摘要:非編碼RNA(non-coding RNA,ncRNA)是一類由生物基因組轉(zhuǎn)錄產(chǎn)生但不編碼蛋白質(zhì)的遺傳信息分子,作為表觀遺傳學研究的主要內(nèi)容,曾一度被視為基因組中的“暗物質(zhì)”或“轉(zhuǎn)錄噪音”。最廣為人知的微小RNA (microRNA,miRNA)是在進化上高度保守的一類長20~24個核苷酸的短鏈非編碼小分子RNA,通過與靶位點堿基互補配對切割降解靶基因轉(zhuǎn)錄本或抑制其翻譯,從而實現(xiàn)對生物體生長發(fā)育等過程的調(diào)控。隨著小RNA測序和降解組測序等miRNA研究手段的發(fā)展,越來越多的miRNA及其生物學功能在動植物中被相繼報道,揭示了miRNA在逆境響應(yīng)過程中的重要調(diào)控作用。筆者較為系統(tǒng)地論述了植物miRNA的特征、合成過程、作用方式及其在抗旱耐鹽方面的研究進展,以期揭示植物抗旱耐鹽的miRNA調(diào)控機理,為創(chuàng)制抗旱耐鹽新種質(zhì)提供依據(jù)。
關(guān)鍵詞:非編碼RNA;鹽脅迫;干旱脅迫;小RNA測序;降解組
中圖分類號:S718;Q522"""" 文獻標志碼:A開放科學(資源服務(wù))標識碼(OSID):
文章編號:1000-2006(2024)04-0001-11
Advancements in the research of miRNAs associated with
plant" drought and salt stress responses
SONG Zihe, ZHEN Yan*
(Co-Innovation Center for"" Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China)
Abstract:
China, as a maritime power with an extensive coastline and abundant coastal resources, also faces challenges due to vast areas of saline-alkali land exacerbated by global warming-induced seasonal droughts. These extreme conditions result in low survival rates for most plants, making research on molecular mechanisms of drought resistance and salt tolerance crucial. Enhancing plant survival in arid and saline-alkali regions can yield significant ecological benefits and economic value. Non-coding RNA (ncRNA) represents a class of genetic information molecules transcribed from the genome that do not encode proteins. Once considered genomic “dark matter” or “transcriptional noise,” ncRNAs, particularly microRNAs (miRNAs), have emerged as pivotal in epigenetic research. miRNAs are short (20-24 nucleotides), highly conserved non-coding small RNA molecules that regulate organismal growth and development by cleaving, degrading, or inhibiting translation of target gene transcripts via complementary base pairing. Advancements in miRNA research methods such as small RNA sequencing and degradome sequencing have unveiled numerous miRNAs and their target genes across animals and plants. Insights into their synthesis, processing, maturation, and functional impacts have expanded. In plants, miRNAs predominantly target genes in the open reading frame, employing a straightforward recognition pattern with full or nearly full complementarity to target site sequences. This simplicity has fueled rapid advancements in plant miRNA research, revealing their pivotal regulatory roles in growth, development, and stress responses. This article systematically reviews plant miRNA features, synthesis processes, modes of action, and recent research progress in drought and salt resistance. It summarizes key techniques and strategies in plant miRNA research, addresses current challenges and future prospects, and aims to deepen understanding of miRNA regulatory mechanisms in plant drought and salt resistance. Such insights provide a foundation for developing new drought- and salt-resistant plant varieties.
China is a maritime power with a long coastline and abundant coastal resources. However, this long costline" brings vast areas of saline-alkali land. Additionally, global warming has led to more" frequent seasonal drought. Under such extreme conditions, the survival rate of most plants is very low. Therefore, research on the molecular mechanisms of drought resistance and salt tolerance is particularly important. Improving the survival rate of plants in arid and saline-alkali areas can bring significant ecological benefits and economic value. Non-coding RNA (ncRNA) is a class of genetic information molecules transcribed from the genome that do not encode proteins. As a major focus of epigenetic research, ncRNAs were once considered the “dark matter” or “transcriptional noise” of the genome. The most well-known type of ncRNA is microRNA (miRNA), a highly conserved class of short non-coding small RNA molecules that are 20-24 nucleotides in length. They regulate the growth and development of organisms by cleaving and degrading target gene transcripts or inhibiting the" translation of target genes through complementary base pairing with target sites. With the development of miRNA research methods such as small RNA sequencing and degradome sequencing, an increasing number of miRNAs and their target genes has been reported in animals and plants. Their biological synthesis, processing, maturation, and functional effects have been elucidated. Plant miRNAs complementarily pair with their target genes mostly in the open reading frame, with a"" full or nearly full complementarity to the target" sequences. These characteristics stimulated the" rapid development in plant miRNA research, and a large amount of research has revealed"" important regulatory roles of miRNAs in plant growth, development, and stress responses. This article provides a systematic review of the features, synthesis process, mode of action, and research progress of plant miRNAs in drought and salt resistance. We summarizes the main techniques and strategies for plant miRNA research in recent years, discuss the existing problems and prospects, and" reveals the" regulatory mechanisms of miRNA in" plant drought and salt resistance, providing a basis for" generating" new varieties of drought and salt resistance.
China, as a maritime power with an extensive coastline and abundant coastal resources, also faces challenges due to vast areas of saline-alkali land exacerbated by global warming-induced seasonal droughts. These extreme conditions result in low survival rates for most plants, making research on molecular mechanisms of drought resistance and salt tolerance crucial. Enhancing plant survival in arid and saline-alkali regions can yield significant ecological benefits and economic value. Non-coding RNA (ncRNA) represents a class of genetic information molecules transcribed from the genome that do not encode proteins. Once considered genomic “dark matter” or \"transcriptional noise,\" ncRNAs, particularly microRNAs (miRNAs), have emerged as pivotal in epigenetic research. miRNAs are short (20-24 nucleotides), highly conserved non-coding small RNA molecules that regulate organismal growth and development by cleaving, degrading, or inhibiting translation of target gene transcripts via complementary base pairing. Advancements in miRNA research methods such as small RNA sequencing and degradome sequencing have unveiled numerous miRNAs and their target genes across animals and plants. Insights into their synthesis, processing, maturation, and functional impacts have expanded. In plants, miRNAs predominantly target genes in the open reading frame, employing a straightforward recognition pattern with full or nearly full complementarity to target site sequences. This simplicity has fueled rapid advancements in plant miRNA research, revealing their pivotal regulatory roles in growth, development, and stress responses. This article systematically reviews plant miRNA features, synthesis processes, modes of action, and recent research progress in drought and salt resistance. It summarizes key techniques and strategies in plant miRNA research, addresses current challenges and future prospects, and aims to deepen understanding of miRNA regulatory mechanisms in plant drought and salt resistance. Such insights provide a foundation for developing new drought- and salt-resistant plant varieties.
Keywords:non-coding RNA; salt stress; drought stress; small RNA-Seq; degradome
土壤鹽漬化以及周期性干旱是全球生態(tài)以及農(nóng)業(yè)面臨的日益嚴重的問題[1-2]。據(jù)聯(lián)合國糧農(nóng)組織報道,全球范圍內(nèi)干旱地區(qū)覆蓋約61億hm2土地(占地球陸地面積約41%),鹽漬土壤面積逾8.33億hm2(占地球陸地面積約5.6%)。干旱和土壤鹽漬化都是影響植物生長的重要非生物脅迫,氣候干旱、地面蒸發(fā)、地下徑流匯集和地下水位接近地表都會促使土壤鹽漬化,因此,干旱和鹽漬兩種脅迫往往會伴隨出現(xiàn)[3]。干旱脅迫時土壤水分含量降低以及鹽脅迫時土壤鹽離子濃度升高,都會使土壤水勢降低,從而導致植物根系吸水困難,因此兩者在一定意義上都屬于滲透脅迫。區(qū)別在于鹽脅迫對植物而言不是單一的逆境信號,其初級脅迫除了滲透脅迫還包含細胞吸收了過多無機離子后引發(fā)的離子毒害[4]。干旱和鹽脅迫均可以進一步誘發(fā)次級氧化脅迫及營養(yǎng)脅迫,從而使植物的呼吸作用、光合作用、代謝以及生長受到嚴重影響[5-7]。對兩種脅迫同時開展研究,更有利于深入了解植物逆境下的調(diào)控機制。近年來,微小RNA(miRNA)通過調(diào)控關(guān)鍵基因在植物生長發(fā)育以及脅迫響應(yīng)中發(fā)揮重要的作用,逐漸成為當前研究的熱點內(nèi)容。筆者從miRNA介導植物響應(yīng)干旱及鹽脅迫的角度切入,總結(jié)國內(nèi)外最新研究進展,為闡明植物抗旱耐鹽機理、提高植物在極端環(huán)境下的適應(yīng)能力提供參考。
1 植物miRNA來源及作用機制
1.1 植物miRNA的發(fā)現(xiàn)及特征
miRNA是真核生物中廣泛存在的一類長20~24個核苷酸的單鏈非編碼小分子RNA,可以通過識別并剪切特定的mRNA,實現(xiàn)其調(diào)控功能。miRNA的發(fā)現(xiàn)可以追溯到1993年,Lee等[8]從秀麗隱桿線蟲(Caenorhabditis elegans)中鑒定出2個不編碼蛋白質(zhì)但可以結(jié)合靶基因并抑制其翻譯的小分子RNA(miRNA)。直到2001年這類小分子RNA被正式命名為microRNA。2002年Reinhart等[9]從擬南芥(Arabidopsis thaliana)中發(fā)現(xiàn)了植物中的首個miRNA。隨著生物信息學的發(fā)展以及高通量測序技術(shù)的迭代更新,越來越多的miRNA被鑒定出來。miRBase數(shù)據(jù)庫(https://www.mirbase.org/)收錄了包括已發(fā)表的miRNA序列數(shù)據(jù)、注釋、預測基因靶標等信息以供查詢和研究,是最主要的miRNA公共數(shù)據(jù)庫之一[10]。
與mRNA相比,miRNA不具有編碼蛋白質(zhì)的能力,本身不含有開放閱讀框(open reading frame,ORF);其次,miRNA 的5′端具有高度保守的特殊“種子”區(qū),因而大多數(shù)miRNA在不同植物體中的序列相對比較保守[11]。此外,miRNA 傾向于靶向一類mRNA,而不是特定的某一個mRNA。動物miRNA與靶基因互補主要在3′端非翻譯區(qū)(3′-untranslated region,3′-UTR),植物miRNA與靶基因的互補區(qū)多在ORF區(qū),部分在3′-UTR區(qū),很少在5′-UTR區(qū)[12-14]。
1.2 植物miRNA的合成
動植物中miRNA生物合成均起始于microRNA基因(MIR)(圖1),其表達需要多種蛋白精準且有序的調(diào)控。與蛋白質(zhì)編碼基因類似,大多數(shù)MIR基因的啟動子中含有轉(zhuǎn)錄因子結(jié)合元件,其中也包括植物激素應(yīng)答元件,表明部分MIR受轉(zhuǎn)錄因子的調(diào)控并且可能參與植物激素信號傳導[15-16]。首先,在RNA聚合酶Ⅱ(Pol Ⅱ)的作用下MIR轉(zhuǎn)錄形成長度為幾百個核苷酸的miRNA初級轉(zhuǎn)錄產(chǎn)物(primary transcript,pri-miRNA)[17-18]。緊接著由RNA結(jié)合蛋白DAWDLE(DDL)結(jié)合并穩(wěn)定pri-miRNA,使其在SmD3/SmB核小體中加工剪切成為具有莖環(huán)結(jié)構(gòu)的前體miRNA(precursor miRNA,pre-miRNA)。這一過程需要C2H2型鋅指蛋白SERRATE(SE)、雙鏈RNA結(jié)合蛋白Hyponastic" Leaves" 1(HYL1)、DICER的同源蛋白Dicer-Like 1(DCL1)和核帽結(jié)合復合物(cap-binding complex,CBC)的協(xié)同作用來完成[19]。DCL是植物pri-miRNA的剪切加工過程中的關(guān)鍵角色,它分兩步縮短pri-miRNA,首先DCL1剪切去除pri-miRNA不完全折疊的末端,形成pre-miRNA的發(fā)夾二級結(jié)構(gòu),之后進一步切割pre-miRNA,生成miRNA/miRNA*雙鏈復合體。在剪切加工過程中SE和HYL1可以提高DCL1切割效率和準確性[20]。隨后HUA enhancer" 1(HEN1)將miRNA/miRNA*雙鏈復合體甲基化以保護其不被miRNA降解酶(small rna degrading nuclease,SDN)降解[21-22]。甲基化的miRNA/miRNA*雙鏈復合體被核轉(zhuǎn)運蛋白Hasty(HST)輸送到細胞質(zhì),隨后miRNA作為引導鏈加載到Argonaute(AGO)蛋白中以形成miRNA誘導沉默復合物miRISC(miRNA-containing RNA induced silencing coplex)[23-24],miRNA*鏈作為隨從鏈穩(wěn)定性較差,通常被降解[25],但有研究表明miRNA*也被發(fā)現(xiàn)可以富集并加載到AGO蛋白中,以抑制特定植物組織或脅迫條件下的基因表達[26]。
1.3 植物miRNA的作用機制
在植物中miRNA作用的主要方式就是降解靶向mRNA[27],阻止進一步的翻譯從而發(fā)揮沉默效應(yīng)。典型的植物miRNA靶位點存在于5′-UTR、ORF和3′-UTR以及非蛋白質(zhì)編碼轉(zhuǎn)錄本中。AGO蛋白的P-element induced wimpy testis(PIWI)結(jié)構(gòu)域形成類似于核糖核酸酶H(RNase H)的折疊,構(gòu)成催化中心[28-29],miRNA與AGO1形成的miRNA誘導的沉默復合物(miRISC)在與目標mRNA配對后,在配對區(qū)域進行切割,產(chǎn)生5′端和3′端的裂解片段[30-31]。然而,并非所有植物miRNA與靶基因配對都會導致AGO催化的剪切。一些植物miRNA靶標在5′和3′端的完美堿基配對區(qū)域內(nèi)嵌入了保守的中心錯配,允許miRISC復合物結(jié)合但阻止剪切的發(fā)生[32-33]。
miRNA也可以通過翻譯抑制發(fā)揮作用[34]。該現(xiàn)象最早在擬南芥中被發(fā)現(xiàn),apetala 2(AP2)是參與花器官發(fā)育調(diào)控基因,miR172靶向該基因使其蛋白的積累受到影響,但是AP2轉(zhuǎn)錄產(chǎn)生的mRNA水平卻無明顯變化[35]。翻譯抑制主要是由AGO1、AGO7和AGO10組裝成的miRISC復合體介導[36]。AGO1-miRISC執(zhí)行的翻譯抑制機制取決于miRNA靶位點的位置。該miRISC靶向5′-UTRs,從而阻斷核糖體募集和翻譯起始,而靶向開放閱讀框架的AGO1-miRISC可阻斷核糖體運動和翻譯延長。由miRNA介導的蛋白質(zhì)翻譯抑制作用可能是由空間位阻引起的,AGO1-miRISCs也可以通過與3′UTR結(jié)合影響帽子依賴性翻譯中的一個特定環(huán)節(jié)。有研究表明與5′UTR結(jié)合的AGO1-miRISC同時抑制帽子依賴性翻譯和非帽子依賴性翻譯,而3′UTR結(jié)合的AGO1-miRISC只抑制帽子依賴性翻譯[37]。
miRNA還可以介導DNA甲基化調(diào)控基因表達,在擬南芥的研究中發(fā)現(xiàn),phabulosa(PHB)和phavoluta(PHV)編碼序列在miRNA互補位點下游被嚴重甲基化,并且在相關(guān)基因突變體中甲基化程度較低[38]。在水稻(Oryza sativa)中,部分pri-miRNA被DCL3加工成24個核苷酸的長miRNA。這些長miRNA被分類到效應(yīng)器AGO4中,通過與靶基因進行堿基配對介導DNA甲基化[39]。
2 植物miRNA研究的主要方法與策略
2.1 miRNA鑒定——小RNA測序
目前廣為研究的小RNA(small RNA)主要是miRNA、short interfering RNA(siRNA)和 PIWI-interacting RNA(piRNA),其中miRNA的研究最為深入。小RNA測序是目前主流的miRNA檢測手段,技術(shù)流程主要包含建庫測序和生物信息分析兩個部分。與大多數(shù)RNA測序方法相似,小RNA測序同樣需要構(gòu)建cDNA文庫。文庫構(gòu)建的第1步則是將所有RNA片段的3′和5′兩端連接接頭,接頭上包含用于后續(xù)測序的引物以及區(qū)分樣品的獨特index,可以在分析測序數(shù)據(jù)時識別單個reads的文庫來源,從而使同時對大量樣本進行測序成為可能。然后逆轉(zhuǎn)錄得到第1鏈的cDNA,經(jīng)過PCR擴增,PAGE膠電泳分離目標DNA片段,切膠回收得到cDNA文庫,在庫檢合格后進行上機測序[40]。高通量測序技術(shù)可以對樣本中所有小RNA家族進行測序和表達定量,從而解析miRNA、siRNA、piRNA和其他非編碼RNA以及相應(yīng)靶序列。測序原始數(shù)據(jù)質(zhì)控后,進行clean reads長度分布統(tǒng)計,小RNA注釋,已知miRNA注釋,已知piRNA注釋,ncRNA分析,新miRNA預測(有參考基因組),差異基因分析,miRNA家族分析,差異表達miRNA聚類分析,miRNA靶基因預測,靶基因GO、KEGG富集分析,協(xié)助研究者從海量數(shù)據(jù)中找出與條件相關(guān)的特異性基因,然后進一步分析這些特異性基因的生物學意義[41]。Chen等[42]將無瓣海桑(Sonneratia apetala)進行鹽脅迫處理,共構(gòu)建9個小RNA文庫進行測序,鑒定出114個已知miRNA和24個新型miRNA,其中40個miRNA在脅迫處理1 d后相較于對照組差異表達,72個miRNA在脅迫處理28 d后相較于對照差異表達。Wu等[43]進行柑橘(Citrus reticulata)的晚熟突變體和野生型的對比研究,構(gòu)建4個小RNA文庫進行測序,鑒定出107個已知miRNA和21個新型miRNA,其中有24個miRNA在兩個類型之間差異表達。
2.2 miRNA靶基因檢測——降解組測序
植物miRNA通常與mRNA進行完全或接近完全的配對引起靶基因轉(zhuǎn)錄本的剪切,從而調(diào)控基因的表達,因此鑒定miRNA的靶基因是了解其功能的關(guān)鍵。普通的生物信息學方法預測準確率較低,而5′-RLM-RACE(5′-RNA ligase mediated rapid amplification of cDNA ends)技術(shù)雖然結(jié)果精準,但需要了解靶標mRNA的序列,且在同一實驗中不能檢測多個靶標,對低表達的靶基因不敏感等諸多問題也局限了其應(yīng)用范圍。隨即一種結(jié)合下一代測序(next-generation sequencing,NGS)和5′-RLM-RACE驗證的高通量檢測方法降解組測序(degradome sequencing)應(yīng)運而生[44]。首先靶基因經(jīng)(RLM-RACE)剪切產(chǎn)生5′端剪切片段和3′端剪切片段,3′剪切片段由于包含有自由的5′單磷酸和3′polyA尾巴,在RNA連接酶的作用下與5′端接頭序列連接。隨后利用oligo(DT)引物將新形成的單鏈RNA序列反轉(zhuǎn)錄成cDNA序列,并進行PCR擴增。未經(jīng)處理的cDNA過長無法滿足高通量測序的要求,所以利用限制性內(nèi)切酶Mme I特異性識別5′接頭上的酶切位點進行切割,產(chǎn)生20~21個核苷酸的產(chǎn)物,接著與3′端DNA接頭連接后進行RCR擴增并上機測序[45]。最后分析降解組文庫的數(shù)據(jù),刪除接頭序列后利用相關(guān)生物信息學工具例如PAREsnip[46]、CleaveLand4[47]或sPARTA[48]進行分析。Zhang等[49]利用小RNA和降解組測序鑒定出21個miRNA-mRNA作用對參與芝麻鹽脅迫響應(yīng)。Candar等[50]對干旱脅迫下番茄(Solanum lycopersicum)不同組織進行小RNA和降解組測序測序,并利用CleaveLand4軟件預測出與59個降解位點相關(guān)聯(lián)的115個特異的miRNA-mRNA作用對。
2.3 miRNA功能研究——TM和STTM
TM(target mimicry)技術(shù)近來在植物中被用于miRNA的功能研究,由于miRNA可以靶向多個靶基因,TM技術(shù)相比于將靶基因沉默的傳統(tǒng)研究方法更能全面且準確地探究miRNA的作用。早期研究人員在擬南芥中首次發(fā)現(xiàn)了TM機制,miR399通常會在植物處于磷饑餓狀態(tài)時表達,但其靶基因Phosphate2(PHO2)的表達水平并未顯著下降,同時非蛋白編碼基因induced by phosphate starvation 1(IPS1)也被磷饑餓誘導表達,IPS1與miR399 5′端的第10和11位序列之間形成了一個2~4個堿基的錯配環(huán)結(jié)構(gòu)(CUA),其與miR399的結(jié)合能力較PHO2更強,IPS1通過與PHO2競爭性結(jié)合miR399從而上調(diào)PHO2的表達[33]。在擬南芥中分別超表達TM-MIM156、TM-MIM319和TM-MIM858,檢測到靶基因不同程度上調(diào)且植株均有表型變化[33]。Wang等[51]研究發(fā)現(xiàn)水稻中的一種eTM(endogenous target mimic)(osa-eTM160)顯著降低了osa-miR160在花藥發(fā)育早期對auxin" response factor18(osa-ARF18)的抑制作用,從而調(diào)節(jié)水稻種子結(jié)實和種子大小。Li等[52]在煙草(Nicotiana tabacum)中發(fā)現(xiàn)了一種eTM(nta-eTMX27),過量表達nta-eTMX27的轉(zhuǎn)基因植株中nta-miRX27的表達量顯著降低,同時其靶基因quinolinate phosphoribosyltaransferase2(QPT2)的表達量顯著升高,利用RNAi沉默nta-eTMX27的轉(zhuǎn)基因植株相關(guān)基因表達量變化趨勢相反。然而,并非所有的miRNA都能夠被TM顯著抑制[53]。此后研究人員在此基礎(chǔ)上改良出一種更加高效的miRNA沉默新方法,短串聯(lián)模擬靶標 (short tandem target mimic,STTM) 技術(shù),STTM由一段長48、88或96個核苷酸的間隔序列以及兩個miRNA結(jié)合位點組成[54]。STTM技術(shù)能對靶向的miRNA進行有效降解,而這種降解需要SDN的活性。STTM相較于TM有著更高的效率、更強的特異性,并且轉(zhuǎn)基因植株的表型也更加穩(wěn)定[55]。
3 miRNA廣泛參與植物干旱和鹽脅迫應(yīng)答過程
植物在復雜的環(huán)境中繁衍生息,受到各種生物或非生物因子的脅迫,非生物因子包括空氣質(zhì)量和流量、光強和光質(zhì)、溫度、水分、礦質(zhì)營養(yǎng)和微量元素含量、鹽分及土壤的pH和氧化還原電勢,當這些環(huán)境因子的變化波動超出正常范圍,就會對植物的生長發(fā)育造成負面影響,包括活性氧(ROS)產(chǎn)生、膜穩(wěn)定性降低、蛋白質(zhì)變性增加、離子平衡化、新陳代謝紊亂及物理損傷等[56-57]。植物對逆境的應(yīng)答分為環(huán)境適應(yīng)性(adaptation)和表型可塑性(phenotypic plasticity),環(huán)境適應(yīng)性是經(jīng)過多代自然環(huán)境選擇之后形成的能適應(yīng)環(huán)境的穩(wěn)定遺傳變化,表型可塑性則是植物暴露在新環(huán)境中產(chǎn)生生理和形態(tài)上的可逆變化,無需遺傳修飾[58-59]。植物逆境響應(yīng)涉及復雜且精密的調(diào)控過程,miRNA作為重要的轉(zhuǎn)錄后調(diào)控的一類小RNA,通過直接靶向功能基因或通過靶向轉(zhuǎn)錄因子間接調(diào)控下游功能基因等模式,在植物生長發(fā)育和響應(yīng)非生物和生物脅迫等過程中扮演了極為重要的角色。近年來,高通量測序技術(shù)快速發(fā)展,研究者們通過小RNA測序和降解組測序在不同植物種中發(fā)現(xiàn)許多響應(yīng)干旱和鹽脅迫的miRNA-mRNA模塊并進一步探究驗證其調(diào)控功能,相關(guān)模塊主要介導植物形態(tài)建成、激素合成與信號傳導和活性氧穩(wěn)態(tài)調(diào)節(jié)等途徑來響應(yīng)干旱和鹽脅迫(圖2)。
3.1 miRNA介導干旱和鹽脅迫下的植物形態(tài)建成
在干旱和鹽脅迫下植物發(fā)達根系對應(yīng)著較大的吸收面積,提高營養(yǎng)吸收能力,緩解水分以及營養(yǎng)脅迫對植物生長的抑制,miR396-GRF、miR168-AGO和miR156-SPL等模塊通過影響植物根系發(fā)育來響應(yīng)干旱或鹽脅迫。Zhang等[60]研究發(fā)現(xiàn),SimiR396d靶向growth-regulating factor 1(SiGRF1)正調(diào)控谷子(Setaria italica)根系生長和抗旱性,過表達SimiR396d和沉默SiGRF1促進了突變植株的根系生長,增強了抗旱能力,過表達SiGRF1和對SimiR396d進行靶標模擬(TM)的突變植株中根系生長受到抑制,抗旱能力下降。Wan等[61]研究發(fā)現(xiàn)Osa-miR168-OsAGO1模塊參與調(diào)控水稻鹽脅迫耐受性,研究人員利用STTM技術(shù)沉默miR168提高了水稻鹽脅迫耐受性,突變植株在鹽脅迫下根的數(shù)量以及根和莖的長度均顯著高于野生型。Arshad等[62]研究發(fā)現(xiàn)苜蓿(Medicago sativa)中MsmiR156靶向squamosa" promoterbinding-like13(MsSPL13)通過促進根系生長來提高植物抗旱性,過表達MsmiR156的植株干旱脅迫下根系生物量的積累顯著增加,利用RNA interference(RNAi)沉默SPL13的植株在干旱脅迫下根長顯著增加,抗旱能力提高。
葉片是植物光合作用和蒸騰作用的主要器官,在干旱和鹽脅迫下植物葉片的生理、形態(tài)以及結(jié)構(gòu)特征均會做出響應(yīng),miR319-TCP、miR396-GRF和miR166-HB等模塊通過影響葉片形態(tài)結(jié)構(gòu)以及生理指標響應(yīng)干旱或鹽脅迫。Li等[63]研究發(fā)現(xiàn)在擬南芥中過表達Mtr-miR319a,其靶基因teosinte branched1/cycloidea/proliferating" cell factors4(AtTCP4)表達量顯著下降,相比于野生型,轉(zhuǎn)基因植株表現(xiàn)為葉片卷曲,在鹽脅迫下含水量和脯氨酸含量顯著升高,一定程度上提高了植株的耐鹽性。Zhou等[64]將Osa-miR319在西伯利亞翦股穎(Agrostis stolonifera)中過量表達,TCP家族的相關(guān)靶基因表達量下降,突變植株葉片角質(zhì)層、蠟質(zhì)覆蓋率和厚度以及莖的粗細顯著增加,在干旱和鹽脅迫下突變植株保水能力增強且細胞膜完整性提高,表現(xiàn)出更強的抗旱耐鹽能力。Yuan等[65]研究發(fā)現(xiàn)Osa-miR396c-GRF模塊對匍匐翦股穎鹽脅迫耐受性的調(diào)控起重要作用,過量表達Osa-miR396c的匍匐翦股穎中分蘗數(shù)量和長度顯著減少,且葉片變短變窄,在鹽脅迫下突變植株葉片的含水量和葉綠素含量增加,葉片的電解質(zhì)泄露減少,值得注意的突變植株中salt" overly" sensitive1(OsSOS1)表達量升高,從而導致鹽脅迫處理后植株Na+相對含量降低,K+/Na+升高,表現(xiàn)出更強的耐鹽性。Zhang等[66]在水稻中利用STTM技術(shù)沉默Osa-miR166,轉(zhuǎn)基因植株葉表皮泡狀細胞寬度減小導致近軸葉片卷曲,抗旱能力增強,將抗miR166降解形式的靶基因homeodomain containing protein4(OsHB4)過量表達也出現(xiàn)相似表型。
氣孔是植物器官上皮的特殊結(jié)構(gòu),由保衛(wèi)細胞、副衛(wèi)細胞及中間的小孔構(gòu)成,是植物地上部分與外界環(huán)境之間氣體和水分交換的通道,影響著光合、呼吸以及蒸騰作用等生理活動,在植物抵御干旱脅迫中發(fā)揮著重要作用。近年來研究表明,miR827-WRKY、miR169-NFYA/MRP和miR159-MYB等模塊可能通過影響下游氣孔發(fā)育相關(guān)基因調(diào)控氣孔發(fā)育和運動進而響應(yīng)干旱脅迫。Yang等[67]研究發(fā)現(xiàn)馬鈴薯(Solanum tuberosum)Stu-miR827受干旱脅迫顯著誘導,利用STTM技術(shù)沉默Stu-miR827,突變植株中Stu-miR827的靶基因StWRKY48表達量顯著升高,同時調(diào)控氣孔發(fā)育的基因stomatal density and" distribution1(StSDD1)和toomanymouths(StTMM)表達受到抑制,導致突變植株中氣孔密度顯著增加,抗旱性顯著降低。有研究表明multidrug resistance-associated proteins(MPRs)參與調(diào)節(jié)植物氣孔運動,Zhang等[68]在番茄中過表達Sly-miR169c,突變植株中miR169c的靶基因SlNF-YA1/2/3和SlMRP1表達量顯著下調(diào),突變植株氣孔孔徑、氣孔導度和蒸騰速率都顯著降低,水分流失減少,抗旱能力增強。Jiang等[69]研究發(fā)現(xiàn)擬南芥在干旱脅迫下Ath-miR159表達量降低,其靶基因AtMYB33表達量升高,miR159ab功能喪失突變體在干旱脅迫下氣孔開放的比例顯著降低,從而降低了失水率,突變植株脅迫下的存活率顯著高于野生型,抗旱能力增強。
3.2 miRNA參與干旱和鹽脅迫下的植物激素合成與信號傳導
植物激素是植物生長發(fā)育乃至脅迫響應(yīng)中重要的信號分子[70]。植物細胞生長素(IAA)可以通過調(diào)控植物生長發(fā)育來參與脅迫響應(yīng),當植物細胞內(nèi)生長素含量較低時,Aux/indoleacetic" acids" proteins(IAAs)與auxin" response factors(ARFs)形成異源二聚體抑制其轉(zhuǎn)錄調(diào)控功能,生長素含量升高后AUX/IAAs與transport inhibitor 11(TIR1)/auxin-signaling F-box(AFB)復合物結(jié)合,隨后被泛素化降解,從而解除對ARF的抑制作用,ARF調(diào)控下游相關(guān)基因表達,完成生長素信號傳導[71]。miR160-ARF、miR390-ARF和miR393-TIR/AFB等模塊通過調(diào)控生長素信號傳導響應(yīng)干旱和鹽脅迫。Shen等[72]研究發(fā)現(xiàn)過表達Mdm-miR160和RNAi沉默其靶基因MdARF17的轉(zhuǎn)基因蘋果(Malus domestica)抗旱能力顯著增加,下游基因MdHYL1正調(diào)控蘋果不定根發(fā)育和抗旱能力,MdARF17通過與MdHYL1的啟動子結(jié)合來抑制MdHYL1的表達,結(jié)果表明Mdm-miR160-ARF17-HYL1模塊在蘋果干旱脅迫響應(yīng)中發(fā)揮重要作用。Zhang等[73]將棉花(Gossypium hirsutum)中的Ghr-miR160b在擬南芥中過表達,其靶基因AtARF17/18表達量顯著降低,同時突變植株在鹽脅迫下種子的萌發(fā)率顯著提高,增強了植株的耐鹽性。He等[74]研究發(fā)現(xiàn)毛白楊(Populus tomentosa)中Ptr-miR390靶向trans-acting short interfering" RNA 3(PtTAS3)產(chǎn)生tasiARFs,tasiARFs靶向PtARF4從而調(diào)控楊樹的鹽脅迫響應(yīng),過表達Ptr-miR390的植株在鹽脅迫下側(cè)根的長度和密度以及嫩枝和根的干質(zhì)量都顯著升高,表現(xiàn)出更強的耐鹽性,過表達STTM390的植株則在鹽脅迫下表現(xiàn)出完全相反的表型,對鹽脅迫更為敏感,有趣的是,在鹽脅迫下引入PtIAA17通過阻斷生長素信號傳導抑制了Ptr-miR390-PtARF4調(diào)控的側(cè)根伸長。Zhao等[75]研究發(fā)現(xiàn)Osa-miR393靶向AsTIR1/AsAFB2介導匍匐翦股穎的鹽脅迫響應(yīng),過量表達Osa-miR393的植株,AsTIR1和AsAFB2的表達量顯著降低,突變植株在鹽脅迫下含水量和葉綠素含量增加,MDA含量和電解質(zhì)泄露率降低,耐鹽性增強,在干旱脅迫下,葉片含水率增加,葉片電解質(zhì)泄露率降低,抗旱性增強。
脫落酸(ABA)是一種重要的植物激素,在植物受到環(huán)境脅迫時發(fā)揮作用,不僅可以調(diào)節(jié)植物的生長和氣孔關(guān)閉還可以調(diào)節(jié)種子的成熟和休眠,miR399-ABF、miR169-NFYA、miR394-LCR和miR165/166-PHB等模塊通過調(diào)節(jié)ABA的信號傳導來響應(yīng)干旱和鹽脅迫。Baek等[76]研究發(fā)現(xiàn)隨著NaCl和ABA濃度的增加,擬南芥中Ath-miR399f前體的表達量顯著增加,過量表達Ath-miR399f的轉(zhuǎn)基因植株中靶基因abscisic acid-responsive element binding factors3(AtABF3)的表達量顯著降低,對鹽脅迫和ABA處理的耐受性強于野生型植株,但在干旱脅迫下水分損失更為嚴重,抗旱能力降低。Ni等[77]發(fā)現(xiàn)大豆(Glycine max)中GmmiR169c靶向nuclear transcription factory subunit alpha 3(GmNFYA3),過表達GmNFYA3的轉(zhuǎn)基因擬南芥ABA生物合成的相關(guān)基因aba deficient1(AtABA1)和AtABA2以及ABA信號傳導的相關(guān)基因abl interactor1(AtABI1)和AtABI2表達量顯著上調(diào),突變植株葉片水分損失減少,耐旱性增強,但對外源性ABA的敏感性增加。Song等[78]研究發(fā)現(xiàn)擬南芥中Ath-miR394受ABA處理以及干旱和鹽脅迫誘導,過表達Ath-miR394和靶基因ligase chain reaction(AtLCR)功能喪失突變植株抗旱能力增強,但對鹽脅迫更為敏感,突變植株中ABA響應(yīng)基因ABI3/4/5表達量升高,在種子萌發(fā)、子葉發(fā)育和根系伸長等方面表現(xiàn)出對ABA超敏感,而過量表達抗miR394降解的LCR的突變植株耐鹽能力增強,但對干旱脅迫更為敏感,ABA響應(yīng)基因表達量降低,對ABA不敏感。Yan等[79]利用STTM技術(shù)沉默Ath-miR165/166,轉(zhuǎn)基因擬南芥在干旱脅迫下存活率以及含水量增加,抗旱能力增強,但在種子萌發(fā)和子葉綠化方面表現(xiàn)出對ABA敏感,進一步研究發(fā)現(xiàn)miR165/166的靶基因Phbulosa(AtPHB)通過直接調(diào)控AtABI4和beta-1,3-glucanase1(AtBG1)的表達來調(diào)節(jié)ABA穩(wěn)態(tài)。
miRNA還可以通過調(diào)控乙烯和油菜素內(nèi)酯的生物合成來響應(yīng)脅迫。Liu等[80]研究發(fā)現(xiàn)在柳枝稷(Panicum virgatum)中過量表達Osa-miR319b以及抑制其靶基因proliferating cell factor5(PvPCF5)表達都可以通過促進乙烯合成基因1-aminocyclopropane-1-carboxylate" oxidase(PvACO)的表達從而提高突變體植株的耐鹽性。Xia等[81]研究發(fā)現(xiàn)水稻中Osa-miR1848靶向cytochrome p450 subfamily" 51(OsCYP51G3)介導植物甾醇和油菜素內(nèi)酯的生物合成來響應(yīng)鹽脅迫,過表達osa-miR1848和沉默OsCYP51G3的突變植株相比野生型有更多的電解質(zhì)泄露,對鹽脅迫更為敏感。
3.3 miRNA調(diào)節(jié)干旱和鹽脅迫下的植物體內(nèi)活性氧穩(wěn)態(tài)
植物活性氧的清除能力與抗旱耐鹽能力息息相關(guān),干旱和鹽脅迫時植物細胞會增加活性氧的產(chǎn)出和積累,導致活性氧代謝平衡被打破,誘發(fā)膜脂過氧化作用,損傷生物大分子,破壞細胞結(jié)構(gòu)和功能[82]。植物體內(nèi)的酶促防御系統(tǒng),包括超氧化物歧化酶(superoxide dismutase,SOD)、過氧化物酶(peroxidase,POD)、谷胱甘肽過氧化物酶(glutathione peroxidase,GSH-Px)、抗壞血酸過氧化物酶 (ascorbate peroxidase,APX)和過氧化氫酶(catalase,CAT)等[83]。miR414-FSD、miR172-IDS、miR398-CSD、miR169-NFYA、miR164-NAC和miR171-SCL等模塊可以通過調(diào)節(jié)植物體內(nèi)相關(guān)抗氧化酶的活性來響應(yīng)干旱和鹽脅迫。Wang等[84]研究發(fā)現(xiàn)棉花中Ghr-miR414c通過靶向GhFSD1(Fe-SOD)參與植物對鹽脅迫響應(yīng)的調(diào)節(jié),過表達Ghr-miR414c與沉默GhFSD1的轉(zhuǎn)基因擬南芥呈現(xiàn)相似的表型,都對鹽脅迫更為敏感。Cheng等[85]發(fā)現(xiàn)水稻中miR172a/b通過切割indeterminate spikelet1(OsIDS1)的轉(zhuǎn)錄本,解除OsIDS1對下游ROS清除相關(guān)基因的抑制,從而介導鹽脅迫的響應(yīng),miR172a/b在水稻鹽脅迫0.5和4.0 h時被顯著誘導,過量表達miR172a的水稻在鹽脅迫下表現(xiàn)出更強的耐受性,相反過量表達STTM172a的水稻對鹽脅迫更為敏感。He等[86]研究發(fā)現(xiàn)番茄(Solanum lycopersicum)中Sly-miR398b靶向copper/zinc superoxide dismutase 1(Slycsd1),在鹽脅迫下,過量表達Sly-miR398b抑制突變植株的生長,活性氧和MDA含量顯著增加,光合速率顯著降低。Xing等[87]研究發(fā)現(xiàn)玉米(Zea mays)中ZmmiR169q表達受到鹽脅迫的抑制,且其表達水平與植株體內(nèi)活性氧水平高度相關(guān),ZmmiR169q的過表達株系對鹽脅迫高度敏感,而其沉默株系表現(xiàn)耐鹽表型,過量表達miR169q的靶基因ZmNF-YA8可以誘導過氧化物酶的表達提升,降低活性氧水平,提高玉米對鹽脅迫的耐受性。Wang等[88]研究發(fā)現(xiàn)小麥(Triticum aestivum)中Tae-miR9674a在鹽和干旱脅迫初期表達顯著上調(diào),將Tae-miR9674a在煙草中過量表達,突變植株生長狀況顯著優(yōu)于野生型,有更強的耐鹽性,并且過量表達株系中脯氨酸合成基因pyrroline-5-carboxylate" synthase1(NtP5CS1)和部分抗氧化酶基因如NtFeSOD、NtCAT1和NtPOD4在鹽和干旱脅迫下表達上調(diào),相反這類基因在沉默突變株系中表達下調(diào),沉默株系也表現(xiàn)出對鹽和干旱脅迫更為敏感。Peng等[89]研究發(fā)現(xiàn)蘋果中Msi-miR164g在干旱脅迫下被顯著誘導,Msi-miR164g靶向NAM/ATAF/CUC(NAC)家族的成員MsNAC022,MsNAC022通過與MsPOD啟動子特定區(qū)域結(jié)合來激活其轉(zhuǎn)錄,從而維持植物體內(nèi)活性氧平衡,過表達MsNAC022的轉(zhuǎn)基因蘋果表現(xiàn)出更強的抗旱性,而過表達Msi-miR164g的擬南芥植株則對干旱脅迫更敏感。Wang等[90]證實蘋果中mdm-miR171i靶向Scarecrow-like 26(MsSCL26),MsSCL26與下游抗氧化基因Monodehydroascorbate" reductase(MsMDHAR)、MsPOD和MsAPX啟動子結(jié)合促進其表達,過表達miR171i的轉(zhuǎn)基因蘋果對干旱脅迫敏感,過表達MsSCL26和敲除mdm-miR171i的轉(zhuǎn)基因植株抗旱耐鹽能力顯著增強。
3.4 植物干旱和鹽脅迫應(yīng)答的其他miRNA調(diào)控途徑
miRNA還可以通過調(diào)控木質(zhì)素合成、類黃酮合成及光合作用等模塊響應(yīng)干旱和鹽脅迫。Nguyen等[91]在擬南芥中過表達Ath-miR397和Sv-miR397,其靶基因Laccase(LAC)家族基因成員AtLAC2/4/17在突變植株中表達水平降低導致木質(zhì)素積累減少,突變株對鹽脅迫更為敏感,脅迫下植株鮮質(zhì)量和葉綠素含量顯著降低。Qin等[92]研究發(fā)現(xiàn)玉米中ZmmiR408靶向ZmLAC9,過表達ZmmiR408的植株中木質(zhì)素積累減少從而表現(xiàn)為對鹽脅迫敏感,相反敲除ZmmiR408a/b和過表達ZmLAC9的轉(zhuǎn)基因植株中木質(zhì)素積累增加,細胞壁增厚,耐鹽性提高。Jeena等[93]研究發(fā)現(xiàn)假馬齒莧(Bacopa monnieri)中Bm-miR172c-5p通過靶向苯丙烷代謝途徑上的關(guān)鍵基因ferulate" 5-hydroxylase(BmF5H)調(diào)節(jié)木質(zhì)素生物合成,過表達Bm-miR172-5p的轉(zhuǎn)基因假馬齒莧中木質(zhì)素的含量降低,表現(xiàn)出對干旱敏感的表型,內(nèi)源性靶標模擬沉默Bm-miR172-5p的轉(zhuǎn)基因植株中木質(zhì)素含量升高,抗旱能力增強。Fan等[94]將研究發(fā)現(xiàn)百慕大草 (Cynodon dactylon)中CdmiR171f靶向編碼光合系統(tǒng)中的電子轉(zhuǎn)運蛋白的基因light-harvesting" complex1(CdLHC1),在蒺藜苜蓿(Medicago truncatula)中異源過表達CdmiR171f的植株在鹽脅迫下相比野生型表現(xiàn)出干物質(zhì)的積累增加和光合作用性能的提升。Um等[95]研究發(fā)現(xiàn)水稻中Osa-miR171f在干旱脅迫下被顯著誘導,過表達Osa-miR171f的突變植株抗旱能力顯著增強,敲除Osa-miR171f的突變植株對干旱脅迫更為敏感,值得注意的是chalcone synthase(OsCHS1)、chalcone isomerase(OsCHI)、flavanone 3-hydroxylase(OsF3H)等類黃酮合成相關(guān)基因在突變植株中表達量受到Osa-miR171f-OsSCL6模塊調(diào)控,Osa-miR171f-OsSCL6可能通過調(diào)控水稻類黃酮合成來增強抗旱能力。
4 展 望
干旱和土壤鹽漬化嚴重制約了農(nóng)業(yè)的發(fā)展,隨之帶來的糧食減產(chǎn)問題也迫在眉睫。大多數(shù)非鹽生和旱生植物在脅迫初期可以通過形態(tài)和生理變化來適應(yīng)環(huán)境,但隨著脅迫的持續(xù),大都受到嚴重的影響甚至死亡。了解植物干旱和鹽脅迫響應(yīng)的分子機制,對培育抗逆作物育種具有重要意義。近年來,隨著高通量測序技術(shù)的發(fā)展,許多miRNA的功能被逐步揭曉,其已被證明參與調(diào)控植物生長發(fā)育、生物與非生物脅迫等方面。miRNA的研究也為審視植物抗旱耐鹽的機制提供了全新的角度。但如今大量的研究仍停留在對不同植物種中miRNA的鑒定層面,對于miRNA在植物抗逆途徑中的詳細機制仍了解不足,需要更深入的研究揭示其精準的調(diào)控網(wǎng)絡(luò),但并非局限于miRNA對靶基因的調(diào)控,對此不僅可以通過對MIR啟動子的研究鑒定miRNA上游的調(diào)控關(guān)系,還可以發(fā)掘競爭性內(nèi)源RNA(competing endogenous RNA,ceRNA)網(wǎng)絡(luò),并驗證ceRNA分子之間的競爭關(guān)系。在植物脅迫響應(yīng)中存在許多發(fā)揮關(guān)鍵作用的基因,但其中大部分并沒有發(fā)現(xiàn)被miRNA靶向,因此可以設(shè)計并利用靶向植物脅迫響應(yīng)中關(guān)鍵mRNA的人工miRNA(artificial miRNAs,amiRNA),利用人工miRNA對目的基因?qū)崿F(xiàn)精準切割,為開發(fā)抗逆品種提供了新的思路。
參考文獻(reference):
[1]CAI W J,LENGAIGNE M,BORLACE S,et al.More extreme swings of the South Pacific convergence zone due to greenhouse warming[J].Nature,2012,488(7411):365-369.DOI: 10.1038/nature11358.
[2]QADIR M,QUILLROU E,NANGIA V,et al.Economics of salt-induced land degradation and restoration[J].Nat Resour Forum,2014,38(4):282-295.DOI: 10.1111/1477-8947.12054.
[3]ZHAO S,ZHANG Q,LIU M,et al.Regulation of plant responses to salt stress[J].Int J Mol Sci,2021,22(9):4609.DOI: 10.3390/ijms22094609.
[4]DEINLEIN U,STEPHAN A B,HORIE T,et al.Plant salt-tolerance mechanisms[J].Trends Plant Sci,2014,19(6):371-379.DOI: 10.1016/j.tplants.2014.02.001.
[5]FOYER C H,RASOOL B,DAVEY J W,et al.Cross-tolerance to biotic and abiotic stresses in plants:a focus on resistance to aphid infestation[J].J Exp Bot,2016,67(7):2025-2037.DOI: 10.1093/jxb/erw079.
[6]MILLER G,SUZUKI N,CIFTCI-YILMAZ S,et al.Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J].Plant Cell Environ,2010,33(4):453-467.DOI: 10.1111/j.1365-3040.2009.02041.x.
[7]MUNNS R,GILLIHAM M.Salinity tolerance of crops-what is the cost?[J].New Phytol,2015,208(3):668-673.DOI: 10.1111/nph.13519.
[8]LEE R C,F(xiàn)EINBAUM R L,AMBROS V.The C.elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J].Cell,1993,75(5):843-854.DOI: 10.1016/0092-8674(93)90529-y.
[9]REINHART B J,WEINSTEIN E G,RHOADES M W,et al.MicroRNAs in plants[J].Genes Dev,2002,16(13):1616-1626.DOI: 10.1101/gad.1004402.
[10]AMBROS V,BARTEL B,BARTEL D P,et al.A uniform system for microRNA annotation[J].RNA,2003,9(3):277-279.DOI: 10.1261/rna.2183803.
[11]AXTELL M J.Classification and comparison of small RNAs from plants[J].Annu Rev Plant Biol,2013,64:137-159.DOI: 10.1146/annurev-arplant-050312-120043.
[12]BONNET E,WUYTS J,ROUZ P,et al.Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes[J].Proc Natl Acad Sci USA,2004,101(31):11511-11516.DOI: 10.1073/pnas.0404025101.
[13]WANG X J,REYES J L,CHUA N H,et al.Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets[J].Genome Biol,2004,5(9):R65.DOI: 10.1186/gb-2004-5-9-r65.
[14]LYTLE J R,YARIO T A,STEITZ J A.Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR[J].Proc Natl Acad Sci USA,2007,104(23):9667-9672.DOI: 10.1073/pnas.0703820104.
[15]XIE Z X,ALLEN E,F(xiàn)AHLGREN N,et al.Expression of Arabidopsis MIRNA genes[J].Plant Physiol,2005,138(4):2145-2154.DOI: 10.1104/pp.105.062943.
[16]MEGRAW M,BAEV V,RUSINOV V,et al.MicroRNA promoter element discovery in Arabidopsis[J].RNA,2006,12(9):1612-1619.DOI: 10.1261/rna.130506.
[17]KIM Y J,ZHENG B L,YU Y,et al.The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana[J].EMBO J,2011,30(5):814-822.DOI: 10.1038/emboj.2011.3.
[18]SONG X W,LI Y,CAO X F,et al.MicroRNAs and their regulatory roles in plant-environment interactions[J].Annu Rev Plant Biol,2019,70:489-525.DOI: 10.1146/annurev-arplant-050718-100334.
[19]HAN M H,GOUD S,SONG L,et al.The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation[J].Proc Natl Acad Sci USA,2004,101(4):1093-1098.DOI: 10.1073/pnas.0307969100.
[20]YANG L,LIU Z Q,LU F,et al.SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis[J].Plant J,2006,47(6):841-850.DOI: 10.1111/j.1365-313X.2006.02835.x.
[21]LI J J,YANG Z Y,YU B,et al.Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis[J].Curr Biol,2005,15(16):1501-1507.DOI: 10.1016/j.cub.2005.07.029.
[22]YANG Z Y,EBRIGHT Y W,YU B,et al.HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide[J].Nucleic Acids Res,2006,34(2):667-675.DOI: 10.1093/nar/gkj474.
[23]AXTELL M J,WESTHOLM J O,LAI E C.Vive la différence:biogenesis and evolution of microRNAs in plants and animals[J].Genome Biol,2011,12(4):221.DOI: 10.1186/gb-2011-12-4-221.
[24]EAMENS A L,SMITH N A,CURTIN S J,et al.The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes[J].RNA,2009,15(12):2219-2235.DOI: 10.1261/rna.1646909.
[25]TOMARI Y,MATRANGA C,HALEY B,et al.A protein sensor for siRNA asymmetry[J].Science,2004,306(5700):1377-1380.DOI: 10.1126/science.1102755.
[26]XU L,HU Y G,CAO Y,et al.An expression atlas of miRNAs in Arabidopsis thaliana[J].Sci China Life Sci,2018,61(2):178-189.DOI: 10.1007/s11427-017-9199-1.
[27]JONES-RHOADES M W,BARTEL D P,BARTEL B.MicroRNAS and their regulatory roles in plants[J].Annu Rev Plant Biol,2006,57:19-53.DOI: 10.1146/annurev.arplant.57.032905.105218.
[28]SONG J J,SMITH S K,HANNON G J,et al.Crystal structure of Argonaute and its implications for RISC slicer activity[J].Science,2004,305(5689):1434-1437.DOI: 10.1126/science.1102514.
[29]YUAN YR,PEI Y,MA J B,et al.Crystal structure of A. aeolicus argonaute,a site-specific DNA-guided endoribonuclease,provides insights into RISC-mediated mRNA cleavage[J].Mol Cell,2005,19(3):405-419.DOI: 10.1016/j.molcel.2005.07.011.
[30]ADDO-QUAYE C,ESHOO T W,BARTEL D P,et al.Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J].Curr Biol,2008,18(10):758-762.DOI: 10.1016/j.cub.2008.04.042.
[31]GERMAN M A,PILLAY M,JEONG D H,et al.Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J].Nat Biotechnol,2008,26(8):941-946.DOI: 10.1038/nbt1417.
[32]AXTELL M J,JAN C,RAJAGOPALAN R,et al.A two-hit trigger for siRNA biogenesis in plants[J].Cell,2006,127(3):565-577.DOI: 10.1016/j.cell.2006.09.032.
[33]FRANCO-ZORRILLA J M,VALLI A,TODESCO M,et al.Target mimicry provides a new mechanism for regulation of microRNA activity[J].Nat Genet,2007,39(8):1033-1037.DOI: 10.1038/ng2079.
[34]BRODERSEN P,SAKVARELIDZE-ACHARD L,BRUUN-RASMUSSEN M,et al.Widespread translational inhibition by plant miRNAs and siRNAs[J].Science,2008,320(5880):1185-1190.DOI: 10.1126/science.1159151.
[35]SCHWAB R,PALATNIK J F,RIESTER M,et al.Specific effects of microRNAs on the plant transcriptome[J].Dev Cell,2005,8(4):517-527.DOI: 10.1016/j.devcel.2005.01.018.
[36]HOU C Y,LEE W C,CHOU H C,et al.Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants[J].Plant Cell,2016,28(10):2398-2416.DOI: 10.1105/tpc.16.00295.
[37]IWAKAWA HO,TOMARI Y.Molecular insights into microRNA-mediated translational repression in plants[J].Mol Cell,2013,52(4):591-601.DOI: 10.1016/j.molcel.2013.10.033.
[38]BAO N,LYE K W,BARTON M K.MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome[J].Dev Cell,2004,7(5):653-662.DOI: 10.1016/j.devcel.2004.10.003.
[39]WU L,ZHOU H,ZHANG Q,et al.DNA methylation mediated by a microRNA pathway[J].Mol Cell,2010,38(3):465-475.DOI: 10.1016/j.molcel.2010.03.008.
[40]VAN GOETHEM A,MESTDAGH P,VAN MAERKEN T,et al.MicroRNA expression analysis using small RNA sequencing discovery and RT-qPCR-based validation[J].Methods Mol Biol,2017,1654:197-208.DOI: 10.1007/978-1-4939-7231-9_13.
[41]CHVEZ MONTES RA,JAIMES-MIRANDA F,DE FOLTER S.Bioinformatic analysis of small RNA sequencing libraries[J].Methods Mol Biol,2019,1932:51-63.DOI: 10.1007/978-1-4939-9042-9_4.
[42]CHEN B B,DING Z Y,ZHOU X,et al.Integrated full-length transcriptome and microRNA sequencing approaches provide insights into salt tolerance in mangrove (Sonneratia apetala Buch.-Ham.)[J].Front Genet,2022,13:932832.DOI: 10.3389/fgene.2022.932832.
[43]WU J X,ZHENG S S,F(xiàn)ENG G Z,et al.Comparative analysis of miRNAs and their target transcripts between a spontaneous late-ripening sweet orange mutant and its wild-type using small RNA and degradome sequencing[J].Front Plant Sci,2016,7:1416.DOI: 10.3389/fpls.2016.01416.
[44]董淼,黃越,陳文鐸,等.降解組測序技術(shù)在植物miRNA研究中的應(yīng)用[J].植物學報,2013,48(3):344-353.DONG M,HUANG Y,CHEN W D,et al.Use of degradome sequencing in study of plant microRNAs[J].Chin Bull Bot,2013,48(3):344-353.DOI: 10.3724/SP.J.1259.2013.00344.
[45]BAKSA I,SZITTYA G.Identification of ARGONAUTE/small RNA cleavage sites by degradome sequencing[J].Methods Mol Biol,2017,1640:113-128.DOI: 10.1007/978-1-4939-7165-7_7.
[46]FOLKES L,MOXON S,WOOLFENDEN H C,et al.PAREsnip:a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing[J].Nucleic Acids Res,2012,40(13):e103.DOI: 10.1093/nar/gks277.
[47]ADDO-QUAYE C,MILLER W,AXTELL M J.CleaveLand:a pipeline for using degradome data to find cleaved small RNA targets[J].Bioinformatics,2009,25(1):130-131.DOI: 10.1093/bioinformatics/btn604.
[48]KAKRANA A,HAMMOND R,PATEL P,et al.SPARTA:A parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets,including new miRNA target-identification software[J].Nucleic Acids Res,2014,42(18):e139.DOI: 10.1093/nar/gku693.
[49]ZHANG Y J,GONG H H,LI D H,et al.Integrated small RNA and Degradome sequencing provide insights into salt tolerance in sesame (Sesamum indicum L.)[J].BMC Genomics,2020,21(1):494.DOI: 10.1186/s12864-020-06913-3.
[50]CANDAR C B,ARICAN E,ZHANG B H.Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes[J].Plant Biotechnol J,2016,14(8):1727-1746.DOI: 10.1111/pbi.12533.
[51]WANG M,WU H J,F(xiàn)ANG J,et al.A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160[J].Sci Bull,2017,62(7):470-475.DOI: 10.1016/j.scib.2017.03.013.
[52]LI F F,WANG W D,ZHAO N,et al.Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco[J].Plant Physiol,2015,169(2):1062-1071.DOI: 10.1104/pp.15.00649.
[53]TODESCO M,RUBIO-SOMOZA I,PAZ-ARES J,et al.A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana[J].PLoS Genet,2010,6(7):e1001031.DOI: 10.1371/journal.pgen.1001031.
[54]YAN J,GU Y Y,JIA X Y,et al.Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J].Plant Cell,2012,24(2):415-427.DOI: 10.1105/tpc.111.094144.
[55]鄭文清,張倩,杜亮.短串聯(lián)靶標模擬技術(shù)及其在植物miRNA功能研究中的應(yīng)用[J].生物技術(shù)通報,2020,36(12):256-264.ZHENG W Q,ZHANG Q,DU L.Short tandem target mimic and its application in analyzing plant miRNA functions[J].Biotechnol Bull,2020,36(12):256-264.DOI: 10.13560/j.cnki.biotech.bull.1985.2020-0257.
[56]SHARMA M,KUMAR P,VERMA V,et al.Understanding plant stress memory response for abiotic stress resilience:molecular insights and prospects[J].Plant Physiol Biochem,2022,179:10-24.DOI: 10.1016/j.plaphy.2022.03.004.
[57]SUZUKI N,RIVERO R M,SHULAEV V,et al.Abiotic and biotic stress combinations[J].New Phytol,2014,203(1):32-43.DOI: 10.1111/nph.12797.
[58]WANG Z R,BASKIN J M,BASKIN C C,et al.Great granny still ruling from the grave:phenotypical response of plant performance and seed functional traits to salt stress affects multiple generations of a halophyte[J].J Ecol,2022,110(1):117-128.DOI: 10.1111/1365-2745.13789.
[59]LMKE J,BURLE I.Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants[J].Genome Biol,2017,18(1):124.DOI: 10.1186/s13059-017-1263-6.
[60]ZHANG Y F,XIAO T,YI F,et al.SimiR396d targets SiGRF1 to regulate drought tolerance and root growth in foxtail millet[J].Plant Sci,2023,326:111492.DOI: 10.1016/j.plantsci.2022.111492.
[61]WAN J,MENG S J,WANG Q Y,et al.Suppression of microRNA168 enhances salt tolerance in rice (Oryza sativa L.)[J].BMC Plant Biol,2022,22(1):563.DOI: 10.1186/s12870-022-03959-1.
[62]ARSHAD M,F(xiàn)EYISSA B A,AMYOT L,et al.MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13[J].Plant Sci,2017,258:122-136.DOI: 10.1016/j.plantsci.2017.01.018.
[63]LI M N,XU L,ZHANG L X,et al.Overexpression of Mtr-miR319a contributes to leaf curl and salt stress adaptation in Arabidopsis thaliana and Medicago truncatula[J].Int J Mol Sci,2022,24(1):429.DOI: 10.3390/ijms24010429.
[64]ZHOU M,LI D Y,LI Z G,et al.Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J].Plant Physiol,2013,161(3):1375-1391.DOI: 10.1104/pp.112.208702.
[65]YUAN S R,ZHAO J M,LI Z G,et al.MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass[J].Hortic Res,2019,6:48.DOI: 10.1038/s41438-019-0130-x.
[66]ZHANG J S,ZHANG H,SRIVASTAVA A K,et al.Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J].Plant Physiol,2018,176(3):2082-2094.DOI: 10.1104/pp.17.01432.
[67]YANG J W,ZHANG N,BAI J P,et al.Stu-miR827-targeted StWRKY48 transcription factor negatively regulates drought tolerance of potato by increasing leaf stomatal density[J].Int J Mol Sci,2022,23(23):14805.DOI: 10.3390/ijms232314805.
[68]ZHANG X H,ZOU Z,GONG P J,et al.Over-expression of microRNA169 confers enhanced drought tolerance to tomato[J].Biotechnol Lett,2011,33(2):403-409.DOI: 10.1007/s10529-010-0436-0.
[69]JIANG Y Q,WU X,SHI M,et al.The miR159-MYB33-ABI5 module regulates seed germination in Arabidopsis[J].Physiol Plant,2022,174(2):e13659.DOI: 10.1111/ppl.13659.
[70]黎家,李傳友.新中國成立70年來植物激素研究進展[J].中國科學:生命科學,2019,49(10):1227-1281.LI J,LI C Y.Seventy-year major research progress in plant hormones by Chinese scholars[J].Sci Sin (Vitae),2019,49(10):1227-1281.DOI: 10.1360/SSV-2019-0197.
[71]PAQUE S,WEIJERS D Q A:Auxin:the plant molecule that influences almost anything[J].BMC Biol,2016,14(1):67.DOI: 10.1186/s12915-016-0291-0.
[72]SHEN X X,HE J Q,PING Y K,et al.The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees[J].Plant Physiol,2022,188(3):1686-1708.DOI: 10.1093/plphys/kiab565.
[73]ZHANG X P,SHEN J,XU Q J,et al.Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton[J].Plant Cell Environ,2021,44(10):3302-3321.DOI: 10.1111/pce.14133.
[74]HE F,XU C Z,F(xiàn)U X K,et al.The MICRORNA390/TRANS-ACTING" SHORT" INTERFERING"" RNA3 module mediates lateral root growth under salt stress via the auxin pathway[J].Plant Physiol,2018,177(2):775-791.DOI: 10.1104/pp.17.01559.
[75]ZHAO J M,YUAN S R,ZHOU M,et al.Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance[J].Plant Biotechnol J,2019,17(1):233-251.DOI: 10.1111/pbi.12960.
[76]BAEK D,CHUN H J,KANG S,et al.A role for Arabidopsis miR399f in salt,drought,and ABA signaling[J].Mol Cells,2016,39(2):111-118.DOI: 10.14348/molcells.2016.2188.
[77]NI Z Y,HU Z,JIANG Q Y,et al.GmNFYA3,a target gene of miR169,is a positive regulator of plant tolerance to drought stress[J].Plant Mol Biol,2013,82(1/2):113-129.DOI: 10.1007/s11103-013-0040-5.
[78]SONG J B,GAO S,SUN D,et al.miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner[J].BMC Plant Biol,2013,13:210.DOI: 10.1186/1471-2229-13-210.
[79]YAN J,ZHAO C Z,ZHOU J P,et al.The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in Arabidopsis thaliana[J].PLoS Genet,2016,12(11):e1006416.DOI: 10.1371/journal.pgen.1006416.
[80]LIU Y, LI D, YAN J, et al. MiR319-mediated ethylene biosynthesis, signalling and salt stress response in switchgrass[J]. Plant Biotechnology Journal, 2019, 17(12): 2370-2383. DOI: 10.1111/pbi.13154.
[81]XIA K F,OU X J,TANG H D,et al.Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress[J].New Phytol,2015,208(3):790-802.DOI: 10.1111/nph.13513.
[82]GOMEZ J M,JIMENEZ A,OLMOS E,et al.Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv.Puget) chloroplasts[J].J Exp Bot,2004,55(394):119-130.DOI: 10.1093/jxb/erh013.
[83]LEE D H,KIM Y S,LEE C B.The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.)[J].J Plant Physiol,2001,158(6):737-745.DOI: 10.1078/0176-1617-00174.
[84]WANG W,LIU D,CHEN D D,et al.MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress[J].RNA Biol,2019,16(3):362-375.DOI: 10.1080/15476286.2019.1574163.
[85]CHENG X L,HE Q,TANG S,et al.The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops[J].New Phytol,2021,230(3):1017-1033.DOI: 10.1111/nph.17211.
[86]HE Y,ZHOU J X,HU Y F,et al.Overexpression of sly-miR398b increased salt sensitivity likely via regulating antioxidant system and photosynthesis in tomato[J].Environ Exp Bot,2021,181:104273.DOI: 10.1016/j.envexpbot.2020.104273.
[87]XING L J,ZHU M,LUAN M D,et al.miR169q and NUCLEAR FACTOR YA8 enhance salt tolerance by activating PEROXIDASE1 expression in response to ROS[J].Plant Physiol,2022,188(1):608-623.DOI: 10.1093/plphys/kiab498.
[88]WANG L,BAI X Y,QIAO Y,et al.Tae-miR9674a,a microRNA member of wheat,confers plant drought and salt tolerance through modulating the stomata movement and ROS homeostasis[J].Plant Biotechnol Rep,2023,17(4):471-488.DOI: 10.1007/s11816-022-00787-5.
[89]PENG X,F(xiàn)ENG C,WANG Y T,et al.miR164g-MsNAC022 acts as a novel module mediating drought response by transcriptional regulation of reactive oxygen species scavenging systems in apple[J].Hortic Res,2022,9:uhac192.DOI: 10.1093/hr/uhac192.
[90]WANG Y T,F(xiàn)ENG C,ZHAI Z F,et al.The apple microR171i-SCARECROW-LIKE PROTEINS26.1 module enhances drought stress tolerance by integrating ascorbic acid metabolism[J].Plant Physiol,2020,184(1):194-211.DOI: 10.1104/pp.20.00476.
[91]NGUYEN D Q,BROWN C W,PEGLER J L,et al.Molecular manipulation of microRNA397 abundance influences the development and salt stress response of Arabidopsis thaliana[J].Int J Mol Sci,2020,21(21):7879.DOI: 10.3390/ijms21217879.
[92]QIN R D,HU Y M,CHEN H,et al.MicroRNA408 negatively regulates salt tolerance by affecting secondary cell wall development in maize[J].Plant Physiol,2023,192(2):1569-1583.DOI: 10.1093/plphys/kiad135.
[93]JEENA G S,JOSHI A,SHUKLA R K.Bm-miR172c-5p regulates lignin biosynthesis and secondary xylem thickness by altering the ferulate 5 hydroxylase gene in Bacopa monnieri[J].Plant Cell Physiol,2021,62(5):894-912.DOI: 10.1093/pcp/pcab054.
[94]FAN S G,AMOMBO E,AVOGA S,et al.Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance[J].Front Plant Sci,2023,14:1141295.DOI: 10.3389/fpls.2023.1141295.
[95]UM T,CHOI J,PARK T,et al.Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes[J].Plant Direct,2022,6(1):e374.DOI: 10.1002/pld3.374.
(責任編輯 吳祝華)
收稿日期Received:2023-05-16""" 修回日期Accepted:2024-01-10
基金項目:國家自然科學基金項目(31000287)。
第一作者:宋子荷(zihesong_njfu@outlook.com),博士生。*通信作者:甄艷(zhenyongni30@aliyun.com),副教授。
引文格式:宋子荷,甄艷.
植物干旱和鹽脅迫響應(yīng)相關(guān)miRNA研究進展[J]. 南京林業(yè)大學學報(自然科學版),2024,48(4):1-11.
SONG Z H, ZHEN Y.
Advancements in the research of miRNAs associated with plant" drought and salt stress responses
[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(4):1-11.
DOI:10.12302/j.issn.1000-2006.202305016.