国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Warburg效應(yīng)在腫瘤耐藥中的研究進(jìn)展

2024-07-07 15:36:00田瓔吳杰鄒暢
中國現(xiàn)代醫(yī)生 2024年16期
關(guān)鍵詞:細(xì)胞凋亡

田瓔 吳杰 鄒暢

[摘要]?腫瘤細(xì)胞的增殖和生長需要營養(yǎng)物質(zhì)的支持,并進(jìn)行能量代謝重編程。其中,線粒體功能改變是多種類型腫瘤發(fā)生的標(biāo)志之一。Warburg效應(yīng)是指腫瘤細(xì)胞通過激活乳酸脫氫酶、抑制丙酮酸代謝而產(chǎn)生大量乳酸,并在線粒體中進(jìn)行能量代謝重編程的過程。腫瘤耐藥是當(dāng)前腫瘤臨床治療中較為棘手的問題之一。研究發(fā)現(xiàn)Warburg效應(yīng)與抗腫瘤藥物的耐藥性息息相關(guān)。本文闡述Warburg效應(yīng)在腫瘤耐藥中的研究進(jìn)展,為臨床攻克腫瘤耐藥提供新思路。

[關(guān)鍵詞]?Warburg效應(yīng);腫瘤耐藥;葡萄糖轉(zhuǎn)運(yùn)蛋白;細(xì)胞凋亡;有氧糖酵解

[中圖分類號]?R979.1??????[文獻(xiàn)標(biāo)識碼]?A??????[DOI]?10.3969/j.issn.1673-9701.2024.16.033

1956年,Warburg[1]研究發(fā)現(xiàn)腫瘤細(xì)胞存在一種特殊的代謝特征,即在氧氣充足的情況下腫瘤細(xì)胞優(yōu)先選擇產(chǎn)能率相對較低的糖酵解途徑為自身供能,削弱有氧呼吸,產(chǎn)生大量腺苷三磷酸(adenosine-?triphosphate,ATP),稱作Warburg效應(yīng)。Warburg效應(yīng)也被稱為有氧糖酵解,其可滿足腫瘤細(xì)胞快速生長對能量和代謝物質(zhì)的需求,有助于維持細(xì)胞內(nèi)部的氧化還原穩(wěn)態(tài)。腫瘤是嚴(yán)重威脅人類生命健康的疾病之一。藥物治療在腫瘤臨床治療中占據(jù)重要地位,然而藥物耐藥也給腫瘤治療帶來困擾[2]。Warburg效應(yīng)與腫瘤耐藥密切相關(guān)。研究表明Warburg效應(yīng)可增強(qiáng)結(jié)直腸癌細(xì)胞對抗腫瘤藥物的抵抗力,且在對抗腫瘤藥物抵抗力更強(qiáng)的腫瘤中糖酵解作用更明顯,磷酸果糖激酶-1可增強(qiáng)Warburg效應(yīng),促進(jìn)結(jié)直腸癌細(xì)胞對表皮生長因子受體抑制劑的耐藥性[3];M2型丙酮酸激酶(pyruvate?kinase?M2,PKM2)是Warburg效應(yīng)中的糖酵解酶,其在膀胱癌中表達(dá)上調(diào),導(dǎo)致膀胱癌順鉑耐藥[4];葡萄糖轉(zhuǎn)運(yùn)蛋白在多種惡性腫瘤中過度表達(dá),易導(dǎo)致順鉑耐藥,在頭頸部鱗狀細(xì)胞癌中,沉默WNT2B可逆轉(zhuǎn)葡萄糖轉(zhuǎn)運(yùn)蛋白過表達(dá)導(dǎo)致的順鉑耐藥[5]。Warburg效應(yīng)還在乳腺癌、肝細(xì)胞癌和宮頸癌等腫瘤耐藥中發(fā)揮顯著作用[6-8]。腫瘤細(xì)胞中的Warburg效應(yīng)可增強(qiáng)腫瘤細(xì)胞對抗腫瘤藥物的耐藥性,且腫瘤細(xì)胞中的糖酵解反應(yīng)更多[9-10]。本文對Warburg效應(yīng)和腫瘤耐藥的特點(diǎn)及Warburg效應(yīng)對腫瘤耐藥的調(diào)控機(jī)制研究進(jìn)展進(jìn)行闡述,為提高臨床靶向治療療效提供參考。

1??Warburg效應(yīng)概述

腫瘤細(xì)胞利用大量的營養(yǎng)物質(zhì)維持其無限增殖和生長,能量代謝重編程被認(rèn)為是腫瘤發(fā)生的標(biāo)志之一[11]。能量代謝的改變導(dǎo)致營養(yǎng)缺乏和代謝廢物積累,影響腫瘤細(xì)胞附近非腫瘤細(xì)胞的生物學(xué)行為[12]。在糖酵解過程中,葡萄糖分解產(chǎn)生丙酮酸和少量ATP。在正常細(xì)胞中,丙酮酸進(jìn)入三羧酸循環(huán)產(chǎn)生能量;而在腫瘤細(xì)胞中,無論氧氣水平如何,細(xì)胞都表現(xiàn)出高糖酵解活性,通過激活乳酸脫氫酶、抑制丙酮酸代謝產(chǎn)生大量乳酸[10]。Warburg效應(yīng)表明細(xì)胞利用能量的方式由氧化磷酸化轉(zhuǎn)變?yōu)樘墙徒?,被視為腫瘤的一大特征[11]。Warburg效應(yīng)的內(nèi)在機(jī)制十分復(fù)雜,尚未完全明確。研究證實(shí)K-ras突變及抑癌基因p53表達(dá)異常與Warburg效應(yīng)有關(guān)[13-14];糖代謝中關(guān)鍵酶的改變也與Warburg效應(yīng)有關(guān)[15]。

2??腫瘤耐藥概述

耐藥一般是指病原體與藥物多次接觸后對藥物的敏感度降低或無效。腫瘤耐藥可分為內(nèi)源性耐藥(在化療藥物應(yīng)用前便存在耐藥因素)和獲得性耐藥(在化療藥物應(yīng)用后產(chǎn)生的適應(yīng)性反應(yīng))。腫瘤耐藥發(fā)生機(jī)制如下。

2.1??P-糖蛋白

抗腫瘤藥物進(jìn)入細(xì)胞后被識別并外排,彌散到漿膜時遇到多藥耐藥運(yùn)載體,多藥耐藥運(yùn)載體利用兩個ATP結(jié)合位點(diǎn)上的能量將藥物泵出細(xì)胞外。化療藥物及其他藥物單一且長期應(yīng)用可激活P-糖蛋白活性,減少藥物在細(xì)胞內(nèi)的積蓄,從而產(chǎn)生腫瘤多藥耐藥。

2.2??表觀遺傳學(xué)改變

在腫瘤的發(fā)生發(fā)展過程中,非DNA序列改變引起的基因表達(dá)變化主要有DNA甲基化、非編碼RNA和組蛋白修飾等表觀遺傳學(xué)改變。腫瘤細(xì)胞可通過DNA高甲基化抑制抑癌基因的表達(dá)。腫瘤細(xì)胞系中ATP結(jié)合盒亞家族B成員1基因過表達(dá)可導(dǎo)致腫瘤細(xì)胞內(nèi)抗腫瘤藥物毒性降低,這是獲得多重耐藥的主要原因[16]。

2.3??細(xì)胞凋亡

研究發(fā)現(xiàn)腫瘤耐藥與細(xì)胞凋亡相關(guān)基因如抗凋亡基因Bcl-2、p53等的過表達(dá)有關(guān),細(xì)胞凋亡相關(guān)基因也可作為耐藥的靶分子,與其他途徑共同介導(dǎo)細(xì)胞生物功能[17]。

3??Warburg效應(yīng)調(diào)控腫瘤耐藥的機(jī)制

3.1??致癌蛋白和腫瘤因子

腫瘤中的細(xì)胞代謝重編程受致癌蛋白和腫瘤因子的調(diào)控。缺氧誘導(dǎo)因子(hypoxia-inducible?factor,HIF)在Warburg效應(yīng)中發(fā)揮重要作用,可促進(jìn)三羧酸循環(huán)和糖酵解的斷開,誘導(dǎo)還原性酵解[18-19]。研究發(fā)現(xiàn)Warburg效應(yīng)可激活HIF-1α介導(dǎo)的信號通路,抑制糖酵解和細(xì)胞自噬,使宮頸癌HeLa-R細(xì)胞對紫杉醇重獲敏感[8]。在卵巢癌中,HIF-1α、K-ras和磷脂酰肌醇3激酶(phosphoinositide?3-kinase,PI3K)等致癌基因表達(dá)的改變通過直接調(diào)節(jié)糖酵解酶,如己糖激酶2(hexokinase?2,HK2)和乳酸脫氫酶A促進(jìn)有氧糖酵解[20-21]。同時,可通過丙酮酸脫氫酶激酶1(pyruvate?dehydrogenase?kinase?1,PDK1)抑制丙酮酸脫氫酶促進(jìn)還原代謝[22];PDK1可被HIF-1α、蛋白激酶B(protein?kinase?B,PKB,又稱Akt)和磷酸甘油酸激酶1進(jìn)一步激活,從而促進(jìn)腫瘤耐藥[23]。

研究表明PI3K/Akt信號通路可介導(dǎo)腫瘤耐藥[24]。結(jié)腸癌轉(zhuǎn)移相關(guān)基因1可通過PI3K/Akt信號通路促進(jìn)Warburg效應(yīng),進(jìn)一步增強(qiáng)胃癌細(xì)胞曲妥珠單抗耐藥[25]。PI3K/Akt/哺乳動物雷帕霉素靶蛋白及Ras/促分裂原活化蛋白激酶(mitogen-activated?protein?kinase,MAPK)信號通路通過激活糖酵解過程促進(jìn)原發(fā)性中樞神經(jīng)系統(tǒng)淋巴瘤衍生細(xì)胞對甲氨蝶呤耐藥[26]。研究發(fā)現(xiàn)神經(jīng)纖維瘤蛋白1可激活間變性淋巴瘤激酶(anaplastic?lymphoma?kinase,ALK)的K-ras突變,這是驅(qū)動神經(jīng)母細(xì)胞瘤中ALK抑制劑耐藥的真正臨床原因,Ras/MAPK信號通路下游信號傳導(dǎo)的重新激活是ALK抑制劑耐藥的發(fā)生機(jī)制[27]。維生素C可能對腫瘤治療有積極作用,其機(jī)制是通過下調(diào)K-ras突變腫瘤中的關(guān)鍵代謝檢查點(diǎn)導(dǎo)致Warburg效應(yīng)中斷,而不殺死人類永生化結(jié)直腸癌細(xì)胞。維生素C誘導(dǎo)Ras脫離細(xì)胞膜,抑制胞外信號調(diào)節(jié)激酶1/2和PKM2磷酸化,繼而下調(diào)葡萄糖轉(zhuǎn)運(yùn)蛋白1和PKM2-PTB依賴蛋白的表達(dá),Warburg效應(yīng)中斷導(dǎo)致能量應(yīng)激而產(chǎn)生耐藥[28]。

3.2??葡萄糖轉(zhuǎn)運(yùn)蛋白

葡萄糖轉(zhuǎn)運(yùn)蛋白在人體組織和器官中廣泛表達(dá),是主要的葡萄糖跨膜轉(zhuǎn)運(yùn)蛋白。研究發(fā)現(xiàn)葡萄糖轉(zhuǎn)運(yùn)蛋白可促進(jìn)有氧糖酵解,產(chǎn)生更多的丙酮酸對抗活性氧(reactive?oxygen?species,ROS)誘導(dǎo)的壞死性細(xì)胞凋亡,并使細(xì)胞周期處于靜止?fàn)顟B(tài)[29-30]。在Warburg效應(yīng)中,生長因子可促進(jìn)PI3K/Akt信號通路的活化,Akt可提高葡萄糖轉(zhuǎn)運(yùn)蛋白的活性,已糖激酶、磷酸果糖激酶、糖酵解酶可促進(jìn)糖酵解的發(fā)生。另一項(xiàng)研究發(fā)現(xiàn)高葡萄糖可減弱5-氟尿嘧啶在人結(jié)腸癌細(xì)胞中的抗增殖作用和細(xì)胞毒性[31]。

3.3??細(xì)胞凋亡

細(xì)胞凋亡指為維持內(nèi)環(huán)境穩(wěn)定,由基因控制的細(xì)胞自主有序死亡。細(xì)胞凋亡信號通路的失調(diào)使腫瘤細(xì)胞產(chǎn)生耐藥性。研究發(fā)現(xiàn)Warburg效應(yīng)可通過抑制細(xì)胞凋亡抵抗細(xì)胞死亡的誘導(dǎo)[32]。增強(qiáng)糖酵解代謝可降低細(xì)胞內(nèi)ROS水平,ROS被認(rèn)為是誘導(dǎo)細(xì)胞凋亡的重要因素[33-34];糖酵解酶還可通過直接調(diào)節(jié)細(xì)胞凋亡挽救ROS誘導(dǎo)的細(xì)胞凋亡[35]。PKM2可易位至線粒體并磷酸化Bcl-2,促進(jìn)Bcl-2的表達(dá),抑制細(xì)胞凋亡[35]。HK2也可轉(zhuǎn)移到線粒體保護(hù)腫瘤細(xì)胞免于凋亡[36]。相反,抑制人結(jié)直腸癌細(xì)胞的糖酵解可導(dǎo)致細(xì)胞凋亡增加,降低對5-氟尿嘧啶的抵抗[37]。有氧糖酵解的減少伴隨細(xì)胞凋亡的增加[38]。

4??小結(jié)與展望

腫瘤細(xì)胞能量代謝與正常細(xì)胞不同,是一個復(fù)雜的過程,尤其是葡萄糖代謝過程。糖酵解不僅可提供能量,還可提供細(xì)胞生物合成所需中間產(chǎn)物,為腫瘤細(xì)胞的快速增殖提供能量和營養(yǎng),幫助腫瘤細(xì)胞逃避代謝壓力,促進(jìn)腫瘤細(xì)胞免疫逃逸等。因此,研究Warburg效應(yīng)中的關(guān)鍵調(diào)控點(diǎn)可為腫瘤的耐藥治療提供方向和策略。多種蛋白和信號通路參與Warburg效應(yīng)調(diào)控腫瘤耐藥,隨著研究的深入,Warburg效應(yīng)參與腫瘤耐藥的機(jī)制更加明晰,將為臨床靶向藥物的選擇提供更多幫助,給患者帶來更好的治療效果。

利益沖突:所有作者均聲明不存在利益沖突。

[參考文獻(xiàn)]

[1] WARBURG?O.?On?the?origin?of?cancer?cells[J].?Science,?1956,?123(3191):?309–314.

[2] VASAN?N,?BASELGA?J,?HYMAN?D?M.?A?view?on?drug?resistance?in?cancer[J].?Nature,?2019,?575(7782):?299–309.

[3] MADDALENA?F,?CONDELLI?V,?MATASSA?D?S,?et?al.?TRAP1?enhances?Warburg?metabolism?through?modulation?of?PFK1?expression/activity?and?favors?resistance?to?EGFR?inhibitors?in?human?colorectal?carcinomas[J].?Mol?Oncol,?2020,?14(12):?3030–3047.

[4] WANG?Y,?HAO?F,?NAN?Y,?et?al.?PKM2?inhibitor?shikonin?overcomes?the?cisplatin?resistance?in?bladder?cancer?by?inducing?necroptosis[J].?Int?J?Biol?Sci,?2018,?14(13):?1883–1891.

[5] LI?S?J,?YANG?X?N,?QIAN?H?Y.?Antitumor?effects?of?WNT2B?silencing?in?GLUT1?overexpressing?cisplatin?resistant?head?and?neck?squamous?cell?carcinoma[J].?Am?J?Cancer?Res,?2014,?5(1):?300–308.

[6] YUAN?Y,?GAO?H,?ZHUANG?Y,?et?al.?NDUFA4L2?promotes?trastuzumab?resistance?in?HER2-positive?breast?cancer[J].?Ther?Adv?Med?Oncol,?2021,?13:?17588359211027836.

[7] MA?L,?LIU?W,?XU?A,?et?al.?Activator?of?thyroid?and?retinoid?receptor?increases?sorafenib?resistance?in?hepatocellular?carcinoma?by?facilitating?the?Warburg?effect[J].?Cancer?Sci,?2020,?111(6):?2028–2040.

[8] PENG?X,?GONG?F,?CHEN?Y,?et?al.?Autophagy?promotes?paclitaxel?resistance?of?cervical?cancer?cells:?Involvement?of?Warburg?effect?activated?hypoxia-induced?factor?1-α-?mediated?signaling[J].?Cell?Death?Dis,?2014,?5(8):e1367.

[9] WANG?Y,?ZHANG?D,?LI?Y,?et?al.?MiR-138?suppresses?the?PDK1?expression?to?decrease?the?oxaliplatin?resistance?of?colorectal?cancer[J].?Onco?Targets?Ther,?2020,?13:?3607–3618.

[10] LI?H,?CHEN?J,?LIU?J,?et?al.?CPT2?downregulation?triggers?stemness?and?oxaliplatin?resistance?in?colorectal?cancer?via?activating?the?ROS/Wnt/β-catenin-induced?glycolytic?metabolism[J].?Exp?Cell?Res,?2021,?409(1):?112892.

[11] HANAHAN?D,?WEINBERG?R?A.?Hallmarks?of?cancer:?The?next?generation[J].?Cell,?2011,?144(5):?646–674.

[12] PAVLOVA?N?N,?ZHU?J,?THOMPSON?C?B.?The?hallmarks?of?cancer?metabolism:?Still?emerging[J].?Cell?Metab,?2022,?34(3):?355–377.

[13] PALORINI?R,?DE?RASMO?D,?GAVIRAGHI?M,?et?al.?Oncogenic?K-ras?expression?is?associated?with?derangement?of?the?cAMP/PKA?pathway?and?forskolin-?reversible?alterations?of?mitochondrial?dynamics?and?respiration[J].?Oncogene,?2013,?32(3):?352–362.

[14] WANKA?C,?STEINBACH?J?P,?RIEGER?J.?Tp53-induced?glycolysis?and?apoptosis?regulator?(TIGAR)?protects?glioma?cells?from?starvation-induced?cell?death?by?up-regulating?respiration?and?improving?cellular?redox?homeostasis[J].?J?Biol?Chem,?2012,?287(40):?33436–33446.

[15] HIRSCHHAEUSER?F,?SATTLER?U?G,?MUELLER-?KLIESER?W.?Lactate:?A?metabolic?key?player?in?cancer[J].?Cancer?Res,?2011,?71(22):?6921–6925.

[16] POTE?M?S,?GACCHE?R?N.?ATP-binding?cassette?efflux?transporters?and?MDR?in?cancer[J].?Drug?Discov?Today,?2023,?28(5):103537.

[17] CARNEIRO?B?A,?EL-DEIRY?W?S.?Targeting?apoptosis?in?cancer?therapy[J].?Nat?Rev?Clin?Oncol,?2020,?17(7):395–417.

[18] HOLOHAN?C,?VAN?SCHAEYBROECK?S,?LONGLEY?D?B,?et?al.?Cancer?drug?resistance:?An?evolving?paradigm[J].?Nat?Rev?Cancer,?2013,?13(10):?714–726.

[19] DIAZ-MORALLI?S,?TARRADO-CASTELLARNAU?M,?MIRANDA?A,?et?al.?Targeting?cell?cycle?regulation?in?cancer?therapy[J].?Pharmacol?Ther,?2013,?138(2):?255–271.

[20] TYAGI?K,?MANDAL?S,?ROY?A.?Recent?advancements?in?therapeutic?targeting?of?the?Warburg?effect?in?refractory?ovarian?cancer:?A?promise?towards?disease?remission[J].?Biochim?Biophys?Acta?Rev?Cancer,?2021,?1876(1):?188563.

[21] DESBATS?M?A,?GIACOMINI?I,?PRAYER-GALETTI?T,?et?al.?Metabolic?plasticity?in?chemotherapy?resistance[J].?Front?Oncol,?2020,?10:?281.

[22] KIM?J?W,?TCHERNYSHYOV?I,?SEMENZA?G?L,?et?al.?HIF-1-mediated?expression?of?pyruvate?dehydrogenase?kinase:?A?metabolic?switch?required?for?cellular?adaptation?to?hypoxia[J].?Cell?Metab,?2006,?3(3):177–185.

[23] SEMENZA?G?L.?HIF-1?mediates?metabolic?responses?to?intratumoral?hypoxia?and?oncogenic?mutations[J].?J?Clin?Invest,?2013,?123(9):?3664–3671.

[24] SLOMOVITZ?B?M,?COLEMAN?R?L.?The?PI3K/Akt/?mTOR?pathway?as?a?therapeutic?target?in?endometrial?cancer[J].?Clin?Cancer?Res,?2012,?18(21):?5856–5864.

[25] LIU?J,?PAN?C,?GUO?L,?et?al.?A?new?mechanism?of?trastuzumab?resistance?in?gastric?cancer:?MACC1?promotes?the?Warburg?effect?via?activation?of?the?PI3K/AKT?signaling?pathway[J].?J?Hematol?Oncol,?2016,?9(1):?76.

[26] TAKASHIMA?Y,?HAYANO?A,?YAMANAKA?R.?Metabolome?analysis?reveals?excessive?glycolysis?via?PI3K/AKT/mTOR?and?RAS/MAPK?signaling?in?methotrexate-?resistant?primary?CNS?lymphoma-derived?cells[J].?Clin?Cancer?Res,?2020,?26(11):?2754–2766.

[27] BERLAK?M,?TUCKER?E,?DOREL?M,?et?al.?Mutations?in?ALK?signaling?pathways?conferring?resistance?to?ALK?inhibitor?treatment?lead?to?collateral?vulnerabilities?in?neuroblastoma?cells[J].?Mol?Cancer,?2022,?21(1):?126.

[28] AGUILERA?O,?MU?OZ-SAGASTIBELZA?M,?TORREJ?N?B,?et?al.?Vitamin?C?uncouples?the?Warburg?metabolic?switch?in?KRAS?mutant?colon?cancer[J].?Oncotarget,?2016,?7(30):?47954–47965.

[29] HUANG?C?Y,?HUANG?C?Y,?PAI?Y?C,?et?al.?Glucose?metabolites?exert?opposing?roles?in?tumor?chemoresistance[J].?Front?Oncol,?2019,?9:?1282.

[30] WANG?T,?NING?K,?LU?T?X,?et?al.?Elevated?expression?of?TrpC5?and?GLUT1?is?associated?with?chemoresistance?in?colorectal?cancer[J].?Oncol?Rep,?2017,?37(2):?1059–1065.

[31] MA?Y?S,?YANG?I?P,?TSAI?H?L,?et?al.?High?glucose?modulates?antiproliferative?effect?and?cytotoxicity?of?5-fluorouracil?in?human?colon?cancer?cells[J].?DNA?Cell?Biol,?2014,?33(2):?64–72.

[32] XU?R?H,?PELICANO?H,?ZHOU?Y,?et?al.?Inhibition?of?glycolysis?in?cancer?cells:?A?novel?strategy?to?overcome?drug?resistance?associated?with?mitochondrial?respiratory?defect?and?hypoxia[J].?Cancer?Res,?2005,?65(2):?613–621.

[33] LIU?X,?ZHANG?Y,?LU?W,?et?al.?Mitochondrial?TXNRD3?confers?drug?resistance?via?redox-mediated?mechanism?and?is?a?potential?therapeutic?target?in?vivo[J].?Redox?Biol,?2020,?36:?101652.

[34] XU?H,?ZENG?Y,?LIU?L,?et?al.?PRL-3?improves?colorectal?cancer?cell?proliferation?and?invasion?through?IL-8?mediated?glycolysis?metabolism[J].?Int?J?Oncol,?2017,?51(4):?1271–1279.

[35] LIANG?J,?CAO?R,?WANG?X,?et?al.?Mitochondrial?PKM2?regulates?oxidative?stress-induced?apoptosis?by?stabilizing?Bcl2[J].?Cell?Res,?2017,?27(3):?329–351.

[36] ROBERTS?D?J,?MIYAMOTO?S.?Hexokinase?Ⅱ?integrates?energy?metabolism?and?cellular?protection:?Akting?on?mitochondria?and?TORCing?to?autophagy[J].?Cell?Death?Differ,?2015,?22(2):?248–257.

[37] WANG?T,?NING?K,?SUN?X,?et?al.?Glycolysis?is?essential?for?chemoresistance?induced?by?transient?receptor?potential?channel?C5?in?colorectal?cancer[J].?BMC?Cancer,?2018,?18(1):?207.

[38] ZHONG?X,?HE?X,?WANG?Y,?et?al.?Warburg?effect?in?colorectal?cancer:?The?emerging?roles?in?tumor?microenvironment?and?therapeutic?implications[J].?J?Hematol?Oncol,?2022,?15(1):?160.

(收稿日期:2023–08–27)

(修回日期:2024–05–15)

猜你喜歡
細(xì)胞凋亡
三氧化二砷對人大細(xì)胞肺癌NCI—H460細(xì)胞凋亡影響的研究
木犀草素對對乙酰氨基酚誘導(dǎo)的L02肝細(xì)胞損傷的保護(hù)作用
激素性股骨頭壞死發(fā)病機(jī)制中細(xì)胞凋亡的研究進(jìn)展
傳染性法氏囊病致病機(jī)理研究
科技視界(2016年15期)2016-06-30 12:27:37
G—RH2誘導(dǎo)人肺腺癌A549細(xì)胞凋亡的實(shí)驗(yàn)研究
運(yùn)動對增齡大鼠骨骼肌細(xì)胞凋亡的影響研究
E3泛素連接酶對卵巢癌細(xì)胞系SKOV3/DDP順鉑耐藥性的影響
山東體育學(xué)院學(xué)報(2015年3期)2015-08-14 20:30:25
Fas/FasL對糖尿病心肌病的影響
聯(lián)合金雀異黃素和TRAIL處理對SMMC—7721肝癌干細(xì)胞樣細(xì)胞凋亡的影響
龙泉市| 凤庆县| 寿阳县| 华蓥市| 拉萨市| 江安县| 宝清县| 宝兴县| 苏尼特右旗| 临漳县| 贵溪市| 恩施市| 五河县| 松滋市| 固原市| 明溪县| 剑阁县| 罗甸县| 彭阳县| 扶风县| 宝应县| 泰和县| 福安市| 原平市| 弥勒县| 利津县| 太和县| 中西区| 湘乡市| 龙胜| 涡阳县| 武隆县| 客服| 沭阳县| 焦作市| 雅安市| 中宁县| 银川市| 尖扎县| 喀喇| 成都市|