator system under unbalanced loads[J]. Transactions of China Electrotechnical Society,2018, 33(5): 998.

[2] 韓力,高強(qiáng),羅辭勇,等. 不同轉(zhuǎn)子結(jié)構(gòu)無(wú)刷雙饋電機(jī)的運(yùn)行特性對(duì)比[J]. 電機(jī)與控制學(xué)報(bào),2010,14(3):9.

HAN Li,GAO Qiang,LUO Ciyong,et al. Comparasion on the performance of brushless doubly-fed machine with different rotor structures[J]. Electric Machines and Control,2010,14(3): 9.

[3] 任泰安,闞超豪,胡楊,等. 極對(duì)數(shù)組合形式對(duì)繞線轉(zhuǎn)子無(wú)刷雙饋電機(jī)性能的影響[J]. 電工技術(shù)學(xué)報(bào), 2020,35(3): 509.

REN Taian,KAN Chaohao,HU Yang,et al. Influence of pole-pairs combination on the performance of wound rotor brushless double-fed machine[J]. Transactions of China Electrotechnical Society,2020,35(3): 509.

[4] 張鳳閣,王秀平,賈廣隆,等. 無(wú)刷雙饋電機(jī)復(fù)合轉(zhuǎn)子結(jié)構(gòu)參數(shù)的優(yōu)化設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào),2014,29(1): 77.

ZHANG Fengge,WANG Xiuping,JIA Guanglong,et al. Optimum design for composite rotor structural parameters of brushless doubly fed machines[J]. Transactions of China Electrotechnical Society,2014,29(1):77.

[5] DORRELL David. Calculation of unbalanced magnetic pull in small cage induction motors with skewed rotors and dynamic rotor eccentricity[J]. IEEE Transactions on Energy Conversion,1996,11(3):483.

[6] PERERS Richard,LUNDIN Urban,LEIJON Mats. Saturation effects on unbalanced magnetic pull in a hydro-electric generator with an eccentric rotor[J]. IEEE Transactions on Magnetics,2007,43(10): 3884.

[7] ZHU Ziqiang,HOWE David. Effect of rotor eccentricity and magnetic circuit saturation on acoustic noise and vibration of single-phase induction motors[J]. Electric Machine and Power Systems,1997,25(3):443.

[8] GUO Dan, CHU Fulei,CHEN D. The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor[J]. Journal of Sound and Vibration,2002,254(2):297.

[9] CALLEECHARAN. Stability analysis of an hydropower generator subjected to unbalanced magnetic pull[J]. Measurement and Technology,2011,5(6):231.

[10] 李志和,李正光,孫維鵬. 不平衡磁拉力作用下偏心轉(zhuǎn)子的非線性振動(dòng)[J]. 吉林大學(xué)學(xué)報(bào),2011,49(3):459.

LI Zhihe,LI Zhengguang,SUN Weipeng. Nonlinear vibration of an eccentric rotor subjected to unbalanced magnetic pull [J]. Journal of Jilin University,2011,49(3):459.

[11] XU Xueping,HAN Qinkai,CHU Fulei. Nonlinear vibration of a generator rotor with unbalanced magnetic pull considering both dynamic and static eccentricities[J]. Archive of Applied Mechanics,2016,86(8):1521.

[12] MCMAHON R A,ROBERTS P C,WANG X,et al. Performance of BDFM as generator and motor[J]. IET Electric Power Applications,2006,153(2):289.

[13] MCMAHON Richard,TAVNER Peter,ABDI Ehsan,et al. Characterising brushless doubly fed machine rotors[J]. IET Electric Power Applications,2013,7(7):535.

[14] HAN Peng,ZHANG Julia,CHENG Ming. Analytical analysis and performance characterization of brushless doubly fed machines with multibarrier rotors[J]. IEEE Transactions on Industry Applications,2019,55(6):5758 .

[15] ABDI Salman,ABDI Ehsan,MCMAHON Richard. A study of unbalanced magnetic pull in brushless doubly fed machines[J]. IEEE Transactions on Energy Conversion,2015,30(3):1218.

[16] ABDI Salman,ABDI Ehsan,TOSHANI Hamid,et al. Vibration analysis of brushless doubly-fed machines in the presence of rotor eccentricity[J]. IEEE Transactions on Energy Conversion,2020,35(3):1372.

[17] DORRELL D G,THOMSON W T. Analysis of airgap flux,current,and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors[J].IEEE Transactions on Industry Applications,1997,33(1):24.

[18] PAN Weidong, CHEN Xi, WANG Xuefan. Generalized design method of the three-phase Y-connected wound rotor for both additive modulation and differential modulation brushless doubly fed machines[J]. IEEE Transactions on Energy Conversion,2021,36(3):1940.

[19] XIANG Changle,LIU Feng,LIU Hui,et al. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull[J]. Journal of Sound and Vibration,2016,371:277.

[20] 戈寶軍,毛博,林鵬,等.無(wú)刷雙饋電機(jī)轉(zhuǎn)子偏心對(duì)氣隙磁場(chǎng)的影響[J].電工技術(shù)學(xué)報(bào),2020,35(3):502.

GE Baojun,MAO Bo,LIN Peng,et al. Influence of rotor eccentricity on air gap magnetic field of brushless doubly-fed motor [J]. Transactions of China Electrotechnical Society,2020,35(3):502.

(編輯:劉素菊)

安岳县| 铜山县| 凌云县| 南投县| 旬阳县| 洞头县| 工布江达县| 大竹县| 太湖县| 镇康县| 中阳县| 徐闻县| 芦山县| 囊谦县| 玉屏| 邢台县| 静乐县| 启东市| 密山市| 桓台县| 山东省| 抚州市| 木兰县| 万全县| 工布江达县| 武乡县| 陇南市| 隆化县| 措美县| 青岛市| 安平县| 壤塘县| 广丰县| 马山县| 定兴县| 茂名市| 抚宁县| 乾安县| 曲沃县| 临猗县| 天水市|