国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

多基因編輯技術(shù)的發(fā)展及其在畜牧種質(zhì)創(chuàng)新中的應(yīng)用

2024-09-30 00:00:00劉雯雯董發(fā)明畢延震
畜牧獸醫(yī)學(xué)報 2024年8期

摘 要: CRISPR基因編輯技術(shù)可以更精準(zhǔn)、高效地更改基因組DNA序列,近年來在動植物育種中被廣泛應(yīng)用。實踐中對農(nóng)業(yè)生物多性狀協(xié)同改良的需求越來越大,僅靠對單一基因或位點的改變不能滿足上述需求,所以亟需建立一套多基因同步編輯體系,對多個基因進行協(xié)同修飾。多個sgRNA同時表達(dá)是多基因同步編輯的關(guān)鍵,常見表達(dá)策略包括建立多個單順反子sgRNA并聯(lián)表達(dá)和多順反子sgRNA串聯(lián)表達(dá)。常用串聯(lián)表達(dá)工具有核酸酶Csy4、tRNA系統(tǒng)以及自裂核酶等。本文對以上多基因編輯技術(shù)的優(yōu)劣進行了分析和總結(jié),探討了下一步的發(fā)展方向,并指出了它的其重要意義和應(yīng)用前景。

關(guān)鍵詞: CRISPR;多基因編輯;種質(zhì)創(chuàng)新

中圖分類號:S813.2

文獻(xiàn)標(biāo)志碼:A

文章編號:0366-6964(2024)08-3267-09

收稿日期:2024-01-08

基金項目:豬無痕跡基因編輯技術(shù)(NK2022010207);湖北省中央引導(dǎo)地方科技發(fā)展資金項目(2022BGE231);科技援疆項目(2022E02138)

作者簡介:劉雯雯(1998-),女,河南鄭州人,碩士,主要從事臨床獸醫(yī)研究,E-mail:1512513865@qq.com

通信作者:董發(fā)明,主要從事臨床獸醫(yī)研究,E-mail:756146646@qq.com;畢延震,主要從事畜禽生物育種研究,E-mail:sukerbyz@126.com

The Development of Multi-Gene Editing Technology and Its Application in Agricultural

Biological Germplasm Innovation

LIU Wenwen1, 2, DONG Faming1*, BI Yanzhen2, 3*

(1.College of Animal Science and Technology, Henan University of Science and Technology, Luoyang

471023," China;

2.Hubei Provincial Key Laboratory of Animal Embryo Engineering and Molecular Breeding,

Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan

430064," China;

3.Hubei Hongshan Laboratory, Wuhan 430070," China)

Abstract:" CRISPR gene editing technology can accurately and efficiently change the DNA source code and has been widely used in animal and plant breeding in recent years.In practice, the demand for multi-trait parallel improvement of agricultural organisms is increasing. The change of a single gene or locus alone cannot meet the above requirements.Therefore,it is desirable to establish a multi-gene simultaneous editing system to modify multiple genes. Simultaneous expression of multiple sgRNAs is critical to simultaneous editing of multiple genes. The commonly multi-sgRNA expression strategies include multiple single-cistron sgRNA parallel expression and multi-cistron sgRNA tandem expression. The frequently-commonly used tandem expression tools include nuclease Csy4, tRNA system and self-cleaving ribozyme. This review analyzes and summarizes the advantages and disadvantages of the above multi-gene editing technology, discusses the future direction, and stresses its significance and application prospects.

Key words: CRISPR; multi-gene editing; germplasm innovation

*Corresponding authors:DONG Faming, E-mail:756146646@qq.com ; BI Yanzhen, E-mail:sukerbyz@126.com

1 多基因編輯的意義

基因編輯是一種通過DNA序列敲除、插入和堿基編輯等手段來改變生物體特定基因組DNA從而改變其特性和功能的基因工程活動[1]。主要基因編輯技術(shù)包括鋅指核酸酶(zinc finger nucleases,ZFNs)[2]、轉(zhuǎn)錄激活因子樣效應(yīng)核酸酶(transcription activator-like effector nucleases TALENs)[3-4]和成簇的規(guī)律間隔短回文重復(fù)序列(clustered regularly spaced short palindromic repeats, CRISPR)/Cas9基因編輯技術(shù)[5]。其中應(yīng)用最廣泛的是CRISPR/Cas9基因編輯技術(shù)[6],CRISPR/Cas9基因編輯技術(shù)通過一條單一向?qū)c靶序列互補配對的RNA(single guide RNA,sgRNA)定位編輯位點,進而引導(dǎo)Cas9蛋白對目標(biāo)靶序列進行切割,具有成本低廉、操作簡便和精確高效的特點,且相較另外兩種基因編輯方法克服了試驗周期長和應(yīng)用范圍小的問題[7]。在過去的三十年中,基因編輯技術(shù)取得了廣為人知的巨大進步,除了應(yīng)用于生命科學(xué)基礎(chǔ)研究和臨床上應(yīng)用外,它在畜牧業(yè)中的應(yīng)用也越來越廣泛[8]。

基因編輯技術(shù)發(fā)展迅速,但是這種技術(shù)仍局限于編輯單個基因、改良單一性狀,已經(jīng)無法滿足現(xiàn)階段的育種需求。除此之外在育種工作中,一個性狀可能由多個基因控制,僅對單個基因編輯很難達(dá)到改變性狀的目的。傳統(tǒng)育種方法生產(chǎn)具備多種優(yōu)良性狀的農(nóng)業(yè)生物,往往需要經(jīng)過反復(fù)克隆和篩選[9-11],該方法步驟繁復(fù)、培育周期長,生產(chǎn)效率低[12]。為擺脫這一困境,建立一套簡單高效的多基因編輯體系,利用基因編輯技術(shù)對多位點同時進行編輯或轉(zhuǎn)錄調(diào)控成為大勢所趨,對未來農(nóng)業(yè)、畜牧業(yè)種質(zhì)改良具有重要意義。

2 多基因編輯技術(shù)的類型

多基因編輯技術(shù)需要一起同時引入兩個及以上sgRNA[13],Cas9蛋白在多個sgRNA引導(dǎo)下,可以有效地識別多個靶位點[14],只需要改變20 bp的序列就能改變Cas9的靶向特異性[15]。目前,不同研究者基于高效釋放多個sgRNA開發(fā)了不同的方法[16]。較為常用的方法主要分為兩類:一是建立含有多個單順反子sgRNA表達(dá)盒,所有的sgRNA被特定啟動子轉(zhuǎn)錄,經(jīng)過加工被釋放,同時對多個基因進行修飾[17],常見的方法有串聯(lián)多個重復(fù)的PolⅢ型啟動子啟動的sgRNA表達(dá)框[18];二是構(gòu)建多順反子sgRNA 表達(dá)盒,在所有sgRNA兩側(cè)安裝可切割的位點,如核酸酶Csy4介導(dǎo)的多順反子sgRNA加工成熟[19]、基于內(nèi)源性轉(zhuǎn)運RNA(tRNA)多順反子sgRNA加工成熟[20] 以及利用自裂核酶介導(dǎo)的多順反子sgRNA加工成熟。經(jīng)過加工或者切割釋放多個sgRNA,識別不同的靶位點,從而實現(xiàn)多個基因的同步編輯[21]。

2.1 建立多個單順反子sgRNA表達(dá)盒

早期對于多重sgRNA的表達(dá)是通過多個單獨的sgRNA表達(dá)盒產(chǎn)生,每個盒都由單獨的RNA 聚合酶Ⅲ(PolⅢ)啟動子轉(zhuǎn)錄[21]。常見為U3和U6基因啟動子。這些PolⅢ啟動子轉(zhuǎn)錄起始于特定核苷酸。如U3啟動子從“A”開始轉(zhuǎn)錄,U6啟動子從“G”開始轉(zhuǎn)錄[22],轉(zhuǎn)錄的 RNA 會在細(xì)胞核內(nèi)保留。一個sgRNA盒由PolⅢ啟動子、sgRNA和PolⅢ終止子組成,大小為300~500 bp,以啟動子-sgRNA-終止子為最小重復(fù)單元[23](圖1)。但是,該系統(tǒng)的設(shè)計必須分別組裝啟動子、終止子、sgRNA骨架(sgRNA scaffold),采用同源重組或Golden Gate等方式組裝。有研究人員在擬南芥中使用3種不同的PolⅢ啟動子成功表達(dá)6個sgRNA,同時靶向脫落酸受體PYL蛋白家族中的6個基因,在T3后代中鑒定出純合六元突變體[24];利用該系統(tǒng)同時靶向豬CD163和肌肉生長抑制素(MSTN)基因,成功培育出瘦肉率高且對藍(lán)耳病不易感的仔豬[25]。但多個PolⅢ啟動子可能會產(chǎn)生啟動子串聯(lián)干擾效應(yīng)的“不良反應(yīng)”,兩個近端排列的轉(zhuǎn)錄單元可能會因為啟動子串聯(lián)影響彼此的轉(zhuǎn)錄活性[26-27]。除此之外,由于重復(fù)序列和較大片段合成比較繁瑣,構(gòu)建成功并不容易,需要更換靶序列時又必須重復(fù)上述過程,不僅繁瑣更增加了時間成本[28]。

2.2 tRNA介導(dǎo)的多順反子sgRNA加工成熟

tRNA是在蛋白質(zhì)合成期間將氨基酸運送到核糖體的載體,存在于所有生物體內(nèi)[29]。前體tRNA 5′端和3′端序列能夠被細(xì)胞內(nèi)源性RNaseP和RNaseZ酶特異性識別并切割[13],釋放每個獨立的tRNA和成熟的sgRNA[30],引導(dǎo)Cas9蛋白切割靶位點。人工多順反子-tRNA-gRNA(PTG策略)基因串聯(lián)表達(dá)系統(tǒng)以tRNA-sgRNA-sgRNA骨架(sgRNA scaffold)為最小重復(fù)單元,PTG策略盒串聯(lián)兩個及以上重復(fù)單元,僅使用一個PolⅢ啟動子就能高效表達(dá)多個sgRNA[31],提高了Cas9蛋白的多重靶向能力(圖2)。只需更換20 bp的sgRNA序列,就能改變Cas9蛋白的特異靶向性,很大程度地簡化了質(zhì)粒的構(gòu)建。PTG策略不需要引入外源蛋白,重復(fù)單元序列相對較短,降低了合成的難度,在簡化質(zhì)粒結(jié)構(gòu)的同時,實現(xiàn)了對質(zhì)??焖俑咝У臉?gòu)建。此外,tRNA可作為增強子并提高PolⅢ轉(zhuǎn)錄效率,是該系統(tǒng)的另一個優(yōu)勢,目前已在一些真核生物中廣泛應(yīng)用[32-33]。在植物育種領(lǐng)域中,該方法首先被應(yīng)用于水稻的基因組多位點編輯以及染色體片段刪除[34],編輯效率可高達(dá)100%。通過設(shè)計多個tRNA-sgRNA單元用于多基因編輯,把tRNA系統(tǒng)首次應(yīng)用于玉米,有效準(zhǔn)確地缺失了染色體片段[33]。盡管tRNA是多基因組編輯的最佳工具,但存在一定的局限性,該系統(tǒng)不能很好地處理數(shù)十個以上的sgRNA,當(dāng)sgRNA種類過多時彼此之間相互競爭導(dǎo)致編輯效率低下[35]。

2.3 核酸酶Csy4介導(dǎo)的多順反子sgRNA加工成熟

Csy4是來自銅綠假單胞菌中用于 crRNA 加工的一種蛋白,是特異性核糖核酸內(nèi)切酶(endo-RNase )。Csy4對發(fā)夾RNA有很高的親和力[36],用于可切割帶有發(fā)夾序列的RNA,已被用于在各種生物體中被用于產(chǎn)生多個sgRNA?;贑sy4的特性,有研究者制作了人工sgRNA陣列,每個sgRNA兩側(cè)安裝有Csy4切除位點[37],構(gòu)建具有串聯(lián)結(jié)構(gòu)的Cys4-processed-sgRNAs系統(tǒng),Csy4可以對其中的每個重復(fù)序列進行切割[38],Csy4介導(dǎo)的gRNAs陣列能夠同時高效釋放大量的sgRNA[39](圖3)。該系統(tǒng)最早是在酵母中發(fā)展起來的,在釀酒酵母測試菌落中進行了四重缺失,Csy4系統(tǒng)效率可達(dá)96%,并成功有效地轉(zhuǎn)錄調(diào)控了3個基因[40];在番茄中應(yīng)用Csy4系統(tǒng)缺失4個基因、使用多達(dá)12個sgRNA同時在雙子葉植物和單子葉植物中創(chuàng)建多重靶向基因缺失,并監(jiān)測sgRNA在陣列中位置的影響,證實了Csy4可以快速有效地進行多重基因組編輯[41]。但該系統(tǒng)的缺點是需要轉(zhuǎn)化和表達(dá)外源Csy4核糖核酸內(nèi)切酶,且Csy4具有細(xì)胞毒性,會對生物體造成危害,所以該策略適用于基礎(chǔ)研究,不適合農(nóng)業(yè)生物育種。

2.4 利用自裂核酶介導(dǎo)的多順反子sgRNA加工成熟

錘頭(hammerhead ribozyme,HH)核酶是一種存在于小型植物致病RNA中,在類病毒基因組復(fù)制過程中將多聚體轉(zhuǎn)錄物加工成單體的自裂解的RNA結(jié)構(gòu),其體積小,只有約50個核苷酸[42]。它可以作為催化劑,通過轉(zhuǎn)脂反應(yīng)剪切自身磷酸二脂鍵,將裂解位點活性中心與其余部分分離。因此,錘頭核酶可以被用于在體內(nèi)切割特定的病毒和細(xì)胞序列。丁型肝炎病毒(hepatitis D virus, HDV)核酶是一種RNA衛(wèi)星病毒,與目標(biāo)序列不會形成二級結(jié)構(gòu),一般安裝在目標(biāo)序列的3′端。這種利用具有自裂解功能的核酶進行多重基因編輯是在酵母中最先被發(fā)展起來的一種方法[43],在sgRNA兩側(cè)安裝具有核酶活性的RNA序列,在5′端安裝錘頭(hammer head, HH)核酶,3′端安裝HDV核酶,這種方法不僅能釋放正確的sgRNA,也不會影響蛋白質(zhì)的表達(dá)(圖4)。這種方法已經(jīng)在多種生物中被證明[44],在人類細(xì)胞中實現(xiàn)通過RNAP II啟動子成功釋放sgRNA進行基因調(diào)控,且沒有產(chǎn)生三重序列,并能通過殘留的3′核糖酶序列保護目的基因轉(zhuǎn)錄物[45] 。在多諾瓦尼利什曼原蟲中利用錘頭(HH核酶和HDV核酶,開發(fā)了一種雙sgRNA表達(dá)載體精準(zhǔn)缺失3 kb基因組片段,更清晰地了解了利什曼原蟲感染和發(fā)病機制[46]。該系統(tǒng)相較于Csy4系統(tǒng)無需額外表達(dá)外源Csy4核糖核酸內(nèi)切酶,但目前仍未見在動植物上利用自剪切裂解功能表達(dá)兩個及以上sgRNA的報道。

3 多基因編輯技術(shù)在農(nóng)業(yè)生物育種中的應(yīng)用

基因編輯技術(shù)已成為農(nóng)業(yè)生物種質(zhì)改良的重要工具,合理運用該技術(shù)可以實現(xiàn)同時對多個基因進行修飾,改良多個基因控制的重要經(jīng)濟性狀,同時也能實現(xiàn)對多種農(nóng)業(yè)動物傳染病的抵抗和預(yù)防作用。

隨著基因編輯技術(shù)的發(fā)展,sgRNA引導(dǎo)Cas9蛋白最早成功應(yīng)用于植物基因編輯中成功應(yīng)用,目前該技術(shù)已被應(yīng)用于誘導(dǎo)多種植物物種基因組突變。如在玉米中設(shè)計5條sgRNA同時靶向4個基因獲得了高達(dá)23.1%的靶向效率[47];在棉花中以外源性基因DsRed2和內(nèi)源性基因GhCLA1作為靶標(biāo),成功利用CRISPR/Cas9系統(tǒng)在同種異體四倍體棉花中完成了多位點基因組編輯[48];利用馬鈴薯病毒X構(gòu)建了一種在成年茄科植物中表達(dá)多種sgRNA的載體,有效地靶向本氏煙草基因,產(chǎn)生了近80%的插入缺失[49];在小麥中利用3種工具包括自裂核酶、tRNA以及TRSP系統(tǒng)(tandem repeats of separate U3 or U6 promoters)在內(nèi)的3種工具靶向小麥8個靶位點同時進行基因組編輯,結(jié)果證實tRNA和核酶系統(tǒng)在多重基因組編輯中更有效[47]。

禽白血病是造成養(yǎng)禽業(yè)重大經(jīng)濟損失的重要原因之一,但缺乏有效的防治手段。它是由禽白血病病毒(ALV)引起的在禽類中垂直傳播的腫瘤疾病,發(fā)病率、死亡率高,由于沒有特效藥,只能通過病雞淘汰達(dá)到種群凈化的目的[50]。禽類對ALV的抵抗力由TVA、TVB、TVC三個位點決定,TVB 基因上TVBSI和TVBS3等位基因決定著禽類禽白血病病毒ALV的B、D和E亞型的易感性,在TVB基因第二、第三外顯子分別設(shè)計sgRNA,利用t-RNA構(gòu)建多順反子表達(dá)盒,成功對TVB基因造成大片段刪除,為抗禽白血病奠定了基礎(chǔ)[51]。

我國是全世界畜禽養(yǎng)殖規(guī)模最大的國家。豬病頻發(fā)是我國養(yǎng)豬業(yè)目前面臨的最大挑戰(zhàn),造成了巨大的經(jīng)濟損失[52]。通過多基因編輯可獲得抗三種重大疫病的豬[53]。豬繁殖與呼吸綜合征是我國重點防治的一類傳染病,又名藍(lán)耳病,由豬繁殖與呼吸綜合征病毒(PRRSV)引起的妊娠母豬流產(chǎn)、仔豬和育肥豬肺炎的急性傳染病。CD163分子是PRRSV生命周期中最重要和最關(guān)鍵的分子[54],它由9個富半胱氨酸清道夫受體(SRCR 1~9)組成[55],蛋白結(jié)構(gòu)域SRCR 5(對應(yīng)第七外顯子)是PRRSV感染所必需的[56]。通過基因編輯敲除第七外顯子所包含的功能域,能有效地抵御對PRRSV的感染[57-59]。傳染性胃腸炎病毒(TGEV)和豬德爾塔冠狀病毒(PDCoV)會導(dǎo)致仔豬致命性腹瀉[60]。豬氨基肽酶(pAPN)是TGEV感染的主要受體[61-62]。病毒糖蛋白與小腸上皮細(xì)胞表面pAPN受體結(jié)合并介導(dǎo)膜融合,使得病毒進入上皮細(xì)胞[62]。對pAPN基因第二外顯子進行編輯,使病毒受體蛋白失活可以顯著抵抗TGEV感染[63],同時對PDCoV的易感性降低。通過多基因編輯技術(shù)對豬CD163基因第七外顯子和pAPN基因第二外顯子進行同步編輯,獲得能同時抵御繁殖與呼吸綜合征、傳染性胃腸炎和豬德爾塔冠狀病毒侵襲的綜合性能優(yōu)良的種豬。

豬肉是人類重要的動物蛋白質(zhì)來源,國內(nèi)豬地方品種多、肉質(zhì)好但瘦肉率較低,隨著人們營養(yǎng)需求的變化,目前人們更偏向于低脂、高蛋白的畜產(chǎn)品。培育具有瘦肉率高且抗病等多種優(yōu)良性狀的豬既是當(dāng)務(wù)之急也是長久之計。有學(xué)者采用三種sgRNA表達(dá)策略成功培育出對CD163和MSTN同步編輯的豬[25]。MSTN是由動物肌細(xì)胞產(chǎn)生的一種蛋白,對肌細(xì)胞的生長能產(chǎn)生抑制作用,它不僅抑制肌肉細(xì)胞的增殖和分化,而且決定了肌肉纖維的數(shù)量,是肌肉生長速度和瘦肉率的負(fù)調(diào)節(jié)因子[64]。在MSTN信號肽區(qū)域引入突變,可顯著下調(diào)MSTN基因的表達(dá),增加肌纖維數(shù)量,促進肌肉生長[65]。敲除豬肌肉抑制因子MSTN基因和CD163基因,獲得表現(xiàn)出更高瘦肉率且對PRRSV不易感的優(yōu)質(zhì)豬種,更有助于提高豬的抗病、屠宰和繁殖等性能。

多基因同步編輯是從遺傳角度利用CRISPR基因編輯技術(shù)研究培育新品種的關(guān)鍵突破口,該技術(shù)可以同時對多個基因進行精準(zhǔn)修飾。但是CRISPR/Cas9介導(dǎo)的多基因編輯技術(shù)存在一個亟待解決的問題:串聯(lián)的sgRNA數(shù)量越多敲除效率越低,是因為當(dāng)sgRNA種類過多,會競爭細(xì)胞內(nèi)有限的核酸酶,這種效應(yīng)導(dǎo)致改變這一現(xiàn)象使得原本sgRNA的編輯效率被改變。這個問題對于獲得多種優(yōu)質(zhì)性狀的種質(zhì)資源是個嚴(yán)峻的挑戰(zhàn),通過改進基因編輯工具或研究編輯策略或許能給這個問題帶來新的解決思路,這對未來農(nóng)業(yè)、畜牧業(yè)生產(chǎn)領(lǐng)域具有重要意義。

參考文獻(xiàn)(References):

[1] VAN DER OOST J,PATINIOS C.The genome editing revolution[J].Trends Biotechnol,2023,41(3):396-409.

[2] KIM Y G,CHA J,CHANDRASEGARAN S.Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J].Proc Natl Acad Sci U S A,1996,93(3):1156-1160.

[3] CHRISTIAN M,CERMAK T,DOYLE E L,et al.Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2):757-761.

[4] MILLER J C,TAN S Y,QIAO G J,et al.A TALE nuclease architecture for efficient genome editing[J].Nat Biotechnol,2011, 29(2):143-148.

[5] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science, 2013, 339(6121):819-823.

[6] DONOHOUE P D,BARRANGOU R,MAY A P.Advances in industrial biotechnology using CRISPR-cas systems[J].Trends Biotechnol,2018,36(2):134-146.

[7] 張佳珊,譚 韜.CRISPR-Cas9系統(tǒng)編輯DNA誘導(dǎo)基因敲除的發(fā)展及優(yōu)缺點[J].中國免疫學(xué)雜志,2019,35(6):767-770.

ZHANG J S,TAN T.Development of CRISPR-Cas9 system edit DNA and induce targeted knockout as well advantages and disadvantages[J].Chinese Journal of Immunology,2019,35(6):767-770.(in Chinese)

[8] 于海穎,路永強,張 魯,等.CRISPR/Cas9系統(tǒng)在基因編輯豬生產(chǎn)中的應(yīng)用[J].黑龍江動物繁殖,2022,30(1):34-40.

YU H Y,LU Y Q,ZHANG L,et al.Application of the CRISPR/Cas9 system to produce gene-edited pigs[J].Heilongjiang Journal of Animal Reproduction,2022,30(1):34-40.(in Chinese)

[9] MIYAGAWA S,MATSUNARI H,WATANABE M,et al.Generation of α1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs[J].J Reprod Dev,2015,61(5):449-457.

[10] RICHTER A,KUROME M,KESSLER B,et al.Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig[J].BMC Biotechnol,2012,12:84.

[11] SUZUKI S,IWAMOTO M,SAITO Y,et al.Il2rg gene-targeted severe combined immunodeficiency pigs[J].Cell Stem Cell,2012,10(6):753-758.

[12] GUO X C,GENG L S,JIANG C Q,et al.Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9[J].Anim Biotechnol,2023,34(9):4703-4712.

[13] DONG F P,XIE K B,CHEN Y Y,et al.Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells[J].Biochem Biophys Res Commun,2017,482(4):889-895.

[14] 樊祥瑞,王俊燕,梁麗亞,等.基于CRISPR/Cas系統(tǒng)的多重基因編輯與調(diào)控技術(shù)[J].生物工程學(xué)報,2023,39(6):2449-2464.

FAN X R,WANG J Y,LIANG L Y,et al.Multiplex gene editing and regulation techniques based on CRISPR/Cas system[J].Chinese Journal of Biotechnology,2023,39(6):2449-2464.(in Chinese)

[15] 郎 楠,梁洛瑜,汪軍麗,等.CRISPR-Cas9多基因編輯技術(shù)在植物研究中的應(yīng)用[J].分子植物育種,2023,21(8):2665-2670.

LANG N,LIANG L Y,WANG J L,et al.Application of CRISPR-Cas9 enabled multiplex gene editing in plant research[J]. Molecular Plant Breeding,2023,21(8):2665-2670.(in Chinese)

[16] FENG X,ZHAO D D,ZHANG X L,et al.CRISPR/Cas9 assisted multiplex genome editing technique in Escherichia coli[J].Biotechnol J,2018,13(9):e1700604.

[17] GUO X C,GENG L S,JIANG C Q,et al.Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9[J].Anim Biotechnol,2023,34(9):4703-4712.

[18] SAKUMA T,NISHIKAWA A,KUME S,et al.Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system[J].Sci Rep,2014,4:5400.

[19] ALOK A,CHAUHAN H,UPADHYAY S K,et al.Compendium of plant-specific CRISPR vectors and their technical advantages[J].Life (Basel),2021,11(10):1021.

[20] 王秉政,張 超,張佳麗,等.利用單轉(zhuǎn)錄本表達(dá)Cas9和sgRNA條件性編輯果蠅基因組[J].遺傳,2023,45(7):593-601.

WANG B Z,ZHANG C,ZHANG J L,et al.Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA[J].Hereditas (Beijing),2023,45(7):593-601.(in Chinese)

[21] 徐 磊,趙育蓉,胡悅旻,等.基于CRISPR/Cas9系統(tǒng)的多基因敲除載體的構(gòu)建及其敲除效率檢測[J].農(nóng)業(yè)生物技術(shù)學(xué)報,2022,30(5):1023-1030.

XU L,ZHAO Y R,HU Y M,et al.Construction and knockout efficiency detection of multiple knockout vector based on the CRISPR/Cas9 system[J].Journal of Agricultural Biotechnology,2022,30(5):1023-1030.(in Chinese)

[22] KOR S D,CHOWDHURY N,KEOT A K,et al.RNA PolⅢ promoters-key players in precisely targeted plant genome editing[J].Front Genet,2023,13:989199.

[23] REIS A C,HALPER S M,VEZEAU G E,et al.Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays[J].Nat Biotechnol,2019,37(11):1294-1301.

[24] ZHANG Z J,MAO Y F,HA S,et al.A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis[J].Plant Cell Rep,2016,35(7):1519-1533.

[25] ZHANG J Q,GUO J X,WU X J,et al.Optimization of sgRNA expression strategy to generate multiplex gene-edited pigs[J].Zool Res,2022,43(6):1005-1008.

[26] XING H L,DONG L,WANG Z P,et al.A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J].BMC Plant Biol,2014,14:327.

[27] NIE L H,DAS THAKUR M,WANG Y M,et al.Regulation of U6 promoter activity by transcriptional interference in viral vector-based RNAi[J].Genomics Proteomics Bioinformatics,2010,8(3):170-179.

[28] 盧 揮,張 啟,于思禮,等.谷氨酸棒桿菌中基于CRISPR/Cas9的多位點堿基編輯系統(tǒng)的優(yōu)化[J].生物工程學(xué)報,2022,38(2):780-795.

LU H,ZHANG Q,YU S L,et al.Optimization of CRISPR/Cas9-based multiplex base editing in Corynebacterium glutamicum[J]. Chinese Journal of Biotechnology,2022,38(2):780-795.

[29] GU H Q,LIAN B,YUAN Y X,et al.A 5′ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants[J].Sci China Life Sci,2022,65(1):1-15.

[30] SINGH J,SHARMA D,BRAR G S,et al.CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants[J].Mol Biol Rep,2022,49(12):11443-11467.

[31] ZALATAN J G,LEE M E,ALMEIDA R,et al.Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J].Cell,2015,160(1-2):339-350.

[32] PORT F,BULLOCK S L.Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs[J].Nat Methods, 2016, 13(10):852-854.

[33] QI W W,ZHU T,TIAN Z R,et al.High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize[J].BMC Biotechnol,2016,16(1):58.

[34] MINKENBERG B,XIE K B,YANG Y N.Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes[J].Plant J,2017,89(3):636-648.

[35] XIE K B,MINKENBERG B,YANG Y N.Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J].Proc Natl Acad Sci U S A,2015,112(11):3570-3575.

[36] HUANG S S,ZHANG Z W,TAO W Y,et al.Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA[J].Mol Ther,2022,30(9):2923-2932.

[37] MUSHTAQ M,AHMAD DAR A,SKALICKY M,et al.CRISPR-based genome editing tools:insights into technological breakthroughs and future challenges[J].Genes (Basel),2021,12(6):797.

[38] KISHIMOTO T,NISHIMURA K,MORISHITA K,et al.An engineered ligand-responsive Csy4 endoribonuclease controls transgene expression from Sendai virus vectors[J].J Biol Eng,2024,18(1):9.

[39] HAURWITZ R E,STERNBERG S H,DOUDNA J A.Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA[J].EMBO J,2012,31(12):2824-2832.

[40] FERREIRA R,SKREKAS C,NIELSEN J,et al.Multiplexed CRISPR/Cas9 genome editing and gene regulation using csy4 in Saccharomyces cerevisiae[J].ACS Synth Biol,2018,7(1):10-15.

[41] CACˇGERMáK T,CURTIN S J,GIL-HUMANES J,et al.A multipurpose toolkit to enable advanced genome engineering in plants[J].Plant Cell,2017,29(6):1196-1217.

[42] DOUDNA J A.Ribozymes:the hammerhead swings into action[J].Curr Biol,1998,8(14):R495-R497.

[43] GAO Y B,ZHAO Y D.Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing[J].J Integr Plant Biol,2014,56(4):343-349.

[44] DEANER M,MEJIA J,ALPER H S.Enabling graded and large-scale multiplex of desired genes using a dual-mode dCas9 activator in Saccharomyces cerevisiae[J].ACS Synth Biol,2017,6(10):1931-1943.

[45] NISSIM L,PERLI S D,F(xiàn)RIDKIN A,et al.Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells[J].Mol Cell,2014,54(4):698-710.

[46] ZHANG W W,MATLASHEWSKI G.CRISPR-Cas9-mediated genome editing in Leishmania donovani[J].mBio,2015, 6(4):e00861.

[47] LI J H,ZHANG S J,ZHANG R Z,et al.Efficient multiplex genome editing by CRISPR/Cas9 in common wheat[J].Plant Biotechnol J,2021,19(3):427-429.

[48] WANG P C,ZHANG J,SUN L,et al.High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system[J].Plant Biotechnol J,2018,16(1):137-150.

[49] URANGA M,ARAGONéS V,SELMA S,et al.Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector[J].Plant J,2021,106(2):555-565.

[50] 魏 杰,劉勝宇.禽白血病凈化防控技術(shù)探討[J].山東畜牧獸醫(yī),2023,44(11):47-49.

WEI J,LIU S Y.Discussion on purification and prevention technology of avian leukosis[J].Shandong Journal of Animal Science and Veterinary Medicine,2023,44(11):47-49.(in Chinese)

[51] 梁晶晶.CRISPR多重基因編輯技術(shù)敲除雞TVB基因及新型多重基因編輯體系的建立[D].南寧:廣西大學(xué),2022.

LIANG J J.Knockout of chicken TVB gene by multiplexed crispr technologies and establishment of a new multiple gene editing[D].Nanning:Guangxi University,2022.(in Chinese)

[52] 付婷婷,葉 莉,范君文,等.近年來我國動物傳染病研究現(xiàn)狀分析及展望[J].中國比較醫(yī)學(xué)雜志,2021,31(2):107-113.

FU T T,YE L,F(xiàn)AN J W,et al.The research status of infectious diseases in domestic animals[J].Chinese Journal of Comparative Medicine,2021,31(2):107-113.(in Chinese)

[53] XU K,ZHOU Y R,MU Y L,et al.CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J].eLife,2020,9:e57132.

[54] ZHANG X X,GUO C H.Recent advances in inhibition of porcine reproductive and respiratory syndrome virus through targeting CD163[J].Front Microbiol,2022,13:1006464.

[55] ZHU J Q,HE X,BERNARD D,et al.Identification of new compounds against PRRSV infection by directly targeting CD163[J].J Virol,2023,97(5):e0005423.

[56] BURKARD C,OPRIESSNIG T,MILEHAM A J,et al.Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J].J Virol,2018,92(16):e00415-18.

[57] BURKARD C,LILLICO S G,REID E,et al.Precision engineering for PRRSV resistance in pigs:macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J].PLoS Pathog,2017,13(2):e1006206.

[58] WELCH S K W,CALVERT J G.A brief review of CD163 and its role in PRRSV infection[J].Virus Res,2010,154(1-2):98-103.

[59] PRATHER R S,WELLS K D,WHITWORTH K M,et al.Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV)[J].Sci Rep,2017,7(1):13371.

[60] CHENG S P,WU H G,CHEN Z H.Evolution of transmissible gastroenteritis virus (TGEV):a codon usage perspective[J].Int J Mol Sci,2020,21(21):7898.

[61] CHEN J W,PAN K Y,CHEN Z,et al.Production of porcine aminopeptidase N (pAPN) site-specific edited pigs[J].Anim Sci J,2019,90(3):366-371.

[62] 李寶賢,馬廣鵬,葛俊偉,等.豬流行性腹瀉病毒功能性受體的鑒定[J].病毒學(xué)報,2009,25(3):220-225.

LI B X,MA G P,GE J W,et al.Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J].Chinese Journal of Virology,2009,25(3):220-225.(in Chinese)

[63] JI C M,WANG B,ZHOU J Y,et al.Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells[J].Virology,2018,517:16-23.

[64] LEE S J.Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction[J].J Clin Invest,2021,131(9):e148372.

[65] LI R Q,ZENG W,MA M,et al.Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs[J].Transgenic Res,2020,29(1):149-163.

(編輯 郭云雁)

贞丰县| 潍坊市| 萨嘎县| 克山县| 资源县| 凌海市| 罗田县| 鹿泉市| 郓城县| 武川县| 吉安县| 大兴区| 台州市| 白银市| 建始县| 香格里拉县| 库伦旗| 黑龙江省| 金寨县| 青田县| 集安市| 光泽县| 扎兰屯市| 库尔勒市| 镇雄县| 北流市| 郧西县| 伊宁县| 含山县| 康马县| 上饶市| 丹寨县| 高平市| 东方市| 桃园县| 阳信县| 南开区| 屏南县| 朝阳市| 阿鲁科尔沁旗| 新野县|