摘要:【目的】明確組織蛋白酶D基因(CTSD)在中國大鯢不同組織中的表達模式及其免疫防御功能,為深入探究 大鯢抵抗病原入侵的作用機理提供理論依據(jù)?!痉椒ā客ㄟ^RACE克隆中國大鯢CTSD基因cDNA序列,采用ProtParam、 SignalP-5.0、TMHMM 2.0、CELLO、NetPhos 3.1及NetNGlye 1.0等在線軟件進行生物信息學(xué)分析,并通過實時熒光定 量PCR檢測健康中國大鯢不同組織及嗜水氣單胞菌感染后的CTSD基因表達情況。【結(jié)果】中國大鯢CTSD基因cDNA序列全長1992 bp,包括1197 bp的開放閱讀框(ORF)、136 bp的5'端非編碼區(qū)(5-UTR)和659bp的3'端非編碼區(qū)(3'-UTR),共編碼398個氨基酸殘基。中國大鯢CTSD蛋白相對分子量為43kD,理論等電點(pI)為6.07,屬于酸性穩(wěn)定疏水性蛋白,主要定位于溶酶體,具有跨膜結(jié)構(gòu)和信號肽,包含1個典型的天冬氨酸蛋白酶結(jié)構(gòu)域和2個天冬氨酸蛋 白酶活性位點,以及3個N-糖基化位點(131Asn、22Asn和2Asn)和33個潛在的磷酸化位點。中國大鯢CTSD氨基酸序列與東北小鯢CTSD氨基酸序列的相似性最高,達88.68%;基于CTSD氨基酸序列相似性構(gòu)建的系統(tǒng)發(fā)育進化樹也顯示中國大鯢與東北小鯢的親緣關(guān)系最近。CTSD基因在健康中國大鯢的肺臟、肌肉、皮膚、腎臟、肝臟、脾臟、心臟、胃、腦 和腸道等10個組織中均有表達,且以肺臟、肌肉、腸道和脾臟中的相對表達量較高;嗜水氣單胞菌感染后72h,中國大 鯢腎臟和肝臟中的CTSD基因相對表達量極顯著升高(Plt;0.01,下同),分別是對照組的13.88和35.67倍;脾臟和皮膚中的CTSD基因相對表達量顯著升高(Plt;0.05),分別是對照組的5.43和1.74倍;肌肉中的CTSD基因相對表達量則在感染后12h極顯著升高至最高值,是對照組的42.96倍?!窘Y(jié)論】中國大鯢CTSD氨基酸序列具有高度的保守性,包含1個典型的天冬氨酸蛋白酶結(jié)構(gòu)域和2個天冬氨酸蛋白酶活性位點;CTSD基因呈組成性表達,可能在中國大鯢抗病原菌 入侵的免疫反應(yīng)中發(fā)揮作用。
關(guān)鍵詞:中國大鯢;組織蛋白酶;CTSD基因;嗜水氣單胞菌;免疫
中圖分類號:S966.6
文章編號:2095-1191(2024)04-1170-11
文獻標(biāo)志碼:A
Cloning and its expression characteristics analysis of cathepsin D gene in Chinese giant salamander (Andrias davidianus)
SHANG Wen-cong1.2.3.4, PENG Guo-ling5, LI Qin-rong1.2.3.4, SU Shu-xian1.2.3,4,BAI Yu1, LI Can1,2,3,4*
(11College of Biological and Environmental Engineering, Guiyang University, Guiyang, Guizhou 550005, China; 2Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Guiyang, Guizhou 550005, China; 3Guizhou Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region,Guiyang, Guizhou 550005,China; 4Guiyang Agricultural(Ecological Fishery) Industry Technology Innovation Center, Guiyang, Guizhou 550005, China;5Guizhou Medical University, Guiyang, Guizhou 561113, China)
Abstract:【Objective】To clarify the expression pattern and immune defence function of cathepsin D gene (CTSD) indifferent tissues of Chinese giant salamander (Andrias davidianus), and to provide a theoretical basis for in-depth investigation of the mechanism of resistance to pathogen invasion in A. davidianus. 【Method】The cDNA sequence of CTSD gene of A. davidianus was cloned by RACE, and online softwares such as ProtParam, SignalP-5.0, TMHMM 2.0, CELLO, NetPhos 3.1 and NetNGlyc 1.0 were used for bioinformatics analysis. The expression of CTSD gene in different tissues of healthy A. davidianus and those infected by Aeromonas hydrophila was detected by real-time fluorescence quantitative PCR. 【Result 】The cDNA sequence of A. davidianus CTSD gene was 1992 bp in length, including an open reading frame (ORF) of 1197 bp, a non-coding region at the 5'-end (5'-UTR) of 136 bp, and a non-coding region at the 3'-end( 3'-UTR) of 659 bp, encoding a total of 398 amino acid residues. The A. davidianus CTSD protein had a relative molecular weight of 43 kD and a theoretical isoelectric point (pI) of 6.07. It belonged to the acidic stable hydrophobic proteins, which were mainly located in lysosomes with transmembrane structure and signal peptide, and contained one typical aspartic protease structural domain and two aspartic protease active sites, as well as three N-glycosylation sites (131Asn, 22 Asn and249 Asn) and 33 potential phosphorylation sites. The amino acid sequence of CTSD of A. davidianus showed the highest similarity with that of the Northeast salamander (Hynobius leechii) at 88.68%, and the phylogenetic tree constructed on the basis of the similarity of the amino acid sequences of CTSD showed that A. davidianus and H. leechii were the closest relatives. CTSD gene was expressed in 10 tissues of healthy A. davidianus, including the lung, muscle, skin, kidney, liver, spleen, heart, stomach, brain, and intestine, and the relative expression was higher in lung, muscle, intestine and spleen. After 72 h of infection with A. hydrophila, the relative expression of the CTSD gene in kidney and liver of A. davidianus was extremely significant (Plt;0.01, the same below), which were as 13.88 and 35.67 times as that of the control group respectively; and relative expression of spleen and skin of A. davidianus significantly increased (Plt;0.05), which were as 5.43 and 1.74 times as that of the control group respectively; the relative expression of CTSD gene in muscle increased to the maximum value at 12 h after infection, which was as 42.96 times as that of the control group.【Conclusion ]The amino acid sequence of CTSD of A. davidianus is highly conserved, containing one typical aspartic pro- tease structural domain and two aspartic protease active sites; the CTSD gene is constitutively expressed, and it may play a role in the immune response of A. davidianus against pathogenic bacteria invasion.
Key words: Andrias davidianus; cathepsin; CTSD gene; Aeromomas hydrophila; immunity
Foundation items: Special Project for Local Science and Technology Development Project Guided by Central Government (QKZYD〔2022〕4013) ; Guizhou Basic Research Plan Project (QKHJC-ZK〔2022〕 Yiban 011) ; Guizhou First- class Discipline Construction Project (QJKYF [2017] 85) ; Guiyang University Doctoral Research Start-up Fund Project(2019039510819)
0 引言
【研究意義】組織蛋白酶(Cathepsin,CTS)是一類重要的溶酶體蛋白酶,普遍存在于脊椎動物和無脊椎動物中(徐揚等,2021),根據(jù)其結(jié)構(gòu)性質(zhì)和催化反應(yīng)類型可劃分為絲氨酸CTS(CTSA和CTSG)、天冬氨酸CTS(CTSD和CTSE)和半胱氨酸CTS(CTSB、CTSC、CTSF、CTSH、CTSK、CTSL、CTSO、CTSS、CTSV、CTSX和CTSW)(Zhang et al.,2017;Patel et al., 2018; Liu et al., 2020; Mijanovic et al.,2021)。CTSD屬于天冬氨酸蛋白酶,分布于多種細胞和組織中,主要在粗內(nèi)質(zhì)網(wǎng)中作為未成熟肽產(chǎn)生,到達目標(biāo)位點(吞噬體、內(nèi)體和溶酶體)后通過蛋白水解裂解而激活(Markmann et al.,2015;Yu et al.,2017;Zhang et al.,2017;Liu et al.,2020)。CTSD具有調(diào)節(jié)多種多肽、酶和生長因子的活性,是細胞信號傳導(dǎo)的重要調(diào)節(jié)因子(Benes et al.,2008),在維持細胞穩(wěn)態(tài)中發(fā)揮重要作用。CTSD失衡在阿爾茨海默?。≦iao et al.,2008)、急性腎損傷(Cocchiaro et al.,2016)、冠狀動脈事件(Gon?alves et al.,2016;Mijan-ovic et al.,2021)、胰腺炎(Aghdassi et al.,2018)及癌癥(Kang et al.,2020)中扮演著重要角色,因此,CTSD已成為疾病診斷與治療的重要靶點?!厩叭搜芯窟M展】CTSD已參與機體對抗病原微生物的免疫應(yīng)答(Choi et al.,2014;Liang et al.,2018;Huang et al.,2020,2021)。已有研究表明,CTSD水平在小鼠巨噬細胞RAW264.7感染細菌后上調(diào),是一種潛在的廣譜抗菌蛋白(Fu et al.,2020)。在水生生物中,已從魚類、甲殼類及海參中克隆獲得CTSD基因(Yu et al.,2017;Cheng et al.,2022;Wang et al.,2022)。Xiao等(2015)研究表明,經(jīng)大腸桿菌或金黃色葡萄球菌攻毒后,七鰓鰻(Lampetra japonica)頰腺CTSD基因相對表達量分別較PBS組升高8.5倍或6.5倍。Yu等(2020)研究發(fā)現(xiàn),經(jīng)LPS刺激后克氏螯蝦(Procam-barus clarkii)肝胰腺中的CTSD基因表達水平在所有測試時間點均上調(diào),并在LPS注射24h后達峰值,而感染Poly(I:C)后肝胰腺中的CTSD基因表達水平在感染6h后達峰值。此外,在感染細菌或病毒后,CTSD基因在大菱鲆(Jia and Zhang,2009)、企鵝珍珠貝(潘俐玲等,2012)、草魚(Dong et al.,2012)、黃花魚(Liu et al.,2012)、條石鯛(Choi et al.,2014)、香魚(Jiao et al.,2014)、日本囊對蝦(張曼等,2016)、克氏原螯蝦(Huang et al.,2021)、斜帶石斑魚(Wang etal.,2022)等物種不同組織中的表達水平均呈明顯的上調(diào)趨勢。因此,開展CTSD基因表達模式及其功能研究對揭示機體抵抗病原微生物侵染的免疫防御機制具有重要意義?!颈狙芯壳腥朦c】中國大鯢(Andrias davidianus)是現(xiàn)存最大、最古老的兩棲動物,也是我國珍貴的動物種質(zhì)資源之一。隨著中國大鯢的成功繁育,現(xiàn)已發(fā)展成為我國中西部重要的經(jīng)濟水生物種(He et al.,2018),但近年來大鯢疾病暴發(fā)頻繁,尤其是細菌性疾病嚴重制約著大鯢產(chǎn)業(yè)的健康發(fā)展(Gui,2010;Qi et al.,2016;Wang et al.,2018)。因此,亟待探究大鯢的免疫調(diào)控機制,為大鯢細菌性疾病的預(yù)防和治療提供可靠靶點?!緮M解決的關(guān)鍵問題】克隆中國大鯢CTSD基因cDNA序列及進行生物信息學(xué)分析,并檢測健康和嗜水氣單胞菌(Aeromonas hydrophila)感染后中國大鯢組織中CTSD基因的表達情況,為深入探究大鯢抵抗病原入侵的作用機理提供理論依據(jù)。
1材料與方法
1.1試驗材料
供試中國大鯢購自貴州省黔夢科技有限公司, 平均體質(zhì)量200±25g。將大鯢置于水箱中飼養(yǎng),養(yǎng)殖 用水為充氣去氯的自來水,控制飼養(yǎng)水溫為(19±1)℃,且正式試驗前馴養(yǎng)不少于1周。嗜水氣單胞菌購自 中國普通微生物菌種保藏管理中心。動物試驗由貴 陽學(xué)院實驗動物倫理委員會批準(zhǔn),批準(zhǔn)號GYU-YJS-2021-001。
1.2病原菌感染及樣品準(zhǔn)備
將30尾中國大鯢隨機分成2組(細菌感染組和 對照組),每組15尾。細菌感染組以2.5×104CFU/g的劑量向大鯢腹腔注射嗜水氣單胞菌懸液0.5mL(Yang et al.,2017),對照組大鯢則腹腔注射0.5mL的PBS。分別于感染前(0h)及感染后12、24、48和 72h無菌解剖采集大鯢的肝臟、脾臟、肌肉、皮膚、腎 臟、心臟、肺臟、腦、腸道和胃等組織樣品,液氮速凍 保存?zhèn)溆谩?/p>
1.3中國大鯢CTSD基因cDNA序列克隆
從大鯢皮膚轉(zhuǎn)錄組數(shù)據(jù)庫中獲取CTSD基因cDNA序列(Bai et al.,2021),利用Primer Premier 5.0 設(shè)計特異性擴增引物(表1),使用Roche5/3'RACE試劑盒分別擴增5'端和3'端序列,通過普通RT-PCR 擴增其中間片段。特異性擴增產(chǎn)物以1.0%瓊脂糖 凝膠電泳進行檢測,經(jīng)純化回收試劑盒分離純化的 目的基因片段連接至pMD19-T載體,再轉(zhuǎn)化大腸桿菌DH5a感受態(tài)細胞,使用含氨芐青霉素(Apm+)的LA培養(yǎng)基挑選克隆菌株進行PCR鑒定,并將陽性克隆菌株送至深圳華大基因科技有限公司測序。
1.4生物信息學(xué)分析
使用 NCBI 中的 ORF Finder(http://www.ncbi.nlm.nih.gov/orffinder/)查找中國大鯢CTSD基因開放閱讀框(ORF)及其推導(dǎo)氨基酸序列;利用 ComputepI/Mw tool(https://web.expasy.org/compute_pi/)預(yù)測其編碼蛋白的相對分子量和理論等電點(pI);運用ExPASy-ProtParam(https://web.expasy.org/protparam/)預(yù)測 CTSD蛋白穩(wěn)定性;通過 SignalP-5.0(https://ser-vices.healthtech.dtu.dk/services/SignalP-5.0/)預(yù)測CTSD氨基酸信號肽;使用TMHMM 2.0(http://www.cbs.dtu.dk/services/TMHMM-2.0/)預(yù)測蛋白跨膜結(jié)構(gòu);運用CELLO(http://cello.life.nctu.edu.tw/nctu.edu.tw)進行蛋白亞細胞定位分析;利用CD search(https://www.ncbi.nlm.nih.gov/search/all/?term=CDD)預(yù)測蛋白保守結(jié)構(gòu)域;以NetPhos 3.1(http://www.cbs.dtu.dk/services/NetPhos/)預(yù)測蛋白磷酸化位點;通過NPS@SOPMA(https://npsa-prabi.ibcp. fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)和SWISS-MODEL(https://swissmodel.expasy.org/)分別預(yù)測蛋白二、三級結(jié)構(gòu);使用 NetNGlyc 1.0(https://services. healthtech.dtu.dk/service.php?NetNGlyc-1.0)預(yù)測其N-糖基化位點;利用NCBI中的BLAST(http://blast.ncbi.nim.nih.gov/Blast.cgi)進行同源比對分析;采用Clustal Omega(https://www.ebi.ac.uk/Tools/msa/clus-talo/)進行多序列比對,并以MEGA7.0的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進化樹。
1.5中國大鯢CTSD基因組織表達及嗜水氣單胞菌感染后的免疫應(yīng)答
采用實時熒光定量PCR檢測中國大鯢CTSD基因組織表達特征及嗜水氣單胞菌感染后的免疫應(yīng)答,以EF-la為內(nèi)參基因。按TRIzol試劑(Invitro-gen)使用說明提取各組織總RNA,使用First StrandcDNA Synthesis Kit(Thermo Scientific)反轉(zhuǎn)錄合成cDNA,然后按SYBR Green PCR MasterMix試劑盒(Trans-Script)說明,在Bio-Rad CXF96熒光定量PCR儀上進行定量分析,擴增引物序列信息見表1。實時熒光定量PCR反應(yīng)體系20.0 μL:SYBR GreenPCR Mix 10.0 μL,上、下游引物(10umol/L)各1.0μL,cDNA模板1.0μL,雙蒸水7.0μL。擴增程序:95℃預(yù)變性2min;95℃15s,57℃15s,65℃下采集熒光信號,進行40個循環(huán)。試驗重復(fù)3次。通過2-4a法計算目的基因相對表達量(Livak and Schmittgen,2001),采用 SPSS 17.0進行單因素方差分析(Oneway AVONA),并以 GraphPad Prism 5.0 制圖。
2結(jié)果與分析
2.1中國大鯢CTSD基因cDNA克隆
從中國大鯢皮膚轉(zhuǎn)錄組測序數(shù)據(jù)庫中獲取 CTSD基因cDNA序列(2022 bp),根據(jù)序列設(shè)計引物進行RT-PCR和RACE擴增,擴增產(chǎn)物測序結(jié)果(圖1)顯示,中國大鯢CTSD基因的中間片段及5'和3'端cDNA序列分別為1810、294和498bp。將中間片段與5'和3'端cDNA序列進行拼接,得到的中國大鯢CTSD基因cDNA序列全長1992bp,包括1197bp的ORF、136bp的5'端非編碼區(qū)(5'-UTR)和659bp的3'端非編碼區(qū)(3'-UTR)。中國大鯢CTSD基因cDNA序列共編碼398個氨基酸殘基,以甘氨酸(Gly)和亮氨酸(Leu)的含量較多,分別占10.8%和9.8%。
2.2中國大鯢CTSD蛋白生物信息學(xué)分析結(jié)果
2.2.1理化性質(zhì)分析利用ProtParam分析
中國大鯢CTSD蛋白理化性質(zhì),結(jié)果表明,中國大鯢CTSD蛋白分子式為C1950H3033N493O569S16,相對分子量為43kD,pI為6.07,是一種酸性蛋白。中國大鯢CTSD蛋白 不穩(wěn)定指數(shù)為35.42,屬于穩(wěn)定蛋白;蛋白脂溶指數(shù) 為93.77,平均親水系數(shù)為0.117,屬于疏水性蛋白。 進一步采用ProtScale預(yù)測CTSD蛋白親/疏水性,結(jié)果(圖2)顯示,第10位丙氨酸(Ala)的數(shù)值最大(3.100),第224位蘇氨酸(Thr)的數(shù)值最?。?2.433),總平均親水系數(shù)(GRAVY)為0.117,屬于疏水性 蛋白。
2.2.2跨膜結(jié)構(gòu)、信號肽及亞細胞定位預(yù)測分析
通過TMHMM2.0預(yù)測蛋白跨膜結(jié)構(gòu),結(jié)果發(fā)現(xiàn)中國大鯢CTSD蛋白含有跨膜結(jié)構(gòu)(圖3),屬于跨膜蛋白。SignalP-5.0預(yù)測結(jié)果顯示,中國大鯢CTSD蛋白 含有信號肽(圖4),且其分值為0.9482;信號肽位于 第1~18位氨基酸處,其序列為MRVSCLILLAPLVLCCTA。利用CELLO對中國大鯢CTSD蛋白進 行亞細胞定位預(yù)測分析,結(jié)果(表2)顯示,中國大鯢CTSD蛋白主要定位于溶酶體(可靠性分值3.624), 其次是細胞外(可靠性分值0.906)和細胞質(zhì)膜(可靠 性分值0.328),定位于細胞骨架的可靠性分值最?。?.003)。
2.2.3保守結(jié)構(gòu)域、N-糖基化位點及磷酸化位點預(yù)
測蛋白保守結(jié)構(gòu)域預(yù)測結(jié)果(圖5)顯示,中國大鯢 CTSD蛋白屬于天冬氨酸CTS家族成員,在第19~47位氨基酸處存在1個A1前肽結(jié)構(gòu)域,在第70~393位氨基酸處存在Cathepsin_D2天冬氨酸蛋白酶結(jié)構(gòu) 域。此外,中國大鯢CTSD蛋白含有2個天冬氨酸 蛋白酶活性位點(第79~189位和第268~311位氨基 酸處)和3個N-糖基化位點(131Asn、22Asn和249Asn)。NetPhos 3.1預(yù)測結(jié)果(圖6)顯示,中國大鯢CTSD蛋白存在33個潛在的磷酸化位點,其中絲氨酸(Ser)磷酸化位點15個、蘇氨酸(Thr)磷酸化位點13個、酪氨酸(Tyr)磷酸化位點5個。
2.2.4蛋白二、三級結(jié)構(gòu)預(yù)測NPS@SOPMA測
結(jié)果(圖7)顯示,中國大鯢CTSD二級結(jié)構(gòu)中無規(guī)則 卷曲占為42.46%,延伸鏈占31.91%,?-螺旋占18.34%, β-轉(zhuǎn)角占7.29%。以美洲黃鱸魚(Perca flavescens)CTSD蛋白(XP 028431867.1)的晶體結(jié)構(gòu)為模板,通過SWISS-MODEL構(gòu)建中國大鯢CTSD蛋白三級結(jié)構(gòu),結(jié)果(圖8)顯示,中國大鯢CTSD蛋白與美洲
黃鱸魚CTSD蛋白具有79.29%的序列一致性。
2.2.5多序列比對分析及系統(tǒng)發(fā)育進化樹構(gòu)建
利用Clustal Omega對不同物種的CTSD氨基酸序列 進行比對分析,結(jié)果(圖9)顯示,中國大鯢CTSD氨基 酸序列與其他10個物種的CTSD氨基酸序列具有較 高的相似性,均包含保守的N-糖基化位點131Asn。通過BLAST比對分析發(fā)現(xiàn),中國大鯢CTSD氨基酸序列與東北小鯢(Hynobius leechii)CTSD氨基酸序列的相似性最高,達88.68%,其次是塞內(nèi)加爾鰨(Solea senegalensis)CTSD氨基酸序列,兩者相似性為80.26%(表5)?;贑TSD氨基酸序列相似性,使用MEGA7.0中的NJ法構(gòu)建系統(tǒng)發(fā)育進化樹(圖10),結(jié)果顯 示中國大鯢與東北小鯢的親緣關(guān)系最近,與魚類、鳥 類和人類的親緣關(guān)系較遠。
2.3CTSD基因在健康中國大鯢不同組織中的表達情況
以EFI-α為內(nèi)參基因,通過實時熒光定量PCR 檢測CTSD基因在健康中國大鯢各組織中的表達情 況,結(jié)果(圖11)顯示,CTSD基因在健康中國大鯢的 肺臟、肌肉、皮膚、腎臟、肝臟、脾臟、心臟、胃、腦和腸 道等10個組織中均有表達,且以肺臟、肌肉、腸道和 脾臟中的相對表達量較高,顯著高于在皮膚、腦和胃 中的相對表達量(Plt;0.05,下同)。
2.4CTSD基因在中國大鯢感染嗜水氣單胞菌后的表達變化
以嗜水氣單胞菌經(jīng)腹腔注射感染中國大鯢后, 分別于感染前(0h)及感染后12、24、48和72h采集中國大鯢的腎臟、肝臟、脾臟、肌肉和皮膚樣品,利用實時熒光定量PCR檢測 CTSD基因的表達變化。如圖 12所示,感染嗜水氣單胞菌后,CTSD基因在中國大鯢腎臟中的相對表達量在感染后 12 h時顯著升高,至感染后72 h達最大值,極顯著高于對照組(Plt;0.01,下同),是對照組的 13.88倍;CTSD基因在肝臟中的相對表達量在感染后12和72h時極顯著升高,在感染后72 h達最大值,是對照組的35.67倍;CTSD基因在脾臟中的相對表達量在感染后12和72 h時均顯著高于對照組,且在感染后72 h達最高值,是對照組的 5.43倍;CTSD基因在肌肉中的相對表達量在感染后12 h時達最高值,極顯著高于對照組,是對照組的42.96倍;CTSD基因在皮膚中的相對表達量在感染后72h時顯著高于對照組,是對照組的1.74倍。由此推測,CTSD基因在中國大鯢抗病原菌入侵的免疫反應(yīng)中發(fā)揮作用。
3討論
CTSD在維持細胞穩(wěn)態(tài)方面發(fā)揮著重要作用,近年來有研究證實CTSD失衡與很多疾病的發(fā)生密切相關(guān),因此受到廣泛關(guān)注。在水生生物中,CTSD與機體免疫密切相關(guān),已經(jīng)從魚類(Jia and Zhang,2009;Dong et al., 2012; Choi et al.,2014; Xiao et al.,2015;Wang et al.,2022)、甲殼類(潘俐玲等,2012;Yu et al.,2020;Huang et al.,2021)和刺參(Yu et al.,2017)等物種中克隆獲得CTSD基因。本研究通過RACE擴增獲得的中國大鯢CTSD基因cDNA序列全長1992bp,其ORF為1197bp,共編碼398個氨基酸殘基;中國大鯢CTSD蛋白屬于酸性穩(wěn)定蛋白,含有跨膜結(jié)構(gòu)和信號肽,主要定位于溶酶體,其氨基酸序列包含1個典型的Cathepsin D2天冬氨酸蛋白酶結(jié)構(gòu)域(第70~393位氨基酸處)和2個天冬氨酸蛋白酶活性位點(第79~189位和第268~311位氨基酸處)。天冬氨酸蛋白酶活性位點是CTSD 的特有結(jié)構(gòu),在斜帶石斑魚(Choi et al., 2014; Wang et al.,2022)、刺參(Yu et al.,2017)、克氏原螯蝦(Yu et al.,2020)及日本沼蝦(Cheng et al.,2022)等物種的CTSD氨基酸序列中也發(fā)現(xiàn)類似結(jié)構(gòu)。中國大鯢CTSD氨基酸序列具有高度的保守性,與東北小鯢CTSD氨基酸序列的相似性最高,達 88.68%,與人類、小鼠和原雞的CTSD氨基酸序列相似性也超過70.00%?;?CTSD氨基酸序列相似性構(gòu)建的系統(tǒng)發(fā)育進化樹也顯示,中國大鯢與東北小鯢的親緣關(guān)系最近,聚類在同一分支上。此外,中國大鯢CTSD蛋白與美洲黃鱸魚CTSD蛋白的三級結(jié)構(gòu)最相近,具有79.29%的序列一致性。
N-糖基化是蛋白翻譯后最常見的修飾之一,影響蛋白折疊、細胞定位和周轉(zhuǎn)等功能(Mazumder etal.,2012)。N-糖基化對CTSD錨定于溶酶體至關(guān)重要,在細胞免疫、蛋白翻譯調(diào)控及蛋白降解等諸多生物過程中發(fā)揮作用(Choi et al.,2014)。糖基化位點數(shù)量差異可能與蛋白在糖基化過程中的功能有關(guān)(Cheng et al., 2022)。不同物種 CTSD 的 N-糖基化位點數(shù)目存在差異,其中,野豬CTSD含有3 個N-糖基化位點(Mei et al.,2008),七鰓鰻CTSD僅有1個N-糖基化位點(Xiao et al.,2015),刺參CTSD含有2 個N-糖基化位點(Yu et al.,2017),中華絨螯蟹CTSD含有2個N-糖基化位點(Ning et al.,2018),克氏原螯蝦CTSD含有2個N-糖基化位點(Yu et al.,2020),日本沼蝦CTSD僅有1個N-糖基化位點(Cheng et al.,2022)。本研究結(jié)果表明,中國大鯢CTSD蛋白中含有3個N-糖基化位點(131Asn、22Asn和249Asn),其中,Asn131位點在不同物種中高度保守,而22Asn和249Asn位點在部分動物中被天門冬氨酸(Asp)替代。
CTSD是一種溶酶體天冬氨酸內(nèi)切酶,由于在維持細胞穩(wěn)態(tài)中發(fā)揮重要作用,因此在真核生物的所有組織中幾乎均有表達(Liu et al.,2012;Jiao etal.,2014;Ning et al.,2018;Huang et al.,2021)。本研究結(jié)果顯示,CTSD基因在健康中國大鯢的肺臟、肌肉、皮膚、腎臟、肝臟、脾臟、心臟、胃、腦和腸道等10個組織中均有表達,且以肺臟、肌肉、腸道和脾臟中的相對表達量較高,在皮膚中的相對表達量最低。中國大鯢CTSD基因在脾臟和腸道中高表達可能與其免疫功能有關(guān),脾臟是重要的免疫器官,腸道則是兩棲動物重要的黏膜免疫相關(guān)器官,許多免疫基因(IL-Iβ、IL-10和IL-8)都在腸道中表達(Zhang and Li,2014;Qi et al.,2015),與中國大鯢CTSA基因(Zhanget al.,2017)、CTSC基因(Wang et al.,2018)在各組織中的表達情況相似。
在受病原體侵染時,CTSD基因在很多物種中表現(xiàn)出不同程度的表達變化,故推測CTSD基因參與機體的免疫防御(Jia and Zhang,2009;Liu et al.,2012;Yu et al.,2017;Wang et al.,2022)。本研究以嗜水氣單胞菌經(jīng)腹腔注射感染中國大鯢,結(jié)果發(fā)現(xiàn)在感染后72h,腎臟和肝臟中的CTSD基因相對表達量極顯著升高,分別是對照組的13.88和35.67倍;脾臟和皮膚中的CTSD基因相對表達量顯著升高,分別是對照組的5.43和1.74倍;肌肉中的CTSD基因相對表達量則在感染后12h極顯著升高到最高值,是對照組的42.96倍。與此相似,石鯛在感染不同病原微生物[遲緩愛德華氏菌(Edwardsiellatarda)、海豚鏈球菌(Streptococcus iniae)及真鯛虹彩病毒(RSIV)]后,CTSD基因在腎臟和脾臟中的表達均顯著上調(diào)(Choi et al.,2014);感染鰻利斯頓氏菌(Listonella anguillarum)后,香魚肝臟、脾臟、白細胞和頭腎中的CTSD基因表達顯著上調(diào)(Jiao et al.,2014)。由此可見,CTSD基因可能在中國大鯢抗病原菌入侵的免疫反應(yīng)中發(fā)揮作用。
4結(jié)論
中國大鯢CTSD氨基酸序列具有高度的保守性,包含1個典型的天冬氨酸蛋白酶結(jié)構(gòu)域和2個天冬氨酸蛋白酶活性位點;CTSD基因呈組成性表達,可能在中國大鯢抗病原菌入侵的免疫反應(yīng)中發(fā)揮作用。
參考文獻(References):
潘俐玲,黃桂菊,成書營,王曉寧,喻達輝.2012.企鵝珍珠貝組織蛋白酶D的cDNA克隆、序列特征分析和應(yīng)激表達研究[J].南方水產(chǎn)科學(xué),8(2):22-29.[Pan LL,Huang G J, Cheng S Y, Wang X N, Yu D H. 2012. cDNA cloning, characterization and challenge-based expression profiles of cathepsin D in winged pearl oyster Pteria penguin [J].
South China Fisheries Science,8(2):22-29.] doi: 10.3969/ j.issn.2095-0780.2012.02.004.
徐揚,王姿曼,李俊輝,梁飛龍,鄧岳文,楊創(chuàng)業(yè).2021.大珠母貝組織蛋白酶B基因克隆及其表達分析[J].南方農(nóng)業(yè)學(xué)報,52(5):1353-1361.[Xu Y,Wang Z M,LiJH,Liang F L, Deng Y W, Yang C Y. 2021. Cloning and expression analysis of cathepsin B gene from Pinctada maxima[J].
Journal of Southern Agriculture, 52 (5) : 1353-1361.] doi :10.3969/j.issn.2095-1191.2021.05.026.
張曼,程光平,蘇永全,徐伊樺,馮文榮,王軍,宋曉紅,毛勇.2016.日本囊對蝦(Marsupenaeus japonicus)組織蛋白酶 D基因克隆及表達分析[J].海洋學(xué)報,38(8):52-61.
[Zhang M,Cheng G P,Su Y Q,Xu Y H,F(xiàn)eng W R,Wang J, Song X H, Mao Y. 2016. Molecular cloning and expression analysis of cathepsin D from kuruma shrimp (Marsupenaeus japonicus) [J]. Haiyang Xuebao,38(8) :52-61.]doi: 10.3969/j.issn.0253-4193.2016.08.006.
Aghdassi A A, John D S, Sendler M, Weiss F U,Reinheckel T, Mayerle J, Lerch M M. 2018. Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis [J].
Journal of Biological Chemistry,293 (3) : 1018-1029. doi:10.1074/jbc.M117.814772.
Bai Y, Meng Y L, Luo J L, Wang H, Li G Y, Li C. 2021. Fulllength transcriptome assembly of Andrias davidianus (Amphibia: Caudata) skin via hybrid sequencing[J]. Bioscience Reports, 41 (8) : BSR20210511. doi: 10.1042/Bsr
20210511. Benes P, Vetvicka V, Fusek M. 2008. Cathepsin D—Many functions of one aspartic protease[J]. Critical Reviews in Oncology/Hematology, 68 (1) : 12-28. doi: 10.1016/j.crit- revonc.2008.02.008.
Cheng D,Zhang W Y,Jiang S F,Xiong Y W,Jin S B,Pan F Y, Zhu J P, Gong Y S, Wu Y, Qiao H, Fu H T. 2022. Cathepsin D plays a vital role in Macrobrachium nipponense of ovary maturation: Identification,characterization,and function analysis[J]. Genes, 13 (8) : 1495. doi: 10.3390/genes
13081495. Choi K M, Shim S H, An C M,Nam B H,Kim Y O,Kim J W, Park C I. 2014. Cloning, characterisation, and expression analysis of the cathepsin D gene from rock bream (Oplegnathus fasciatus) [J]. Fish amp; Shellfish Immunology,40(1): 253-258. doi:10.1016/i.fsi.2014.07.013.
Cocchiaro P,F(xiàn)ox C, Tregidgo N W, Howarth R, Wood K M, Situmorang G R, Pavone L M, Sheerin N S, Moles A.
2016. Lysosomal protease cathepsin D: A new driver of apoptosis during acute kidney injury[J]. Scientific Reports, 6:27112. doi:10.1038/srep27112.
Dong Z D,Zhang J,Ji X S,Zhou F N,F(xiàn)u Y,Chen W Y,Zeng
Y Q, Li T M, Wang H. 2012. Molecular cloning,characterization and expression of cathepsin D from grass carp (Ctenopharyngodon idella)[J]. Fish amp; Shellfish Immunology,33(5):1207-1214. doi:10.1016/j.fsi.2012.09.012.
Fu Q H, Yuan J B,Wang LT,Ran H Y,Li F,Liu F,Zhang J Y, Liu W H, Huang W, Huang Y, Xia X F. 2020. Proteomic analysis of murine macrophages mitochondria and lysosomes reveal cathepsin D as a potential broad-spectrum antimicrobial protein [J]. Journal of Proteomics, 223: 103 821. doi:10.1016/j.jprot.2020.103821.
Gon?alves I, Hultman K, Dunér P, Edsfeldt A, Hedblad B, Fredrikson G N, Bj?rkbacka H, Nilsson J, Bengtsson E.
2016. High levels of cathepsin D and cystatin B are associated with increased risk of coronary events[J]. Open Heart,3(1): e000353. doi: 10.1136/openhrt-2015-000353.
Gui J F. 2010. Animal reproduction and physiology: From basis to application[J]. Science China-Life Sciences,53(4) :399-400. doi: 10.1007/s11427-010-0091-7.
He D,Zhu W M,Zeng W,Lin J,Ji Y,Wang Y,Zhang C,Lu Y, Zhao D Q, Su N, Xing X H. 2018. Nutritional and medicinal characteristics of Chinese giant salamander (Andrias davidianus) for applications in healthcare industry by artificial cultivation: A review[J]. Food Science and Human Wellness,7(1):1-10. doi:10.1016/j.fshw.2018.03.001.
Huang L, Dai L S, Wu B L, Zhang Y, Chen J,He J X. 2020. Identification and immunoregulatory role of cathepsin A in the red swamp crayfish, Procambarus clarkii [J]. International Journal of Biological Macromolecules, 153: 865-872.doi:10.1016/j.ijbiomac.2020.03.051.
Huang L, Wu B L,He J X, Zhang Y, Chen J, Chen X J. 2021. Molecular characterization and functional analysis of the lysosomal cathepsin D-like gene in red swamp crayfish, Procambarus clarkii[J]. Genome,64(12):1041-1051. doi:10.1139/gen-2020-0154.
Jia A R, Zhang X H. 2009. Molecular cloning, characterization and expression analysis of cathepsin D gene from turbot Scophthalmus maximus [J]. Fish amp; Shellfish Immunology,26(4):606-613. doi:10.1016/j.fsi.2008.09.011.
Jiao Y, Li C H, Lu X J, Chen J. 2014. Characterization and expression of sweetfish (Pleco glossus altivelis) cathepsin D[J]. Zoological Research,35(4):294-299. doi: 10.13918/ j.issn.2095-8137.2014.4.294.
Kang J, Yu Y,Jeong S,Lee H,Heo H J,Park J J,Na H S,Ko D S, Kim Y H. 2020. Prognostic role of high cathepsin D expression in breast cancer: A systematic review and metaanalysis [J]. Therapeutic Advances in Medical Oncology,12:1-13. doi:10.1177/1758835920927838.
Liang F R,He H S,Zhang C W,Xu X M,Zeng Z P, Yuan J P, Hong Y H, Wang J H. 2018. Molecular cloning and functional characterization of cathepsin B from Nile tilapia (Oreochromis niloticus) [J]. International Journal of Biological Macromolecules, 116: 71-83. doi: 10.1016/j.ijbio-mac.2018.04.160.
Liu Q N, Kausar S, Gul I, Zhou H L, Abbas M N, Dai L S.
2020. The red swamp crayfish, Procambarus clarki cathepsin C, participates in the innate immune response to the viral and bacterial pathogens [J]. Fish amp; Shellfish Immunology,100:436-444. doi:10.1016/j.fsi.2020.03.034.
Liu X Z, Shi G, Cui D L, Wang R X, Xu T J. 2012. Molecular cloning and comprehensive characterization of cathepsin D in the Miiuy croaker Miichthys miiuy[J]. Fish amp; Shellfish Immunology,32(3):464-468. doi: 10.1016/j.fsi.2011.11.
033. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-AAcT method[J]. Methods, 25 (4) : 402-408. doi: 10.1006/ meth.2001.1262.
Markmann S, Thelen M, Cornils K, Schweizer M, BrockeAhmadinejad N, Willnow T, Heeren J, Gieselmann V, Braulke T, Kollmann K. 2015. Lrpl/LDL receptor play critical roles in mannose 6-phosphate-independent lysosomal enzyme targeting [J]. Traffic, 16 (7) : 743-159. doi:10.1111/tra.12284.
Mazumder R, Morampudi K S, Motwani M, Vasudevan S, Goldman R. 2012. Proteome-wide analysis of singlenucleotide variations in the N-glycosylation sequon of human genes [J]. PLoS One, 7(5) : e36212. doi: 10.1371/ journal.pone.0036212.
Mei Y J, Chen Y S, Li J Q, Gao P, Wang C,Zhang H,Ling F, Li Y F,Xie S H, Li S X, Zhang G Q. 2008. Sequence identification, tissue distribution and polymorphism of the porcine cathepsin D (CTSD) gene[J]. Animal Biotechnology,19(3):144-158. doi:10.1080/10495390802072088.
Mijanovic O, Petushkova A I, Brankovic A, Turk B, Solovieva A B, Nikitkina A I, Bolevich S, Timashev P S, Parodi A, Zamyatnin Jr A A. 2021. Cathepsin D–Managing the deli- cate balance [J]. Pharmaceutics, 13 (6) : 837. doi: 10.3390/ pharmaceutics13060837.
Ning M X, Yuan M J,Liu M,Gao Q,Wei P P,Gu W,Wang W, Meng Q G. 2018. Characterization of cathepsin D from Eriocheir sinensis involved in Spiroplasma eriocheiris infection[J]. Developmental amp; Comparative Immunology,86:1-8. doi: 10.1016/j.dci.2018.04.018.
Patel S, Homaei A, El-Seedi H R, Akhtar N. 2018. Cathepsins: Proteases that are vital for survival but can also be fatal [J]. Biomedicine amp; Pharmacotherapy, 105: 526-532. doi: 10.1016/j.biopha.2018.05.148.
Qi Z T, Zhang Q H, Wang Z S,Zhao W H, Gao Q. 2015. Cloning of interleukin-10 from African clawed frog (Xenopus tropicalis) , with the finding of IL-19/20 homologue in the IL-10 locus[J]. Journal of Immunology Research, 2015: 462138. doi:10.1155/2015/462138.
Qi Z T,Zhang Q H, Wang Z S, Ma T Y,Zhou J,Holland J W, Gao Q. 2016. Transcriptome analysis of the endangered
Chinese giant salamander (Andrias davidianus) : Immune modulation in response to Aeromonas hydrophila infection [J]. Veterinary Immunology and Immunopathology, 169: 85-95. doi:10.1016/j.vetimm.2015.11.004.
Qiao L Y, Hamamichi S, Caldwell K A, Caldwell G A, Yacoubian T A, Wilson S, Xie Z L, Speake L D, Parks R, Crabtree D,Liang Q L,Crimmins S,Schneider L,Uchiyama Y, Iwatsubo T,Zhou Y,Peng L S,Lu Y M, Standaert D G, Walls K C,Shacka J J,Roth K A,Zhang J H. 2008. Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity[J]. Molecular Brain, 1: 17. doi:10.1186/1756-6606-1-17.
Wang Y X,Han H L,Zhu K C,Xu S F,Han C Z,Jiang Y X, Wei S N, Qin Q W. 2022. Functional analysis of the Cathepsin D gene response to SGIV infection in the orangespotted grouper, Epinephelus coioides [J]. Viruses, 14(8) :1680. doi:10.3390/v14081680.
Wang Z S, Hang P P, Zhang Q H, Xu Q Q, Qi Z T. 2018. Molecular characterization and expression analysis of cathepsin C in Chinese giant salamander (Andrias davidianus) after Aeromonas hydrophila infection [J]. Electronic Journal of Biotechnology, 47-54. doi : 10.1016/j.ejbt.2018.01.002.
Xiao R, Zhang Z L, Wang H Y,Han Y L, Gou M, Li B W, Duan D D, Wang J H, Liu X, Li Q W. 2015. Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica) [J]. Developmental amp; Com-parative Immunology,49 (1) : 149-156. doi: 10.1016/j.dci.2014.10.014.
Yang H, Lan Q J, Liu R R, Cui D, Liu H X,Xiong D M, Li F G, Liu X L, Wang L X. 2017. Characterization of galectin1 from Chinese giant salamanders Andrias davidianus and its involvements during immune response[J]. Developmental and Comparative Immunology,70:59-68. doi: 10.1016/ j.dci.2017.01.004.
Yu C P, Cha Y, Wu F,Xu X B, Qin L,Du M. 2017. Molecular cloning and functional characterization of cathepsin D from sea cucumber Apostichopus japonicus [J]. Fish amp; Shellfish Immunology,70:553-559. doi:10.1016/j.fsi.2017.09.011.
Yu X M, Chen J L, Abbas M N, Gul I, Kausar S, Dai L S.
2020. Characterization of the cathepsin D in Procambarus clarki and its biological role in innate immune responses [J]. Developmental amp; Comparative Immunology, 111: 103766. doi:10.1016/j.dci.2020.103766.
Zhang Q H,Han P P,Huang B,Wang Z S,Qiao G,Wang P Z, Qi Z T. 2017. Molecular cloning, characterization, and expression analysis of cathepsin A in the Chinese giant salamander Andrias davidianus[J]. Journal of Aquatic Animal Health,29(4): 199-207. doi: 10.1080/08997659.2017.
1349007. Zhang Y Z, Li Y Y. 2014. Inflammatory bowel disease: Pathogenesis[J]. World Journal of Gastroenterology, 20(1): 9199. doi:10.3748/wjg.v20.i1.91.
(責(zé)任編輯蘭宗寶)