原題再現(xiàn)
例1 在△ABC中,∠B = ∠C = α(0° < α < 45°),AM ⊥ BC于點(diǎn)M,D是線段MC上的動點(diǎn)(不與點(diǎn)M,C重合),將線段DM繞點(diǎn)D順時針旋轉(zhuǎn)2α得到線段DE.
(1)如圖1,當(dāng)點(diǎn)E在線段AC上時,求證:D是MC的中點(diǎn);
(2)如圖2,若在線段BM上存在點(diǎn)F(不與點(diǎn)B,M重合)滿足DF = DC,連接AE,EF,直接寫出∠AEF的大小,并證明.
破解思路
第(1)問:根據(jù)“線段DM繞點(diǎn)D順時針旋轉(zhuǎn)2α得到線段DE”可知∠EDM = 2α. 因為∠B = ∠C = α,所以∠CED = ∠EDM - ∠C = 2α - α = α,從而得到DE = DC. 因為DE = DM,所以DC = DM,即D是MC的中點(diǎn). 具體過程請同學(xué)們自己完成.
第(2)問:要求∠AEF的大小,可以通過觀察、度量、猜想得到∠AEF為90°,面對“蝶型”,只要證明∠MAE = ∠MFE即可. 下面詳細(xì)介紹解題策略和解法.
策略1:看到“中點(diǎn)”,倍長中線或者構(gòu)造中位線.
解法1:如圖3,延長ED至點(diǎn)Q,使DQ = DE,連接CQ,MQ,ME.
易得△CDQ ≌ △FDE,
∴∠QCD = ∠EFD.
∵DE = DQ = DM,
∴∠EMQ = ∠AMC = 90°,∠DQM = ∠ACM = α,
∴△AMC ∽ △EMQ,
易得∠AME = ∠CMQ,
∴△AME ∽ △CMQ,
∴∠MAE = ∠MCQ,
∴∠MAE = ∠MFE,
∴∠AEF = ∠AMF = 90°.
解法2:設(shè)DM = DE = x,CD = DF = y,則MF = y - x,BM = CM = x + y,
∴BF = BM - FM = (x + y) - (y - x) = 2x,
如圖4,延長FE至點(diǎn)K,使EK = EF,連接AK,KC,AF.
∵DF = DC,
∴CK [?] DE,CK = 2DE = 2x = BF,
∴∠KCF = ∠EDF = 2α,∠ACK = ∠B = α,
∴△ABF ≌ △ACK,
∴AF = AK.
∵EF = EK,
∴AE ⊥ EK,∴∠AEF = 90°.
策略2:看到“二倍角”,構(gòu)造角平分線找等角.
解法3:如圖5,作∠EDF的平分線DQ交AM于點(diǎn)Q,連接EQ.
易得△DEQ ≌ △DMQ,∴∠QED = ∠QMD = 90°,MQ = EQ.
∵四邊形DEQM對角互補(bǔ),∴∠AQE = ∠EDM = 2α.
∵∠MDQ = ∠C = α,
∴△AQE ∽ △FDE,
∴∠QAE = ∠DFE,
∴∠AEF = ∠AMF = 90°.
解法4:如圖6,連接AF,作∠EDF的平分線DN交AF于點(diǎn)N,連接MN,EN.
易得△DEN ≌ △DMN,
∴∠MDN = ∠EDN = α = ∠C,
∴DN [?] AC.
∵DF = DC,
∴FN = AN.
∵∠AMF = 90°,
∴AN = FN = MN = EN,
∴∠AEF = 90°.
總結(jié)積累
初中幾何的大部分問題均可以找到通性通法來破解,歸納固定的解決策略,就是“模型化”學(xué)習(xí). 同學(xué)們在學(xué)習(xí)中要積累總結(jié)常見模型,練就“火眼金睛”,解題時準(zhǔn)確識別出相關(guān)模型,這樣可以迅速找到解題思路.
拓展延伸
例2 如圖7,已知等腰直角三角形BAC和等腰直角三角形BED,∠BAC = 90°, ∠EBD = 90°,將等腰直角三角形BED以點(diǎn)B為旋轉(zhuǎn)中心旋轉(zhuǎn),當(dāng)點(diǎn)E,D,C三點(diǎn)共線時停止.取EC的中點(diǎn)O,連接AO.請求出AO與CD之間的關(guān)系.
解法1:如圖8,延長CA至點(diǎn)Q,使得AQ = CA,連接BQ,EQ.
∵AB = AC = AQ,∠BAC = 90°,
∴BQ = BC,∠QBC = 90°.
易得∠1 = ∠2,
∴△BEQ ≌ △BDC,
∴EQ = CD,∠BEQ = ∠BDC = 135°,
∴∠QEC = 90°.
∵A為CQ的中點(diǎn),O為CE的中點(diǎn),
∴AO為△QEC的中位線,
∴QE = 2OA,QE [?] OA,
∴CD = 2OA且CD ⊥ OA.
解法2:如圖9,過點(diǎn)B作BF ⊥ ED于點(diǎn)F,連接AF,AE.
易得△BFD ∽ △BAC,∠1 = ∠2,
∴△BFA ∽ △BDC,∴∠BFA = ∠BDC = 135°,CD = [2]AF,
∴∠CFA = 45°,
∴∠AFE = ∠AFB = 135°.
易得△AFE ≌ △AFB,
∴AE = AB = AC.
∵點(diǎn)O是CE的中點(diǎn),
∴OA ⊥ CE,
∴△OAF是等腰直角三角形,
∴CD = 2OA且CD ⊥ OA.
解法3:如圖10,過點(diǎn)B作BF ⊥ CE于點(diǎn)F,并延長至點(diǎn)G使得BG = OC,連接AF,AG.
易得∠1 = ∠3,
∴△BFA ∽ △BDC,
∴∠5 = ∠6 = 45°.
∵∠2 + ∠4 = 45°,∠3 + ∠4 = 45°,
∴∠1 = ∠3 = ∠2,
∴△AOC ≌ △AGB,
∴OA = GA,OC = GB = OE,
∴BG - BF = OE - EF,
∴FG = FO,
∴△FAG ≌ △FAO,
∴∠G = ∠FOA = ∠COA = 90°,
∴OA ⊥ CE,
∴CD = 2OA且CD ⊥ OA.
解法4:如圖11,過點(diǎn)C作CH ⊥ CD,且CH = CD,連接EH交BC于P,延長AO交EH于點(diǎn)G,連接DH.
易得∠EDH = ∠BDC,
∴△EDH ∽ △BDC,
根據(jù)“蝶形”可知∠BDE = ∠BPE,
∴∠BPE = 45°,
∴∠3 = 90°,
∴EH [?] AC,
∴△EGO ≌ △CAO,
∴EG = AC,∴EH = 2EG,
∴點(diǎn)G是EH的中點(diǎn),∴OG是△ECH的中位線,
∴OG [?] CH,CH = 2OG = 2OA,
∴CD = 2OA且CD ⊥ OA.