秦鏡植 李群賢 何思婷 梁雲(yún)珍 范旭園 黃泳碧 鐘挺威 何建軍 白揚 朱秀梅 韓佳宇 白先進(jìn) 王博
摘? ? 要:【目的】探索巨玫瑰葡萄不同物候期日灼敏感差異的生理機制及不同日灼進(jìn)程的果實形態(tài)學(xué)與相關(guān)組分變化?!痉椒ā恳砸荒陜墒赵耘嗑廾倒迤咸严墓投麅蓚€生長季各物候期的果實為試材,采用強光高溫加熱燈對果實進(jìn)行人工誘導(dǎo)日灼處理,測定其發(fā)生日灼時的表面閾值溫度和誘導(dǎo)一定時間后的日灼發(fā)生率,確定巨玫瑰葡萄不同物候期的日灼敏感性。觀察和測定不同日灼敏感物候期的葡萄果實正常果以及不同日灼進(jìn)程果實的解剖結(jié)構(gòu)、總酚含量及礦質(zhì)元素含量?!窘Y(jié)果】一年兩收栽培下巨玫瑰葡萄的夏果與冬果日灼較敏感的物候期均為 E-L 31-32 時期,相同人工誘導(dǎo)時間處理后冬果的日灼發(fā)生率顯著低于夏果。日灼不敏感期(E-L 36)較日灼敏感期(E-L 31-32)的果實表皮細(xì)胞更大、角質(zhì)層更平滑、排列更緊密整齊、淀粉粒更少。同時,日灼不敏感物候期中K、Ca、Mg元素含量均顯著高于日灼敏感物候期,而總酚含量顯著低于日灼敏感物候期,冬果中K、Ca元素含量顯著高于夏果,而N、P元素含量顯著低于夏果。在人工誘導(dǎo)果實日灼進(jìn)程中,重度日灼果中N、P、K、Ca和Mg元素的含量均顯著高于正常果。【結(jié)論】 巨玫瑰葡萄在兩收栽培模式下,夏果和冬果對日灼較敏感時期均為E-L 31-32時期,且冬果在一定程度上日灼敏感性低于夏果。巨玫瑰葡萄在不同物候期對日灼的敏感性也存在差異,這與果實解剖結(jié)構(gòu)的蠟質(zhì)層和表皮細(xì)胞壁特性、果實中的總酚含量有關(guān),同時,日灼敏感性也與果實中K、Ca元素含量呈負(fù)相關(guān),與N、P元素含量呈正相關(guān)。因此,在生產(chǎn)上預(yù)防巨玫瑰葡萄日灼可考慮在其日灼敏感物候期(E-L 31-32)前增施K、Ca肥。
關(guān)鍵詞:巨玫瑰葡萄;兩收栽培;日灼進(jìn)程;日灼敏感性
中圖分類號:S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)06-1135-15
Study on the differences of fruit morphology and related components of Jumeigui grape in different sunburn sensitive phenophases and sunburn processes
QIN Jingzhi1, LI Qunxian1, HE Siting1, LIANG Yunzhen1, FAN Xuyan1, HUANG Yongbi1, ZHONG Tingwei1, HE Jianjun2, BAI Yang3, ZHU Xiumei3, HAN Jiayu4, BAI Xianjin4, WANG Bo1*
(1College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; 2Guangxi Special Crop Research Institute, Guilin 541004, Guangxi, China; 3Guangxi Zhencheng Agriculture Co., Ltd., Nanning 530007, Guangxi, China; 4Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China)
Abstract: 【Objective】 Sunburn occurs in the vineyard as the result of a combination of high-light intensities, high temperature and UV radiation. Grape sunburn causes brown spots on the surface of the fruits, and the fruits shrink and wilt, which greatly reduces the quality and yield of the fruits and affects the economic income. Under the climatic conditions of high temperature and strong light in Guangxi, some grape varieties under the two-harvest-a-year cultivation mode have serious sunburn phenomenons. Here, in order to enrich the mechanism of grape sunburn and provide theoretical basis for prevention and control of the sunburn in production, we explored the differences in sunburn sensitivity and sunburn process between summer and winter fruits of Jumeigui grape under two-harvest cultivation modes. 【Methods】 From April to December 2022, in the grape planting base of Guangxi Zhencheng Agriculture Co., Ltd., Nanning, Guangxi, the berries of Jumeigui grape in different phenological periods of summer fruit and winter fruit under two-harvest-a-year cultivation modes were used as test materials. The sunburn of Jumeigui grapes in each phenological period was artificially induced by high-light and high-temperature heating lamp. The sunburn induction was stopped when the corresponding sunburn traits occurred on the berries. For each sampling phenological period, the threshold temperature on the surface of Jumeigui grapes was determined when the sunburn occurred and the incidence of sunburn berries was calculated after induction for a certain period of time. By comparing the incidence of the sunburn berries and the threshold temperature of sunburn, the typical sunburn sensitive and insensitive phenological periods of Jumeigui were determined. In the typical sunburn sensitive and insensitive phenological periods of the summer and winter fruits of Jumeigui, the paraffin section method was used to make sections and hematoxylin staining was used to study the anatomical structure of the berries during the different sunburn processes, namely “Normal berries”, “Berries under sunburn induction for 6 min”, “Light sunburn berries” and “Severe sunburn berries”. Meanwhile, the content of total phenols in the fruits was determined by Folin-Ciocalteau method, and the results were expressed as gallic acid equivalent (GAE), the content of N in the fruits was determined by flow analyzer, and the content of P, K, Ca and Mg was determined by inductively coupled plasma emission spectrometer. The difference significance analysis and basic trait discussion were carried out for the above indicators. 【Results】 The more sensitive phenological period of sunburn both for the summer fruits and winter fruits of Jumeigui grape under two-harvest-a-year cultivation were E-L 31-32 period, and the threshold temperature of sunburn was about 41.1 ℃. The incidence of the sunburn berries in the winter fruits was significantly lower than that in the summer fruits after the same artificial sunburn induction time. In the anatomical structure of the fruits, compared with the sunburn sensitive period (E-L 31-32), the fruits in the sunburn insensitive period (E-L 36) had larger epidermal cells, smoother cuticle, more closely arranged cells, and less starch granules. Compared with the sunburn sensitive phenological period, the total phenol content of the fruits in the sunburn insensitive phenological period decreased significantly by 36.11%, and the contents of K, Ca and Mg of the fruit in the sunburn insensitive phenological period increased significantly by 22.97%, 51.58% and 56.22% respectively. Compared with summer fruits, the contents of K and Ca in the winter fruits increased significantly by 23.66% and 31.68% respectively, while the contents of N and P decreased significantly by 364.14% and 24.99%. In addition, the contents of N, P, K, Ca and Mg in severely sunburned fruits were significantly higher than those in the normal fruits during the sunburn process of artificially induced fruits. 【Conclusion】 Under the two-harvest-a-year cultivation, the sunburn sensitive period of both summer fruit and winter fruit of Jumeigui was E-L 31-32, and the resistance of the winter fruits to sunburn was better than that of the summer fruits to a certain extent. The sensitivity of Jumeigui grape to sunburn at different phenological stages was also different, which was related to the characteristics of wax layer and epidermal cell wall in the fruit anatomical structure and the total phenol content in fruits. At the same time, the sunburn sensitivity was also negatively correlated with K and Ca contents in the fruits, and positively correlated with N and P contents. Therefore, in order to prevent the sunburn of Jumeigui grape in production, application of K and Ca fertilizers before the sunburn sensitive phenological period (E-L 31-32) should be considered.
Key words: Jumeigui grape; Double harvest cultivation; Sunburn process; Sunburn sensitivity
葡萄果實日灼在世界范圍的產(chǎn)區(qū)均有發(fā)生[1-3]。在澳大利亞日灼降低了釀酒葡萄5%~15%的總產(chǎn)量[4],智利日灼敏感葡萄品種中40%的果串會出現(xiàn)日灼損傷[5]。在我國廣西高溫強光的氣候條件下,一年兩收栽培的兩季葡萄部分品種果實也存在較嚴(yán)重的日灼現(xiàn)象[6-7]。葡萄發(fā)生日灼后,果實表面出現(xiàn)褐色斑點,嚴(yán)重時果實皺縮萎蔫,極大地降低了果實的品質(zhì)和產(chǎn)量[3,8]。從葡萄果實日灼發(fā)生規(guī)律來看,日灼敏感性存在品種間差異[9-11],Rustioni等[12]比較了20個白色葡萄品種在去除表皮蠟質(zhì)后用人工照明(LED)照射離體果實的日灼敏感性,根據(jù)保護Chl免受光降解的能力將20個品種分為不同敏感類型。Webb等[13]研究表明,Viognier、Pinot Noir、Semillon和Shiraz日灼危害嚴(yán)重,但Grenache、Pinot Gris和Sauvignon Blanc的日灼危害較輕。同時,不同發(fā)育階段的葡萄果實對日灼敏感性也有差異,但關(guān)于日灼最敏感發(fā)育期尚未有一致的研究結(jié)果[6,14],范旭園等[15]還發(fā)現(xiàn)不同葡萄品種日灼最敏感的物候期也存在差異。而關(guān)于品種間和不同發(fā)育階段的葡萄日灼敏感性差異的機制尚不明晰。
謝兆森等[16]發(fā)現(xiàn)葡萄果實發(fā)生日灼后細(xì)胞壁變厚,細(xì)胞壁物質(zhì)含量增加,果皮細(xì)胞從外向內(nèi)逐漸死亡,部分果實內(nèi)周緣維管束中的木質(zhì)部導(dǎo)管發(fā)生斷裂,使果實的運輸和保護功能下降。植物在光、溫脅迫下,體內(nèi)會積累活性氧,此時總酚含量會逐漸增加[17-18]。在遭受日灼侵害的果實中,酚類物質(zhì)的積累可以清除自由基,同時作為氧化底物成為褐變產(chǎn)物,使果皮成為褐色,導(dǎo)致葡萄果實出現(xiàn)褐化、萎蔫的日灼癥狀[19]。同時,果實中礦質(zhì)養(yǎng)分含量對果實的日灼發(fā)生也有直接或間接的影響。胡柚和宮川日灼果、沃柑日灼果皮和臍橙日灼果實的果皮和果肉中N含量均顯著高于正常果,沃柑和臍橙日灼果皮中K含量顯著低于正常果[20-22]。黃小云[6]發(fā)現(xiàn)陽光玫瑰葡萄冬果日灼果實中N、P、K、Ca、Mg含量均顯著高于正常果。周詠梅等[7]發(fā)現(xiàn)Ca處理有利于保護細(xì)胞膜結(jié)構(gòu),減少高溫脅迫對葡萄的傷害,葡萄果實中較高的Ca含量能減輕日灼的發(fā)生程度。
筆者基于一年兩收栽培兩季果不同的氣候條件,以人工誘導(dǎo)巨玫瑰葡萄不同物候期果實日灼為技術(shù)手段,研究日灼發(fā)生差異規(guī)律以及不同日灼敏感物候期、不同日灼進(jìn)程下果實解剖結(jié)構(gòu)、總酚含量和礦質(zhì)元素含量的變化,為葡萄日灼發(fā)生差異及機制研究提供參考,并為生產(chǎn)栽培上防控日灼的發(fā)生提供理論依據(jù)。
1 材料和方法
1.1 試驗材料
試驗于2022年4—12月在廣西南寧廣西真誠農(nóng)業(yè)有限公司葡萄種植基地進(jìn)行,以一年兩收栽培模式下5BB為砧木嫁接的6年生巨玫瑰葡萄夏果、冬果為試驗材料,棚架大棚避雨栽培,樹形為“H”形,南北行向,株行距為4 m × 6 m,土肥水管理一致,統(tǒng)一按照常規(guī)一年兩收栽培管理。人工誘導(dǎo)日灼所用裝置為強光高溫加熱燈(275 W,220 V,45×1000 lx,嘉興藍(lán)巨星電器科技有限公司生產(chǎn))。
1.2 試驗方法
隨機選取長勢一致、生長健壯、無病蟲害的巨玫瑰葡萄樹10株。參照Coombe[23]物候期劃分標(biāo)準(zhǔn)(表1),在夏果和冬果的E-L 31-32(超過E-L 31時期但尚未達(dá)到E-L 32時期)、E-L 33、E-L 34、E-L 36和E-L 38等5個物候期開展試驗。每個物候期在選出的10株樹上各隨機選取28穗果,參考張建光等[24]在蘋果上的日灼誘導(dǎo)處理方法對葡萄果穗進(jìn)行人工誘導(dǎo)日灼處理,即在距離果穗20 cm處用強光高溫加熱燈對果穗進(jìn)行照光加熱處理,以果實表面出現(xiàn)白色水漬狀為果穗出現(xiàn)日灼的癥狀表現(xiàn)。其中3穗葡萄用于果實發(fā)生日灼時表面閾值溫度的測定,5穗葡萄用于人工誘導(dǎo)日灼處理后日灼發(fā)生率的測定,20穗葡萄用于人工誘導(dǎo)日灼處理進(jìn)程中果實的解剖結(jié)構(gòu)觀察以及礦質(zhì)元素含量、總酚含量測定。
1.3 測定項目及方法
1.3.1 不同物候期葡萄果實發(fā)生日灼時的表面閾值溫度測定 分別于夏果和冬果的上述5個物候期各選取3穗巨玫瑰葡萄果實進(jìn)行人工誘導(dǎo)日灼處理。在每穗果的上、中、下隨機選取5個果粒,在人工誘導(dǎo)日灼處理過程中用德力西872紅外線測溫儀(德力西電器公司生產(chǎn))測定果粒表面溫度,在日灼發(fā)生時(即果實表面出現(xiàn)白色水漬狀時)記錄果粒的表面溫度,每粒果為1個重復(fù),每處理共15個重復(fù)。
1.3.2 不同物候期葡萄果實的日灼發(fā)生率測定 分別于夏果和冬果巨玫瑰葡萄的上述5個物候期中各選取5穗葡萄果實進(jìn)行人工誘導(dǎo)日灼處理,分別于人工誘導(dǎo)日灼處理10 min(此時部分品種在部分物候期未發(fā)生日灼)和人工誘導(dǎo)日灼處理20 min(此時所有品種在所有物候期均發(fā)生日灼)記錄每穗果上日灼果粒發(fā)生的數(shù)量,并統(tǒng)計果穗的日灼發(fā)生率,日灼發(fā)生率/%=(日灼果粒/總果粒數(shù))×100。每穗果為1個重復(fù),共5個重復(fù)。
1.3.3 不同物候期及日灼進(jìn)程葡萄果實相關(guān)生理指標(biāo)的測定 (1)樣品采集?;诰廾倒迤咸讯拖墓煌锖蚱诘娜兆瓢l(fā)生閾值溫度和日灼發(fā)生率的試驗結(jié)果,判斷巨玫瑰葡萄冬果和夏果日灼敏感的物候期,選取典型的日灼敏感(E-L 31-32)和日灼不敏感(E-L 36)兩個時期進(jìn)行后續(xù)試驗。根據(jù)預(yù)試驗結(jié)果將人工誘導(dǎo)日灼處理的果實分為4種不同日灼進(jìn)程(圖1),描述詳見表2。對于正常果和誘導(dǎo)處理6 min果,于每穗果的上、中、下各隨機采2~3粒果實,每處理共90粒果;對于輕度日灼果和重度日灼果,待日灼表面積完成占果粒相應(yīng)總表面積時馬上采樣(此處人工日灼處理的時間或有不同,僅根據(jù)日灼癥狀的狀態(tài)進(jìn)行采樣),每穗果采集果粒4~5粒,每處理共90粒。其中,每處理的不同日灼進(jìn)程的各30粒果用于果實解剖結(jié)構(gòu)觀察,30粒果用于總酚含量測定,30粒果用于礦質(zhì)元素含量測定。
(2)不同物候期及日灼進(jìn)程葡萄果實解剖結(jié)構(gòu)觀察。對人工誘導(dǎo)日灼處理后不同日灼進(jìn)程的各30粒葡萄果實進(jìn)行果實解剖結(jié)構(gòu)觀察。正常果切取果粒中間部位,誘導(dǎo)處理6 min果、輕度日灼果和重度日灼果切取果實日灼部位。用雙面刀片切取厚度為0.5 cm左右?guī)в泄ず凸獾男K,參考黃小云[6]采用石蠟切片法制作切片,蘇木精染色,光學(xué)顯微鏡200×(Nikon Eclipse Ni-E,日本尼康)下觀察結(jié)果并拍攝顯微照片,每粒果觀察5個視野,并利用Photoshop 2020軟件對照圖片標(biāo)尺分析評估角質(zhì)層厚度、亞表皮細(xì)胞和表皮細(xì)胞長度及寬度,每個指標(biāo)的每幅圖片隨機選擇相應(yīng)部位4次重復(fù)。
(3)不同物候期及日灼進(jìn)程葡萄果實總酚含量的測定。將不同日灼進(jìn)程的葡萄果實各30粒放入液氮中帶回實驗室,放入-80 ℃冰箱中保存。采用福林酚法(Folin-Ciocalteau)并加以改動測定果實總酚含量,結(jié)果以沒食子酸當(dāng)量(gallic acid equivalent,GAE)表示[25-26]。每10粒果為1個生物學(xué)重復(fù),3次重復(fù)。
(4)不同敏感物候期及日灼進(jìn)程葡萄果實礦質(zhì)元素含量的測定。將不同日灼進(jìn)程的各30粒葡萄果實帶回實驗室,使用干凈的毛巾將其表面擦拭干凈,放入105 ℃烘箱中殺青2 h,85 ℃烘干保存。參考王松[27]的方法進(jìn)行果實礦質(zhì)元素含量的測定。每10粒果為1個生物學(xué)重復(fù),3次重復(fù)。
1.4 統(tǒng)計分析
使用Origin 2022制作柱狀圖,使用Photoshop CS 6進(jìn)行圖片的圖版設(shè)計,使用SPSS 23.0進(jìn)行差異顯著性分析。
2 結(jié)果與分析
2.1 巨玫瑰葡萄夏果和冬果果實人工誘導(dǎo)處理后發(fā)生日灼的閾值溫度
圖2所示為夏果與冬果各物候期巨玫瑰葡萄在人工誘導(dǎo)日灼處理下果實發(fā)生日灼時的表面閾值溫度變化情況。果面閾值溫度反映出不同物候期果實對日灼的敏感程度。巨玫瑰葡萄夏果和冬果各物候期果實發(fā)生日灼的表面閾值溫度變化趨勢一致,均為E-L 31-32時期,在果面溫度達(dá)到41.4 ℃時果實即發(fā)生日灼,其后日灼發(fā)生閾值溫度逐漸升高,在E-L 38時期果實表面溫度達(dá)到55.1 ℃時果實才發(fā)生日灼,表明巨玫瑰葡萄夏果和冬果在E-L 31-32時期對日灼最敏感,在果實發(fā)育后期(E-L 33~E-L 38時期)對日灼較不敏感。同時,各物候期夏果和冬果發(fā)生日灼時的表面閾值溫度之間均沒有顯著性差異。
2.2 巨玫瑰葡萄夏果和冬果果實不同人工誘導(dǎo)時長的日灼發(fā)生率
圖3為巨玫瑰葡萄夏果和冬果各物候期人工誘導(dǎo)日灼處理10 min和20 min果實的日灼發(fā)生率變化。巨玫瑰葡萄夏果和冬果在E-L 31-32時期人工誘導(dǎo)日灼處理10 min和20 min后果實的日灼發(fā)生率最高,分別為14.12%和62.44%,其后日灼發(fā)生率逐漸降低,在E-L 38時期最低,表明巨玫瑰在 E-L 31-32時期對日灼最敏感。值得注意的是,在人工誘導(dǎo)日灼處理20 min后,除E-L 38時期外的其他各物候期,冬果的日灼發(fā)生率均顯著低于夏果。
2.3 不同日灼敏感期巨玫瑰葡萄夏果和冬果果實的解剖結(jié)構(gòu)差異
根據(jù)各物候期人工誘導(dǎo)日灼處理發(fā)生日灼的閾值溫度,以及誘導(dǎo)一定時間后的日灼發(fā)生率判斷各物候期日灼發(fā)生的敏感度,選取巨玫瑰葡萄日灼敏感的典型物候期E-L 31-32時期和日灼不敏感的典型物候期E-L 36時期進(jìn)行解剖結(jié)構(gòu)差異研究。圖4為巨玫瑰夏果和冬果日灼敏感和不敏感期人工誘導(dǎo)日灼處理下不同日灼進(jìn)程果實解剖結(jié)構(gòu)的變化情況。表3、表4為巨玫瑰夏果和冬果不同日灼進(jìn)程解剖結(jié)構(gòu)的描述性參數(shù)。從夏果和冬果的日灼敏感和日灼不敏感物候期的正常果對比均可發(fā)現(xiàn),日灼敏感物候期正常果(XM-0)的部分角質(zhì)層不平滑,表皮細(xì)胞小,亞表皮細(xì)胞大,細(xì)胞排列較整齊,表皮和亞表皮細(xì)胞層之間的界限較為模糊,細(xì)胞中淀粉粒較多。而日灼不敏感物候期正常果(XB-0)的角質(zhì)層平滑,表皮細(xì)胞和亞表皮細(xì)胞均較大、排列緊密整齊,細(xì)胞層之間界限清晰,細(xì)胞中淀粉粒較少。不敏感時期果實的角質(zhì)層厚度、亞表皮細(xì)胞長度、亞表皮細(xì)胞寬度和表皮細(xì)胞寬度均顯著大于敏感時期果實,夏果中依次分別增大了5.80、15.55、4.08、10.63 ?m,冬果中依次分別增大了4.79、7.04、5.72、5.20 ?m。
此外,人工誘導(dǎo)日灼發(fā)生進(jìn)程中,正常果的角質(zhì)層、表皮和亞表皮細(xì)胞排列整齊,隨著日灼的發(fā)生角質(zhì)層逐漸發(fā)生分離,表皮細(xì)胞和亞表皮細(xì)胞結(jié)構(gòu)變?yōu)楸馄綘?,出現(xiàn)排列不整齊、松散無序現(xiàn)象,在夏果人工誘導(dǎo)6 min時(XM-1、XB-1)果實的角質(zhì)層、表皮細(xì)胞和亞表皮細(xì)胞出現(xiàn)明顯凹凸不平的現(xiàn)象,淀粉粒逐漸向外部細(xì)胞移動,細(xì)胞結(jié)構(gòu)明顯扁平化,而在冬果人工誘導(dǎo)6 min時(DM-1、DB-1)則此類現(xiàn)象較輕。值得注意的是,在人工誘導(dǎo)輕度日灼時,夏果外部細(xì)胞(XM-2、XB-2)已逐漸發(fā)生斷裂、潰爛和散亂等現(xiàn)象,而冬果(DM-2、DB-2)淀粉粒外移、細(xì)胞分界模糊、結(jié)構(gòu)扁平等現(xiàn)象才逐漸加重,此情況在DB-2上癥狀最淺。隨著日灼進(jìn)程的加深,果實內(nèi)部細(xì)胞進(jìn)一步擴大化、空心化,外部細(xì)胞扁平化至一條線、細(xì)胞內(nèi)部結(jié)構(gòu)逐漸紊亂,淀粉粒逐漸外移消失。到嚴(yán)重日灼果時,各細(xì)胞角質(zhì)層極薄甚至斷裂,而表皮細(xì)胞中也發(fā)生較多斷裂和消失,亞表皮細(xì)胞逐漸解體,實質(zhì)細(xì)胞變得非常紊亂。
2.4 不同日灼進(jìn)程巨玫瑰葡萄夏果和冬果果實的總酚含量差異
分別測定巨玫瑰葡萄夏果和冬果不同日灼敏感物候期各日灼進(jìn)程的果實中總酚含量,如圖5所示。巨玫瑰日灼敏感物候期的正常果、日灼誘導(dǎo)6 min果和重度日灼果的總酚含量均顯著高于日灼不敏感物候期,夏果中依次分別提高了24.53%、32.60%、46.07%,冬果中依次分別提高了95.19%、20.53%、40.79%。從不同人工誘導(dǎo)日灼進(jìn)程中果實總酚含量的變化來看,巨玫瑰葡萄夏果敏感期總酚含量于誘導(dǎo)6 min時下降后上升;在夏果不敏感期總酚含量在誘導(dǎo)6 min時下降后上升,在重度日灼時下降,冬果敏感期總酚含量于誘導(dǎo)6 min時下降后逐漸上升,冬果不敏感期總酚含量于誘導(dǎo)6 min時上升后逐漸下降。
2.5 不同日灼進(jìn)程巨玫瑰葡萄夏果和冬果果實的礦質(zhì)元素含量變化差異
2.5.1 不同日灼進(jìn)程巨玫瑰葡萄夏果和冬果的氮元素含量變化差異 圖6為巨玫瑰葡萄夏果和冬果不同日灼敏感物候期各日灼進(jìn)程果實中氮元素含量。從不同敏感期氮元素含量看,巨玫瑰葡萄夏果日灼不敏感物候期正常果中氮元素含量為7.52 g·kg-1,顯著高于日灼敏感時期的1.93 g·kg-1,在6 min日灼果實、輕度日灼果實和重度日灼果實中也表現(xiàn)出相同的差異趨勢,冬果的6 min日灼果實、輕度日灼果實也有同樣的差異趨勢。夏果的氮元素含量均顯著高于相應(yīng)物候期相應(yīng)日灼進(jìn)程冬果。從不同日灼進(jìn)程果實中氮元素含量變化趨勢看,巨玫瑰葡萄夏果和冬果日灼敏感和不敏感物候期的果實的氮元素含量隨著日灼的發(fā)生而升高。
2.5.2 不同日灼進(jìn)程巨玫瑰葡萄夏果和冬果的磷元素含量變化差異 圖7為巨玫瑰葡萄夏果和冬果不同日灼敏感物候期各日灼進(jìn)程果實中磷元素含量。從不同敏感期磷元素含量看,巨玫瑰葡萄夏果日灼敏感物候期正常果、6 min日灼果實、輕度日灼和重度日灼果中磷元素含量均顯著高于日灼不敏感物候期,分別高出0.19、0.41、0.57和0.86 g·kg-1,但是冬果日灼敏感物候期正常果、6 min日灼果和重度日灼果的磷元素含量卻顯著低于日灼不敏感物候期,分別低了0.25、0.15和0.12 g·kg-1。夏果敏感物候期的磷元素含量均顯著高于相應(yīng)物候期相應(yīng)日灼進(jìn)程冬果。從不同日灼進(jìn)程果實中磷元素變化趨勢看,巨玫瑰葡萄夏果和冬果在日灼敏感物候期的磷元素含量隨著日灼的發(fā)生而升高,在日灼不敏感物候期磷元素含量變化不大。
2.5.3 不同日灼進(jìn)程巨玫瑰葡萄夏果和冬果的鉀元素含量變化差異 圖8為巨玫瑰葡萄夏果和冬果不同日灼敏感物候期各日灼進(jìn)程果實中鉀元素含量。從不同敏感期鉀元素含量看,巨玫瑰葡萄夏果和冬果日灼敏感物候期各日灼進(jìn)程的果實中的鉀元素含量范圍為12.32~13.37 g·kg-1,均顯著低于日灼不敏感物候期(15.59~16.17 g·kg-1)。此外,冬果敏感物候期和不敏感物候期的正常果、日灼誘導(dǎo)6 min果和重度日灼果中鉀元素含量均顯著高于夏果。從不同日灼進(jìn)程果實中鉀元素含量變化趨勢看,巨玫瑰葡萄夏果日灼敏感物候期鉀元素含量隨著日灼進(jìn)程呈先升高后在重度日灼時下降;冬果日灼敏感期鉀元素含量隨著日灼進(jìn)程先升高后下降,在重度日灼時升高;在夏果日灼不敏感物候期鉀元素含量在日灼進(jìn)程中變化不大,冬果日灼不敏感物候期鉀元素含量在誘導(dǎo)6 min時升高后保持不變。
2.5.4 不同日灼進(jìn)程巨玫瑰葡萄夏果和冬果的鈣元素含量變化差異 圖9為巨玫瑰葡萄夏果和冬果不同日灼敏感物候期各日灼進(jìn)程果實中鈣元素含量。從不同敏感期的正常果鈣元素含量看,巨玫瑰葡萄夏果和冬果日灼不敏感物候期的果實中鈣元素含量顯著高于日灼敏感物候期,在日灼敏感物候期冬果的鈣元素含量比相應(yīng)日灼進(jìn)程的夏果分別高4.72、5.00、6.03和4.09 g·kg-1。從不同日灼進(jìn)程果實中鈣元素含量變化趨勢看,巨玫瑰葡萄夏果敏感期鈣元素含量在重度日灼時顯著升高,夏果不敏感期鈣元素含量先升高后逐漸下降,冬果敏感期鈣元素含量隨著日灼進(jìn)程逐漸升高,冬果不敏感期鈣元素含量呈先下降后升高的變化趨勢。
2.5.5 不同日灼進(jìn)程巨玫瑰葡萄夏果和冬果的鎂元素含量變化差異 圖10為巨玫瑰葡萄夏果和冬果不同日灼敏感物候期各日灼進(jìn)程果實中鎂元素含量。從不同敏感期的正常果鎂元素含量看,巨玫瑰葡萄夏果日灼不敏感物候期各日灼進(jìn)程的果實中鎂元素含量為1.62~2.09 g·kg-1,顯著高于日灼敏感物候期(1.04~1.18 g·kg-1),同樣,冬果中日灼不敏感物候期各日灼進(jìn)程的果實中鎂元素含量也顯著高于日灼敏感物候期。從不同日灼進(jìn)程果實中鎂元素含量變化趨勢看,巨玫瑰葡萄夏果和冬果日灼敏感物候期果實的鎂元素含量隨著日灼進(jìn)程逐漸升高,夏果日灼不敏感物候期果實的鎂元素含量隨著日灼進(jìn)程呈先上升后下降的趨勢,而冬果日灼不敏感物候期鎂元素含量在日灼進(jìn)程中差異不大。
3 討 論
3.1 巨玫瑰葡萄夏果和冬果發(fā)育期果實日灼敏感性變化規(guī)律
葡萄果實對日灼的敏感度與葡萄發(fā)育期有關(guān)[1],Gouot等[28]發(fā)現(xiàn)果實在發(fā)育早期有更高的熱敏感度。國內(nèi)也有很多報道稱葡萄果實日灼多發(fā)生在果實膨大期或快速膨大期[14,29-30]。但研究發(fā)現(xiàn)Semillon品種果實發(fā)育過程中轉(zhuǎn)色后期日灼發(fā)生較嚴(yán)重[13,31-32]。葡萄果實對日灼的敏感性可能與葉綠素和光保護色素的比例有關(guān),隨著果實的發(fā)育,他們的比例逐漸降低,抗日灼能力隨之下降[1]。此外,在果實發(fā)育的早期階段存在類似葉片的自身光保護機制,隨著果實的發(fā)育,這種能力逐漸喪失[33]。而日灼敏感性在轉(zhuǎn)色前后存在差異可能與轉(zhuǎn)色后花色苷含量的變化有關(guān)[34]。在本研究中,巨玫瑰葡萄夏果和冬果發(fā)育各物候期的日灼敏感性變化規(guī)律較一致,均在果實發(fā)育前期即E-L 31-32時期對日灼最敏感,在E-L 33至E-L 38時期相對不敏感。值得注意的是,在相同人工誘導(dǎo)處理條件下,相對于夏果而言,冬果日灼發(fā)生程度更輕一些,可見發(fā)育期的環(huán)境條件對葡萄果實本身的日灼敏感性也存在一定影響。
3.2 巨玫瑰葡萄夏果和冬果不同日灼敏感物候期果實形態(tài)學(xué)與相關(guān)組分差異
不同發(fā)育時期的日灼敏感性與細(xì)胞結(jié)構(gòu)特點有關(guān)。果實上的表皮蠟可以通過散射、反射甚至吸收光輻射,從而降低底層組織的暴露水平以降低果實受光和熱脅迫的影響。研究表明,板狀、平滑的蠟晶體比不定形蠟?zāi)芊瓷浜蜕⑸涓弑壤墓鈁35]。此外,葡萄較厚的表皮蠟質(zhì)層和較厚的細(xì)胞壁具有更強的光反射能力,同時,較厚的表皮也增加了花青素和黃酮醇的積累[36-38]。筆者在本研究中發(fā)現(xiàn),與日灼不敏感期相比,日灼敏感期葡萄果皮角質(zhì)層上的蠟質(zhì)層更不平滑,同時,果實表皮和亞表皮細(xì)胞較小,因此表皮較薄,光反射能力和貯藏抗氧化活性物質(zhì)的能力也較差,故對日灼更為敏感。而另一方面,從物理學(xué)角度看,比熱容大的物質(zhì)升溫慢,果實細(xì)胞內(nèi)細(xì)胞液的主要成分為水,比熱容大于淀粉[39]。筆者在本研究中發(fā)現(xiàn),日灼敏感期葡萄果實表皮和亞表皮細(xì)胞中淀粉粒較多,在相同日灼處理下淀粉粒較多會導(dǎo)致果實升溫較快,因此更易發(fā)生日灼。
酚類是植物抗氧化系統(tǒng)中的重要代謝物,在果實上表皮、皮下組織和角質(zhì)層中積累,因為其可以吸收太陽輻射帶來的部分光能和紫外線,他們被植物組織用作光保護劑,從而構(gòu)成植物抵御光脅迫的第一道防線[1]。葡萄果實中的酚類物質(zhì)具有抗氧化作用,在抑制蛋白質(zhì)及脂質(zhì)的氧化、減少H2O2的形成、抑制抗氧化酶系統(tǒng)表達(dá)及清除自由基等方面均發(fā)揮一定的作用[40]。在本研究中,冬果日灼發(fā)生率比夏果低,其總酚含量在各日灼進(jìn)程中均顯著高于夏果。這可能與夏果和冬果發(fā)育期的氣候差異促進(jìn)果實的酚類合成有關(guān)[41],酚類物質(zhì)含量的增加在一定程度上提高了冬果的抗日灼能力。
葡萄果實中酚類物質(zhì)含量與礦質(zhì)元素含量有關(guān)[42],在很多果樹中也報道了果實中礦質(zhì)元素含量與日灼敏感性有關(guān),Ca元素與中膠層果膠質(zhì)形成鈣鹽,能夠提高果實的抗逆性[21]。周詠梅等[7]發(fā)現(xiàn)Ca處理有利于保護細(xì)胞膜結(jié)構(gòu),減少高溫脅迫對葡萄的傷害。高志鍵等[43]也發(fā)現(xiàn)經(jīng)鈣處理后果實的日灼發(fā)生率較對照顯著降低。在本研究中,日灼不敏感期夏果與冬果中K、Ca元素含量均顯著高于日灼敏感物候期,說明K、Ca元素含量的增加和累積在一定程度上提高了果實對日灼的抗性和日灼閾值溫度,從而降低了果實日灼的發(fā)生率。同時也發(fā)現(xiàn)在日灼較敏感的夏果中,K、Ca元素含量均顯著低于日灼較不敏感的冬果,均與前人報道的K、Ca含量與日灼抗性呈正相關(guān)的結(jié)果較一致。此外,筆者在本研究中還發(fā)現(xiàn),日灼不敏感期夏果與冬果中Mg含量顯著高于日灼敏感物候期,日灼相對較敏感的夏果日灼敏感物候期的N、P元素含量高于冬果,說明果實中Mg元素含量也與果實日灼抗性呈正相關(guān),而N、P元素含量與果實日灼抗性呈負(fù)相關(guān)。
3.3 巨玫瑰葡萄夏果和冬果日灼進(jìn)程之間的差異
在果實日灼進(jìn)程中,果面高溫和強太陽輻射可引起果實表皮、下表皮細(xì)胞的代謝紊亂,導(dǎo)致細(xì)胞內(nèi)活性氧分子大量積累,并使細(xì)胞膜損傷,進(jìn)一步導(dǎo)致細(xì)胞結(jié)構(gòu)的改變和果實的損傷[17]。謝兆森等[16]發(fā)現(xiàn),葡萄果實發(fā)生日灼后果皮組織結(jié)構(gòu)被破壞,由外至內(nèi)1~3層細(xì)胞均顯著縮小,細(xì)胞失水破裂。隨著日灼的發(fā)生,果實內(nèi)淀粉粒逐漸分解,細(xì)胞從外向內(nèi)逐漸死亡。在本研究中的巨玫瑰葡萄夏果和冬果中均發(fā)現(xiàn),日灼進(jìn)程中細(xì)胞結(jié)構(gòu)的變化趨勢一致,果實表皮、次表皮和果肉組織對日灼進(jìn)行應(yīng)答反應(yīng),內(nèi)部物質(zhì)通過沉積和轉(zhuǎn)移來抵抗外界日灼的影響,果實的角質(zhì)層由微裂紋變得光滑,之后逐漸變薄、斷裂,表皮和亞表皮細(xì)胞逐漸塌陷和扁平化,內(nèi)部細(xì)胞形成空洞,外部細(xì)胞向外層積,以此來抵御日灼對葡萄果實的危害,這與前人研究結(jié)果一致。
日灼發(fā)生后氧化聚合酚類物質(zhì)積累可導(dǎo)致果實表皮顏色發(fā)生改變,且可提高漿果的耐日灼能力,增強對過量輻射的抵抗能力[3]。酚類化合物在果實中的積累受到果實環(huán)境變化的強烈調(diào)控[44]。Liu等[18]研究發(fā)現(xiàn),石榴日灼時果皮中總酚含量隨日灼程度的加重而增加。在本研究中,對巨玫瑰葡萄果實進(jìn)行人工誘導(dǎo)日灼處理后,葡萄果實的總酚含量在夏果和冬果日灼敏感期的日灼進(jìn)程中均表現(xiàn)為先下降后顯著上升的趨勢,這與范旭園等[15]的研究一致。說明葡萄果實在遭受日灼后,體內(nèi)的總酚含量增加以增強果實的抗氧化作用,從而應(yīng)對日灼給葡萄果實帶來的氧化反應(yīng)和活性氧增加所造成的傷害。
在很多果樹中報道了日灼發(fā)生過程中果實礦質(zhì)元素含量會發(fā)生顯著變化。胡藝帆等[21]發(fā)現(xiàn),沃柑日灼果果皮的K含量顯著高于正常果,這可能與K離子濃度調(diào)節(jié)滲透壓、影響果實內(nèi)部水分分布和物質(zhì)合成,間接影響果實對日灼的抵抗能力有關(guān)。同時,日灼是一種光熱脅迫反應(yīng)[44-45],在受到光熱影響后,果實會增強蒸騰作用而產(chǎn)生水分脅迫,使果實K、Ca、Mg等元素和物質(zhì)積累以抵御日灼[46-47],王建華等[20]發(fā)現(xiàn),柑橘日灼果N、K元素含量顯著高于正常果。筆者在本研究中發(fā)現(xiàn),兩物候期中夏果與冬果的重度日灼果中N、P、K、Ca和Mg元素的含量與正常果相比均顯著上升,這些礦質(zhì)元素含量的升高可能在一定程度上提高了果實對日灼的抵抗能力。
4 結(jié) 論
巨玫瑰在兩收栽培模式下,夏果和冬果的日灼敏感期一致,均為E-L 31-32時期,但夏果較冬果更敏感。此外,巨玫瑰葡萄在不同物候期和生長期對日灼的敏感性也存在差異,這與果實的解剖結(jié)構(gòu)中蠟質(zhì)層和表皮細(xì)胞壁中的特性有關(guān),也與果實中的總酚、K、Ca含量密切相關(guān),建議生產(chǎn)上預(yù)防巨玫瑰葡萄日灼可考慮在果實的敏感物候期(E-L 31-32)前適當(dāng)增施K、Ca、Mg肥。
參考文獻(xiàn) References:
[1] GAMBETTA J M,HOLZAPFEL B P,STOLL M,F(xiàn)RIEDEL M. Sunburn in grapes:A review[J]. Frontiers in Plant Science,2021,11:604691.
[2] RUSTIONI L,ALTOMARE A,SHANSHIASHVILI G,GRECO F,BUCCOLIERI R,BLANCO I,COLA G,F(xiàn)RACASSETTI D. Microclimate of grape bunch and sunburn of white grape berries:Effect on wine quality[J]. Foods,2023,12(3):621.
[3] 王浩,杜遠(yuǎn)鵬,高振. 葡萄日灼病發(fā)生機理研究進(jìn)展[J]. 中外葡萄與葡萄酒,2021(6):84-89.
WANG Hao,DU Yuanpeng,GAO Zhen. Research progress on occurrence mechanism of grape sunburn[J]. Sino-Overseas Grapevine & Wine,2021(6):84-89.
[4] GREER D H,ROGIERS S Y,STEEL C C. Susceptibility of Chardonnay grapes to sunburn[J]. Vitis,2006,45:147-148.
[5] CALDER?N-ORELLANA A,STEPKE I S,PUENTES P. Golpe de sol en uva para vino en el valle de Itata:Más de lo esperado[J]. Boletín Del Vinos Sur,2018,2:3-4.
[6] 黃小云. ‘陽光玫瑰葡萄冬果日灼發(fā)生規(guī)律及防治研究[D]. 南寧:廣西大學(xué),2020.
HUANG Xiaoyun. Study on the regularity of occurrence and prevention of sunburn in winter fruits of ‘Shine Muscat grape[D]. Nanning:Guangxi University,2020.
[7] 周詠梅,謝太理,林玲,黃羽,韋榮福. 鈣處理對巨峰葡萄夏果日灼病發(fā)生率及品質(zhì)的影響[J]. 南方農(nóng)業(yè)學(xué)報,2014,45(5):754-757.
ZHOU Yongmei,XIE Taili,LIN Ling,HUANG Yu,WEI Rongfu. Effects of calcium treatment on sunscald incidence and quality in summer fruits of Kyoho grape[J]. Journal of Southern Agriculture,2014,45(5):754-757.
[8] MUNN?-BOSCH S,VINCENT C. Physiological mechanisms underlying fruit sunburn[J]. Critical Reviews in Plant Sciences,2019,38(2):140-157.
[9] 李小紅,王鵬,呂中偉,蒯傳化,劉啟山,艾建東. 河南省葡萄日灼病發(fā)生情況調(diào)查及原因分析[J]. 中外葡萄與葡萄酒,2012(6):46-48.
LI Xiaohong,WANG Peng,L? Zhongwei,KUAI Chuanhua,LIU Qishan,AI Jiandong. Investigation and cause analysis of grape sunburn in Henan province[J]. Sino-Overseas Grapevine & Wine,2012(6):46-48.
[10] 劉建福,蔣建國,湯青林. 梨果日灼病的發(fā)生規(guī)律及其預(yù)防[J]. 中國南方果樹,2002,31(2):51-52.
LIU Jianfu,JIANG Jianguo,TANG Qinglin. Occurrence regularity and prevention of pear sunburn[J]. South China Fruits,2002,31(2):51-52.
[11] 蒯傳化,陳勇朋. 葡萄日灼病的發(fā)生與防治[J]. 果農(nóng)之友,2020(6):27-29.
KUAI Chuanhua,CHEN Yongpeng. Occurrence and control of grape sunburn[J]. Fruit Growers Friend,2020(6):27-29.
[12] RUSTIONI L,MILANI C,PARISI S,F(xiàn)AILLA O. Chlorophyll role in berry sunburn symptoms studied in different grape (Vitis vinifera L.) cultivars[J]. Scientia Horticulturae,2015,185:145-150.
[13] WEBB L,WHITING J,WATT A,HILL T,WIGG F,DUNN G,NEEDS S,BARLOW E W R. Managing grapevines through severe heat:A survey of growers after the 2009 summer heatwave in south-eastern Australia[J]. Journal of Wine Research,2010,21(2/3):147-165.
[14] 鄧學(xué)林,胡澋浩. 葡萄日灼病的發(fā)生與防治[J]. 新疆林業(yè),2021(2):37-38.
DENG Xuelin,HU Jinghao. Occurrence and control of grape sunburn[J]. Forestry of Xinjiang,2021(2):37-38.
[15] 范旭園,黃泳碧,譚茗月,白揚,韓佳宇,張延暉,廖原,白先進(jìn),王博. 不同物候期人工誘導(dǎo)葡萄果實日灼的相關(guān)研究[J]. 中外葡萄與葡萄酒,2023(5):48-53.
FAN Xuyuan,HUANG Yongbi,TAN Mingyue,BAI Yang,HAN Jiayu,ZHANG Yanhui,LIAO Yuan,BAI Xianjin,WANG Bo. Study on sunburn induced by different phenology of grape fruit[J]. Sino-Overseas Grapevine & Wine,2023(5):48-53.
[16] 謝兆森,Bhaskar. 日灼對釀酒葡萄‘霞多麗果實品質(zhì)與解剖結(jié)構(gòu)的影響[J]. 西北植物學(xué)報,2018,38(1):68-76.
XIE Zhaosen,Bhaskar. Impacts of sunburn on the anatomical structure and quality of Chardonnay grape berry[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(1):68-76.
[17] RACSKO J,SCHRADER L E. Sunburn of apple fruit:Historical background,recent advances and future perspectives[J]. Critical Reviews in Plant Sciences,2012,31(6):455-504.
[18] LIU C Y,SU Y,LI J Y,JIA B T,CAO Z,QIN G H. Physiological adjustment of pomegranate pericarp responding to sunburn and its underlying molecular mechanisms[J]. BMC Plant Biology,2022,22(1):169.
[19] 盧立媛,尤文忠,劉振盼,劉廣平,李仁浩,白云松,陳喜忠,孫陽. 北方落葉果樹果實日灼病研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2021,49(5):26-30.
LU Liyuan,YOU Wenzhong,LIU Zhenpan,LIU Guangping,LI Renhao,BAI Yunsong,CHEN Xizhong,SUN Yang. Research progress on fruit sunscald of northern deciduous fruit trees[J]. Journal of Anhui Agricultural Sciences,2021,49(5):26-30.
[20] 王建華. 柑橘果實日灼病與主要礦質(zhì)元素含量關(guān)系的分析[J]. 浙江柑橘,2020,37(3):15-17.
WANG Jianhua. Analysis of the relationship between citrus fruit sunburn and the content of main mineral elements[J]. Zhejiang Citrus,2020,37(3):15-17.
[21] 胡藝帆,葛聰聰,李鳳琪,邱發(fā)發(fā),黃世炎,韋杰,黃桂香. 沃柑日灼果皮結(jié)構(gòu)和生理生化指標(biāo)觀測分析[J]. 南方農(nóng)業(yè)學(xué)報,2021,52(8):2220-2226.
HU Yifan,GE Congcong,LI Fengqi,QIU Fafa,HUANG Shiyan,WEI Jie,HUANG Guixiang. Observation and analysis of pericarp structure,physiological and biochemical indexes of sunburn orah[J]. Journal of Southern Agriculture,2021,52(8):2220-2226.
[22] 楊梅,李延紅,付藝萍,劉桂東,魏清江,米蘭芳,周高峰. 從養(yǎng)分狀況角度解析紐荷爾臍橙日灼果的形成機制[J]. 江西農(nóng)業(yè)學(xué)報,2023,35(6):30-38.
YANG Mei,LI Yanhong,F(xiàn)U Yiping,LIU Guidong,WEI Qing-
jiang,MI Lanfang,ZHOU Gaofeng. Study on formation mechanism of ‘Newhall navel orange fruit sunburn based on nutrient status[J]. Acta Agriculturae Jiangxi,2023,35(6):30-38.
[23] COOMBE B G. Growth stages of the grapevine:Adoption of a system for identifying grapevine growth stages[J]. Australian Journal of Grape and Wine Research,1995,1(2):104-110.
[24] 張建光,劉玉芳,孫建設(shè),施瑞德. 蘋果果實日灼人工誘導(dǎo)技術(shù)及閾值溫度研究[J]. 園藝學(xué)報,2003,30(4):446-448.
ZHANG Jianguang,LIU Yufang,SUN Jianshe,SHI Ruide. Studies on artificial induction and threshold temperatures of apple fruit sunburn[J]. Acta Horticulturae Sinica,2003,30(4):446-448.
[25] 孟江飛. 山西鄉(xiāng)寧地區(qū)葡萄采收時間對葡萄及葡萄酒酚類物質(zhì)與抗氧化活性影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2011.
MENG Jiangfei. Effect of harvest time on phenolic contents and antioxidant properties of grape and wines in Xiangning County,Shanxi province[D]. Yangling:Northwest A & F University,2011.
[26] 郭子微,侯文赫,付鴻博,張建英,王鵬飛,穆霄鵬,張建成. 不同蘋果果實發(fā)育過程中酚類物質(zhì)含量及抗氧化能力變化研究[J]. 山東農(nóng)業(yè)科學(xué),2021,53(11):35-44.
GUO Ziwei,HOU Wenhe,F(xiàn)U Hongbo,ZHANG Jianying,WANG Pengfei,MU Xiaopeng,ZHANG Jiancheng. Changes of phenolic substances and antioxidant capacity during fruit development of different apple varieties[J]. Shandong Agricultural Sciences,2021,53(11):35-44.
[27] 王松. 一年兩收栽培陽光玫瑰葡萄夏、冬果生長期地上部營養(yǎng)及激素差異研究[D]. 南寧:廣西大學(xué),2020.
WANG Song. Study on the differences of nutrition and hormone in the above ground part of shine muscant grape under the two-harveat-a-year cultivation during summer and winter fruits growth period[D]. Nanning:Guangxi University,2020.
[28] GOUOT J C,SMITH J P,HOLZAPFEL B P,BARRIL C. Impact of short temperature exposure of Vitis vinifera L. cv. Shiraz grapevine bunches on berry development,primary metabolism and tannin accumulation[J]. Environmental and Experimental Botany,2019,168:103866.
[29] 萬保雄,易顯榮,宋雅琴,賀申魁,常運濤,陳愛軍,梁瑞鄭. 2009年廣西靈川縣葡萄日灼病異常發(fā)生的調(diào)查[J]. 中國南方果樹,2010,39(6):55-56.
WAN Baoxiong,YI Xianrong,SONG Yaqin,HE Shenkui,CHANG Yuntao,CHEN Aijun,LIANG Ruizheng. Investigation on the abnormal occurrence of grape sunburn in Lingchuan County of Guangxi in 2009[J]. South China Fruits,2010,39(6):55-56.
[30] 蒯傳化,楊朝選,劉三軍,吳國良,陳漢杰,鄭先波. 落葉果樹果實日灼病研究進(jìn)展[J]. 果樹學(xué)報,2008,25(6):901-907.
KUAI Chuanhua,YANG Chaoxuan,LIU Sanjun,WU Guoliang,CHEN Hanjie,ZHENG Xianbo. Advances in research on fruit sunburn of deciduous fruit crops[J]. Journal of Fruit Science,2008,25(6):901-907.
[31] HULANDS S,GREER D H,HARPER J D I. The interactive effects of temperature and light intensity on Vitis vinifera cv. ‘Semillon grapevines. II. Berry ripening and susceptibility to sunburn at harvest[J]. European Journal of Horticultural Science,2014,79(1):1-7.
[32] HULANDS S,GREER D H,HARPER J D I. The interactive effects of temperature and light intensity on Vitis vinifera cv. ‘Semillon grapevines. I. Berry growth and development[J]. European Journal of Horticultural Science,2013,78(6):249-257.
[33] JOUBERT C,YOUNG P R,EY?GH?-BICKONG H A,VIVIER M A. Field-grown grapevine berries use carotenoids and the associated xanthophyll cycles to acclimate to UV exposure differentially in high and low light (shade) conditions[J]. Frontiers in Plant Science,2016,7:786.
[34] SMART R E,SINCLAIR T R. Solar heating of grape berries and other spherical fruits[J]. Agricultural Meteorology,1976,17(4):241-259.
[35] JENKS M A,ASHWORTH E N. Plant epicuticular waxes:Function,production,and genetics[J]. Horticultural Reviews,1998:1-68.
[36] ROSENQUIST J K,MORRISON J C. Some factors affecting cuticle and wax accumulation on grape berries[J]. American Journal of Enology and Viticulture,1989,40(4):241-244.
[37] MUGANU M,BELLINCONTRO A,BARNABA F E,PAOLOCCI M,BIGNAMI C,GAMBELLINI G,MENCARELLI F. Influence of bunch position in the canopy on berry epicuticular wax during ripening and on weight loss during postharvest dehydration[J]. American Journal of Enology and Viticulture,2011,62(1):91-98.
[38] VERDENAL T,ZUFFEREY V,DIENES-NAGY A,BOURDIN G,GINDRO K,VIRET O,SPRING J L. Timing and intensity of grapevine defoliation:An extensive overview on five cultivars in Switzerland[J]. American Journal of Enology and Viticulture,2019,70(4):427-434.
[39] SANG D,JONES G,CHADHA G,WOODSIDE R. Cambridge international as and a level physics coursebook with CD-ROM[M]. 2 nd. Cambridge:Cambridge University Press,2014,103-105.
[40] 譚偉,唐曉萍,董志剛,李曉梅,王新平. ‘赤霞珠和‘梅露輒不同營養(yǎng)系果實不同部位酚類物質(zhì)含量的比較分析[J]. 中國農(nóng)學(xué)通報,2015,31(8):229-234.
TAN Wei,TANG Xiaoping,DONG Zhigang,LI Xiaomei,WANG Xinping. Comparative analysis of the polyphenol contents in different fruit parts of different Cabernet Sauvignon and Merlot clones[J]. Chinese Agricultural Science Bulletin,2015,31(8):229-234.
[41] 王博,覃富強,鄧鳳瑩,羅惠格,陳祥飛,成果,白揚,黃小云,韓佳宇,曹雄軍,白先進(jìn). ‘陽光玫瑰葡萄一年兩收果實類黃酮組分及含量差異分析[J]. 中國農(nóng)業(yè)科學(xué),2022,55(22):4473-4486.
WANG Bo,QIN Fuqiang,DENG Fengying,LUO Huige,CHEN Xiangfei,CHENG Guo,BAI Yang,HUANG Xiaoyun,HAN Jiayu,CAO Xiongjun,BAI Xianjin. Difference in flavonoid composition and content between summer and winter grape berries of shine muscat under two-crop-a-year cultivation[J]. Scientia Agricultura Sinica,2022,55(22):4473-4486.
[42] 王小龍,張正文,邵學(xué)東,鐘曉敏,王福成,史祥賓,張藝燦,王海波. 氣象因子和施肥對赤霞珠植株礦質(zhì)元素和果實品質(zhì)的影響[J]. 果樹學(xué)報,2022,39(11):2074-2087.
WANG Xiaolong,ZHANG Zhengwen,SHAO Xuedong,ZHONG Xiaomin,WANG Fucheng,SHI Xiangbin,ZHANG Yican,WANG Haibo. Effects of meteorological factors and fertilization on mineral element contents and berry quality in Cabernet Sauvignon[J]. Journal of Fruit Science,2022,39(11):2074-2087.
[43] 高志鍵,李春俠,周秋蓉,李江波,李延,王平. 外源鈣對蜜橘抗日灼生理病害的分子與生理機制研究[J]. 西北植物學(xué)報,2023,43(1):97-105.
GAO Zhijian,LI Chunxia,ZHOU Qiurong,LI Jiangbo,LI Yan,WANG Ping. Molecular and physiological mechanism of resisting physiological disease-sunburn in tangerine with exogenous calcium treatment[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(1):97-105.
[44] GONZ?LEZ C V,F(xiàn)ANZONE M L,CORT?S L E,BOTTINI R,LIJAVETZKY D C,BALLAR? C L,BOCCALANDRO H E. Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec[J]. Phytochemistry,2015,110:46-57.
[45] WOOLF A B,F(xiàn)ERGUSON I B. Postharvest responses to high fruit temperatures in the field[J]. Postharvest Biology and Technology,2000,21(1):7-20.
[46] 王忠. 植物生理學(xué)[M]. 2版. 北京:中國農(nóng)業(yè)出版社,2009.
WANG Zhong. Plant physiology[M]. 2nd ed. Beijing:China Agriculture Press,2009.
[47] D?RING H,OGGIONNI F. Transpiration und mineralstoffeinlagerung der weinbeere[J]. Vitis,2015,25:59-66.
收稿日期:2024-01-24 接受日期:2024-04-08
基金項目:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-29-22);廣西自然科學(xué)基金項目(2023GXNSFBA026047);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(202310593068)
作者簡介:秦鏡植,男,在讀本科生,研究方向為果樹栽培生理與品質(zhì)調(diào)控。E-mail:qinjingzhi2020@163.com
*通信作者 Author for correspondence. E-mail:wangbo0127@163.com