摘 要: 旨在建立鴿脂肪前體細(xì)胞的體外分離、培養(yǎng)、鑒定和成脂誘導(dǎo)分化的方法。本研究采集3只健康的1日齡銀王鴿皮下脂肪組織,利用I型膠原酶進(jìn)行消化以分離脂肪前體細(xì)胞,在脂肪前體細(xì)胞常規(guī)分離法基礎(chǔ)上進(jìn)行分離方法改良,對(duì)獲得的脂肪前體細(xì)胞進(jìn)行原代和傳代培養(yǎng),并觀察細(xì)胞形態(tài),通過免疫熒光鑒定特異性標(biāo)記DLK1,確認(rèn)脂肪前體細(xì)胞。通過在培養(yǎng)基中添加胰島素和油酸鈉進(jìn)行成脂誘導(dǎo)分化,使用BODIPY493/503染色觀察細(xì)胞中的脂滴分布情況,通過甘油三酯測定試劑盒檢測細(xì)胞中甘油三酯的含量,采用實(shí)時(shí)熒光定量PCR和Western blot技術(shù)檢測脂肪前體細(xì)胞成脂分化過程中分化相關(guān)基因的表達(dá)。研究結(jié)果表明,鴿脂肪前體細(xì)胞呈梭形,改良分離法比常規(guī)分離法能夠獲得更多的脂肪前體細(xì)胞;與37 ℃相比,在41 ℃培養(yǎng)溫度下,獲得的脂肪前體細(xì)胞數(shù)目顯著增加(Plt;0.001)。免疫熒光結(jié)果表明,DLK1表達(dá)為陽性,說明獲得的是脂肪前體細(xì)胞。BODIPY493/503染色結(jié)果顯示,分化6 d的細(xì)胞中產(chǎn)生大量的脂滴。且隨著分化時(shí)間的增加,細(xì)胞中甘油三酯的相對(duì)含量也顯著增加(Plt;0.01)。qPCR結(jié)果顯示,在添加誘導(dǎo)劑2 d時(shí),PPARγ、SCD、DGAT2、PLIN2、FASN、AFABP、LPL基因的表達(dá)量顯著上調(diào)(Plt;0.05),之后隨分化時(shí)間的增加表達(dá)逐漸上調(diào);SREBF1基因在分化2 d時(shí)表達(dá)量顯著上調(diào)(Plt;0.05),之后表達(dá)量不變;ACACA基因在分化2 d時(shí),表達(dá)量顯著增加(Plt;0.05),在分化4 d時(shí)表達(dá)量達(dá)到高峰。Western blot結(jié)果表明,在分化2 d時(shí),PPARγ、LPL和PLIN2的表達(dá)量顯著上調(diào)(Plt;0.05),之后隨著分化時(shí)間的延長,表達(dá)量進(jìn)一步升高。綜上所述,本研究改良了脂肪前體細(xì)胞常規(guī)分離法,成功分離獲得鴿脂肪前體細(xì)胞,且篩選出最適培養(yǎng)溫度。獲得的鴿脂肪前體細(xì)胞經(jīng)胰島素和油酸鈉誘導(dǎo)后能高效地分化為成熟的脂肪細(xì)胞。本研究為鴿脂肪代謝分子調(diào)控機(jī)制的研究提供了良好的細(xì)胞模型,同時(shí)也為鴿生物培育肉的制備提供種子細(xì)胞和技術(shù)指導(dǎo)。
關(guān)鍵詞: 鴿;脂肪前體細(xì)胞;成脂分化;成熟脂肪細(xì)胞;細(xì)胞培育肉
中圖分類號(hào):S836.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)08-3482-11
收稿日期:2024-01-29
基金項(xiàng)目:國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFC2101404);中國工程院戰(zhàn)略研究與咨詢項(xiàng)目(2023-XZ-79)
作者簡介:梁小娟(1989-),女,河南開封人,博士,高級(jí)工程師,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail: xyskylxj8907@163.com
通信作者:王守偉,主要從事細(xì)胞培育肉研究,E-mail:cmrcwsw@126.com
Isolation, Culture and Adipogenic Differentiation of Pigeon Preadipocytes
LIANG" Xiaojuan, LI" Yushuang, FU" Zhou, TANG" Duo, LI" Yingying, WANG" Shouwei*
(China Meat Food Research Center, Beijing Institute of Food Science, Beijing 100068," China)
Abstract: The aim of this study was to establish methods for the isolation, culture, identification and adipogenic differentiation of pigeon preadipocytes in vitro. Subcutaneous adipose tissue was collected from 3 healthy 1-day-old silver king pigeons. Pigeon preadipocytes were isolated by type I collagenase digestion. The isolation method was improved based on the conventional isolation method of preadipocytes. Primary and passage cultures were performed, and cell morphology was observed. The preadipocytes were identified by immunofluorescence staining using specific marker DLK1. Adipogenic differentiation was induced by adding insulin and sodium oleate to the culture medium. The distribution of lipid droplets in the cells was indicated by staining with BODIPY493/503. The triglyceride content in the cells were measured by the triglyceride assay kit. Quantitative real-time PCR (qPCR) and Western blot were used to detect the expression of adipogenic-related genes during preadipocytes differentiation. The results showed that the pigeon preadipocytes displayed spindle-shape. The modified isolation method yielded more preadipocytes compared to the conventional isolation method. Compared with 37 ℃, the number of preadipocytes was significantly increased at 41 ℃ (Plt;0.001). Immunofluorescence staining confirmed positive DLK1 expression, indicating the obtained cells were indeed preadipocytes. The results of BODIPY493/503 staining revealed abundant lipid droplets in cells after 6 days of differentiation. The relative triglyceride content in the cells was significantly increased with differentiation time (Plt;0.01). The qPCR data indicated that the expression of PPARγ, SCD, DGAT2, PLIN2, FASN, AFABP, and LPL genes was significantly upregulated after 2 days of adipogenic induction (Plt;0.05), and continued to increase with longer differentiation time. The expression of SREBF1 gene was significantly up-regulated after 2 days of differentiation (Plt;0.05), and remained unchanged thereafter. The expression of ACACA gene was significantly increased after 2 days of differentiation (Plt;0.05), and reached its peak after 4 days of differentiation. The Western blot results showed that the relative expression of PPARγ, LPL and PLIN2 were significantly up-regulated after 2 days of differentiation (Plt;0.05), and then further increased with the prolongation of differentiation time. In conclusion, this study successfully modified the conventional isolation method to isolate pigeon preadipocytes and screened the optimal culture temperature. The obtained pigeon preadipocytes were efficiently differentiated into mature adipocytes after induction with insulin and sodium oleate. This study provides a good cell model for investigating the molecular regulation mechanism of fat metabolism of pigeon, and also provided seed cells and technical guidance for the preparation of pigeon cell cultured meat.
Key words: pigeon; preadipocytes; adipogenic differentiation; mature adipocytes; cell cultured meat
*Corresponding author: WANG Shouwei, E-mail:cmrcwsw@126.com
禽類的脂肪組織在機(jī)體能量代謝中發(fā)揮著重要作用。首先,脂肪是重要能量來源,可以提供飛行和保暖等方面的能量需求。其次,脂肪還能維持機(jī)體正常的生理功能,對(duì)鳥類的繁殖和生存具有重要作用。脂肪前體細(xì)胞的體外增殖與分化為研究動(dòng)物脂肪代謝提供了材料,細(xì)胞的體外增殖與分化需要細(xì)胞內(nèi)源因子和外源因子的共同作用。哺乳動(dòng)物細(xì)胞的成脂分化方法通常采用的是“雞尾酒法”,即胰島素(insulin,INS)、地塞米松(dexamethasone,DEX)和3-異丁基-1-甲基黃嘌呤(3-isobutyl-1-methylxanthine,IBMX)的混合物[1],但僅雞尾酒法卻不能誘導(dǎo)禽類的脂肪前體細(xì)胞成脂分化?;A(chǔ)培養(yǎng)基中僅添加雞血清可以誘導(dǎo)雞脂肪前體細(xì)胞的分化,除此之外,培養(yǎng)基中添加外源脂肪酸也可誘導(dǎo)雞脂肪前體細(xì)胞的成脂分化。
隨著組織工程的發(fā)展,細(xì)胞培育肉是近幾年研究熱門的一種替代蛋白,可以補(bǔ)充動(dòng)物蛋白質(zhì)生產(chǎn)的方法,以滿足人們對(duì)肉類食品的需求,并盡量減少不必要的動(dòng)物犧牲[2-5]。細(xì)胞培育肉的制備是從動(dòng)物身上獲取干細(xì)胞,經(jīng)過體外增殖分化、結(jié)合3D打印技術(shù)塑型而成的一種肉類產(chǎn)品[6-8]。動(dòng)物種子細(xì)胞是制備細(xì)胞培育肉的基礎(chǔ),常用的種子細(xì)胞是骨骼肌衛(wèi)星細(xì)胞和脂肪前體細(xì)胞[9-11]。脂肪含量直接影響動(dòng)物肉品質(zhì),因此,脂肪前體細(xì)胞成脂分化在細(xì)胞培育肉的制備過程中至關(guān)重要[12]。研究人員通過不斷優(yōu)化分離方法,已分離出雞[13-15]、鴨[16-17]、鵝[18]、豬[19]、牛[20]、羊[21]等不同物種的脂肪前體細(xì)胞,并通過在培養(yǎng)基中添加誘導(dǎo)因子進(jìn)行體外成脂分化。然而,到目前為止,關(guān)于鴿的脂肪前體細(xì)胞分離培養(yǎng)和分化的研究尚未見相關(guān)報(bào)道。
本研究改良了常規(guī)的脂肪前體細(xì)胞提取方法,成功分離培養(yǎng)了鴿脂肪前體細(xì)胞,并通過在培養(yǎng)基中添加油酸鈉和胰島素進(jìn)行了體外成脂誘導(dǎo)分化,將鴿脂肪前體細(xì)胞高效分化為成熟脂肪細(xì)胞。本研究試驗(yàn)為解析鴿脂肪代謝機(jī)制的研究提供基礎(chǔ)材料,亦為鴿細(xì)胞培育肉的制備提供技術(shù)指導(dǎo)。
1 材料與方法
1.1 材料
1.1.1 試驗(yàn)動(dòng)物
3只健康的1日齡銀王鴿購自北京霍書林養(yǎng)鴿場。
1.1.2 主要儀器設(shè)備
生物安全柜(海爾,HR1360-IIA2);恒溫培養(yǎng)箱(海爾,HCP258);倒置熒光顯微鏡(尼康,Ti2-U);EVOSTM XL Core 配置細(xì)胞成像儀(賽默飛,AMEX1100);激光共聚焦高內(nèi)涵細(xì)胞成像儀(賽默飛,CellInsight CX7);細(xì)胞計(jì)數(shù)儀(賽默飛,AMQAX1000);高速冷凍離心機(jī)(京醫(yī)眾,GTR16-1);化學(xué)發(fā)光儀(天能,Tanon5200)等。
1.1.3 主要化學(xué)試劑
DMEM培養(yǎng)基、紅細(xì)胞裂解液、0.25%胰酶、FITC標(biāo)記的鬼筆環(huán)肽、DAPI(solarbio);胎牛血清、I型膠原酶(gibco);蛋白酶抑制劑、預(yù)染蛋白marker(epizyme);RIPA裂解液、ECL發(fā)光液(meilunbio);BODIPY493/503(glpbio);DLK1一抗(proteintech,10636-1-AP);PPARγ一抗(proteintech,16643-1-AP);LPL一抗(proteintech,28602-1-AP);PLIN2一抗(proteintech,15294-1-AP);ACTB一抗(proteintech,66009-1-lg);HPR標(biāo)記山羊抗兔二抗(abclonal,AS014);HPR標(biāo)記山羊抗小鼠二抗(abclonal,AS003);ABflo 647標(biāo)記山羊抗兔二抗(abclonal,AS060);胰島素(macgene,CC101)、油酸鈉(sigma,O7501);RNA提取試劑盒(Promega);cDNA合成試劑盒、SYBR試劑(novoprotein);TAG測定試劑盒(applygen)。
1.2 方法
1.2.1 鴿脂肪前體細(xì)胞的分離培養(yǎng)
在無菌條件下取出鴿皮下脂肪組織,用75%酒精漂洗1次,然后用PBS漂洗3次。將脂肪組織轉(zhuǎn)移至離心管,用眼科剪將其剪成1 mm3左右的小塊。然后,向離心管中加入4倍體積的I型膠原酶工作液(2 mg·mL-1),將裝有組織小塊和膠原酶的離心管放置于37 ℃培養(yǎng)箱中消化,每隔10 min將離心管上下顛倒混勻,消化30~60 min,肉眼觀察不到明顯的組織塊為止。然后,將消化液分為2組:(A)常規(guī)分離法:向組織消化液中加入等體積的含20% FBS的DMEM培養(yǎng)基(完全培養(yǎng)基)終止消化。將混合液經(jīng)100 μm孔徑的細(xì)胞篩過濾,然后,1 000 r·min-1離心5 min,棄上清,加紅細(xì)胞裂解液,室溫放置5 min,1 000 r·min-1離心5 min,最后加入完全培養(yǎng)基吹打細(xì)胞沉淀進(jìn)行重懸,將重懸液鋪至10 cm培養(yǎng)皿中。(B)改良分離法:向組織消化液中加入8倍體積的完全培養(yǎng)基終止消化。將混合液經(jīng)100 μm孔徑的細(xì)胞篩過濾,然后將濾液直接鋪至10 cm細(xì)胞培養(yǎng)皿中。將上述兩組培養(yǎng)皿置于37 ℃,5% CO2培養(yǎng)箱中進(jìn)行培養(yǎng),48 h后更換新的完全培養(yǎng)基,之后每2 d換一次新鮮培養(yǎng)基。
1.2.2 鴿脂肪前體細(xì)胞的最適培養(yǎng)溫度的篩選
將改良分離法獲得的脂肪前體細(xì)胞長滿之后傳代,分2組:(a):取106個(gè)細(xì)胞接種至10 cm培養(yǎng)皿,置于含5% CO2的37 ℃恒溫培養(yǎng)箱中進(jìn)行培養(yǎng);(b):取106個(gè)細(xì)胞接種至10 cm培養(yǎng)皿,置于含5% CO2的41 ℃恒溫培養(yǎng)箱中進(jìn)行培養(yǎng),每組3個(gè)重復(fù),2 d后,顯微鏡下觀察細(xì)胞的生長密度,并將兩組細(xì)胞消化后進(jìn)行計(jì)數(shù)。
1.2.3 鴿脂肪前體細(xì)胞的免疫熒光鑒定
將鴿脂肪前體細(xì)胞接種至24孔培養(yǎng)板,置于5% CO2,41 ℃的培養(yǎng)箱中培養(yǎng);次日,去除培養(yǎng)基,PBS洗1次,加入4% PFA固定液,室溫固定10~30 min。用0.1% Triton X-100進(jìn)行細(xì)胞通透,室溫處理10~20 min,PBS洗滌后加入0.2% BSA室溫封閉45~60 min,去掉封閉液,直接加入DLK1一抗(1∶100稀釋),放置4 ℃,孵育過夜,PBS洗3次,加入HPRABflo647標(biāo)記山羊抗兔二抗(1∶100稀釋),室溫孵育1 h,PBS洗3次,加入FITC標(biāo)記的鬼筆環(huán)肽(100 nmol·L-1),室溫避光孵育30 min,PBS洗3次,加入DAPI染液(2 μg·mL-1)室溫避光孵育5 min,PBS洗3次,然后使用高內(nèi)涵細(xì)胞成像儀拍照。
1.2.4 鴿脂肪前體細(xì)胞的成脂誘導(dǎo)分化
將鴿脂肪前體細(xì)胞培養(yǎng)在含20% FBS的DMEM完全培養(yǎng)基中,置于5% CO2,41 ℃的培養(yǎng)箱中培養(yǎng),每2 d更換新的完全培養(yǎng)基,觀察細(xì)胞形態(tài)和生長情況。待細(xì)胞匯合度達(dá)到90%左右進(jìn)行成脂誘導(dǎo)分化,棄掉完全培養(yǎng)基,加入41 ℃預(yù)熱的成脂誘導(dǎo)分化培養(yǎng)基(DMEM+10%FBS+5 μg·mL-1 胰島素+150 μmol·L-1油酸鈉),繼續(xù)置于5% CO2,41 ℃的培養(yǎng)箱中培養(yǎng),之后每2 d更換新的成脂誘導(dǎo)分化培養(yǎng)基。
1.2.5 鴿脂肪細(xì)胞BODIPY 493/503染色
棄掉培養(yǎng)基,用PBS洗1次;加入4% PFA固定液,室溫固定15~30 min;PBS洗3次;加入5 μmol·L-1 BODIPY 493/503和2 μg·mL-1 DAPI染液分別對(duì)脂滴和細(xì)胞核進(jìn)行避光染色10~15 min,PBS洗3次,然后使用倒置熒光顯微鏡觀察并拍照。
1.2.6 細(xì)胞甘油三酯(triglyceride, TAG)含量測定 ""收集分化0、2、4和6 d的鴿脂肪細(xì)胞,利用TAG測定試劑盒對(duì)分化4個(gè)時(shí)期的脂肪細(xì)胞進(jìn)行TAG含量測定。將分化0 d的TAG含量校準(zhǔn)為1,計(jì)算不同時(shí)期TAG的相對(duì)含量。
1.2.7 細(xì)胞總RNA抽提及cDNA制備
使用RNA提取試劑盒提取細(xì)胞總RNA。反轉(zhuǎn)錄總體系為20 μL:2×NovoScript plus 1 st Strand cDNA Synthesis SuperMix 10 μL,RNA模板0.5 μg,gDNA Purge 1 μL,用RNA-free ddH2O補(bǔ)充體積至20 μL,并吹打混勻。反應(yīng)程序?yàn)?0 ℃ 15 min,85 ℃ 5 s。將cDNA放置-20 ℃保存。
1.2.8 Quantitative real-time-PCR(qPCR) "使用NCBI網(wǎng)頁的pick primer在線網(wǎng)站設(shè)計(jì)引物,具體引物信息見表1,18S作為內(nèi)參基因。cDNA母液稀釋10倍后用于qPCR。qPCR反應(yīng)采用近岸蛋白公司的SYBR熒光定量試劑盒進(jìn)行。反應(yīng)體系為:2×NovoStart SYBR qPCR SuperMix Plus 10 μL,上、下游引物各0.5 μL,cDNA 2.0 μL,RNA-free ddH2O 7 μL。反應(yīng)程序:95 ℃預(yù)變性 1 min;95℃ 變性 20 s,60 ℃退火 20 s,72 ℃延伸 30 s,共40個(gè)循環(huán)。
1.2.9 細(xì)胞總蛋白提取及Western blot
棄去培養(yǎng)基,用預(yù)冷的PBS洗2次,加入含蛋白酶抑制劑的RIPA裂解液,冰浴5~10 min,用細(xì)胞刮刀刮取細(xì)胞,用移液槍進(jìn)行反復(fù)吹打,然后收集細(xì)胞裂解物至離心管,4 ℃,12 000 r·min-1離心10 min后取上清,上清液即細(xì)胞蛋白。將蛋白變性后上樣于SDS-PAGE凝膠,電泳100 V 15 min,150 V 45 min。電泳結(jié)束后將蛋白轉(zhuǎn)印至PVDF膜,使用5%脫脂牛奶室溫封閉1 h。加入一抗(1∶2 500稀釋),放置4 ℃ 孵育過夜,1×TBST洗3次,加入二抗(1∶5 000稀釋),室溫孵育1 h,1×TBST洗3次。使用ECL化學(xué)發(fā)光液進(jìn)行PVDF膜顯色,將膜置于化學(xué)發(fā)光儀中拍照并保存。
1.2.10 數(shù)據(jù)分析
熒光定量數(shù)據(jù)采用2-ΔΔCt法進(jìn)行處理分析。使用ImageJ分析Western blot蛋白條帶灰度值。使用GraphPad Prism Version 8 統(tǒng)計(jì)軟件進(jìn)行 t 檢驗(yàn)分析。結(jié)果用“平均值±標(biāo)準(zhǔn)誤”表示。以Plt;0.05為差異顯著性判斷標(biāo)準(zhǔn),*. Plt;0.05,**. Plt;0.01,***. Plt;0.001。
2 結(jié)" 果
2.1 鴿脂肪前體細(xì)胞的分離培養(yǎng)
在本研究中,使用I型膠原酶進(jìn)行組織消化分離脂肪前體細(xì)胞,并且對(duì)常規(guī)分離法進(jìn)行了改良。將常規(guī)分離法和改良分離法獲得的脂肪前體細(xì)胞分別接種至細(xì)胞培養(yǎng)皿進(jìn)行原代培養(yǎng)。48 h后,在顯微鏡下觀察細(xì)胞生長情況,結(jié)果如圖1所示,大部分細(xì)胞貼壁生長,貼壁的細(xì)胞即脂肪前體細(xì)胞,這些細(xì)胞呈不規(guī)則的梭形。常規(guī)分離法獲得的細(xì)胞數(shù)量較少(圖1A),而改良分離法獲得的細(xì)胞數(shù)量明顯增多,且細(xì)胞生長狀態(tài)良好(圖1B)。
2.2 鴿脂肪前體細(xì)胞最適培養(yǎng)溫度的篩選
在體外,細(xì)胞培養(yǎng)的溫度對(duì)于細(xì)胞的增殖非常關(guān)鍵。由于禽類的體溫相比哺乳動(dòng)物的體溫偏高,且在本課題組前期研究中發(fā)現(xiàn)鴿骨骼肌衛(wèi)星細(xì)胞的最適培養(yǎng)溫度為41 ℃(專利申請(qǐng)?zhí)枺篊N202010700601.9),因此,本研究探索了鴿子脂肪前體細(xì)胞培養(yǎng)的最適培養(yǎng)溫度。本研究將鴿脂肪前體細(xì)胞消化接種細(xì)胞培養(yǎng)板后分成兩組:(a)組:放置37 ℃,5% CO2培養(yǎng)箱中培養(yǎng);(b)組:放置41 ℃,5% CO2培養(yǎng)箱中培養(yǎng),培養(yǎng)2 d后,在顯微鏡下觀察細(xì)胞生長密度并拍照。然后,將兩組細(xì)胞分別消化后進(jìn)行計(jì)數(shù)。結(jié)果如圖2所示,41 ℃培養(yǎng)條件下,獲得的細(xì)胞數(shù)量比37 ℃顯著增多(Plt;0.001)。說明41 ℃更適合鴿脂肪前體細(xì)胞的培養(yǎng)。
2.3 鴿脂肪前體細(xì)胞的免疫熒光鑒定
本研究將鴿脂肪前體細(xì)胞接種至24孔培養(yǎng)板,并使用特異性標(biāo)記前脂肪細(xì)胞因子-1(delta like non-canonical Notch ligand 1,DLK1)抗體進(jìn)行細(xì)胞免疫熒光染色以鑒定脂肪前體細(xì)胞,同時(shí)使用FITC標(biāo)記的鬼筆環(huán)肽對(duì)細(xì)胞骨架進(jìn)行染色。結(jié)果如圖3所示,幾乎所有細(xì)胞均為DLK1陽性細(xì)胞,說明分離的細(xì)胞的確是鴿脂肪前體細(xì)胞。因此,可以進(jìn)行后續(xù)試驗(yàn)。
2.4 鴿脂肪前體細(xì)胞的成脂誘導(dǎo)分化
本研究通過在培養(yǎng)基中添加胰島素和油酸鈉對(duì)鴿脂肪前體細(xì)胞進(jìn)行成脂誘導(dǎo)分化。BODIPY493/503是一種常見的用于脂質(zhì)標(biāo)記的綠色熒光染料,能夠?qū)?xì)胞中的中性脂滴染色[22],且靈敏度高。因此,本研究使用BODIPY493/503對(duì)分化0和6 d的鴿脂肪細(xì)胞進(jìn)行了染色。染色結(jié)果如圖4所示,分化0 d的細(xì)胞中沒有綠色信號(hào),而分化6 d的細(xì)胞中有大量綠色信號(hào),即細(xì)胞中合成了許多小脂滴,說明在培養(yǎng)基中添加胰島素和油酸鈉能成功地將鴿脂肪前體細(xì)胞誘導(dǎo)分化為成熟的脂肪細(xì)胞。
2.5 鴿脂肪細(xì)胞TAG含量測定
本研究收集分化0、2、4和6 d 的鴿脂肪細(xì)胞,使用TAG測定試劑盒測定細(xì)胞中TAG含量,將分化0 d細(xì)胞的TAG含量校準(zhǔn)為1,計(jì)算不同時(shí)期TAG的相對(duì)含量。結(jié)果如圖5所示,TAG的相對(duì)含量隨著分化時(shí)間的增加而逐漸顯著增加(Plt;0.01),這進(jìn)一步說明脂肪前體細(xì)胞成功的被誘導(dǎo)分化為成熟的脂肪細(xì)胞,表明分離的脂肪前體細(xì)胞具有分化潛能,且胰島素和油酸鈉聯(lián)用的成脂分化方法是有效的。
2.6 鴿脂肪細(xì)胞分化不同時(shí)期相關(guān)基因的表達(dá)
本研究收集了分化0、2、4和6 d的鴿脂肪細(xì)胞,提取細(xì)胞總RNA和蛋白。利用qPCR技術(shù)檢測成脂分化過程中分化相關(guān)基因在mRNA水平的表達(dá)。結(jié)果如圖6A所示,過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor γ,PPARγ)、硬脂酰輔酶A去飽和酶(stearoyl-CoA desaturase,SCD)、二脂酰甘油?;D(zhuǎn)移酶2(diacylglycerol O-acyltransferase 2,DGAT2)、脂肪分化相關(guān)蛋白(perilipin 2,PLIN2)、脂肪酸合成酶(fatty acid synthase,F(xiàn)ASN)、脂肪細(xì)胞型脂肪酸結(jié)合蛋白(adipocyte fatty acid-binding protein,AFABP)和脂蛋白脂肪酶(lipoprotein lipase,LPL)在添加成脂誘導(dǎo)分化培養(yǎng)基2 d時(shí)表達(dá)量均顯著上調(diào)(Plt;0.05),之后隨著分化時(shí)間的增加,表達(dá)量逐漸上調(diào)。固醇調(diào)節(jié)元件結(jié)合轉(zhuǎn)錄因子1(sterol regulatory element binding transcription factor 1,SREBF1)在分化2 d時(shí)表達(dá)量顯著上調(diào)(Plt;0.05),之后表達(dá)量不變未發(fā)生顯著變化,乙酰輔酶A羧化酶α(acetyl-CoA carboxylase alpha,ACACA)在分化2 d時(shí),表達(dá)量顯著增加(Plt;0.05),在分化4 d時(shí)表達(dá)量達(dá)到高峰。此外,通過Western blot技術(shù)檢測LPL、PPARγ、PLIN2的表達(dá)。結(jié)果如圖6B所示,分化標(biāo)記蛋白LPL、PPARγ、PLIN2在添加誘導(dǎo)劑2 d時(shí)表達(dá)量均顯著上調(diào)(Plt;0.05),之后隨著分化時(shí)間的增加表達(dá)量逐漸增加。以上結(jié)果從分子水平進(jìn)一步說明了脂肪前體細(xì)胞分化為成熟的脂肪細(xì)胞,同時(shí)也揭示了分化相關(guān)基因在鴿脂肪前體細(xì)胞分化過程中的表達(dá)規(guī)律。
3 討 論
脂肪含量直接影響動(dòng)物的肉品質(zhì)和經(jīng)濟(jì)價(jià)值。利用脂肪前體細(xì)胞的體外成脂分化研究脂肪發(fā)育的機(jī)理尤為重要。細(xì)胞培育肉是一種利用細(xì)胞培養(yǎng)技術(shù)來生產(chǎn)肉制品的方法,不需要傳統(tǒng)畜牧業(yè)的過程[23],細(xì)胞培養(yǎng)肉常用種子細(xì)胞是骨骼肌衛(wèi)星細(xì)胞和脂肪前體細(xì)胞。而脂肪含量是影響肉類食品的口感和風(fēng)味的重要因素[24],因此,脂肪前體細(xì)胞的獲得、體外高效增殖與分化對(duì)于細(xì)胞培育肉的制備非常關(guān)鍵。
目前,關(guān)于禽類脂肪細(xì)胞分化研究最多的物種是雞[25-28],其次是鴨[29-30]和鵝[18]。原代雞胚胎成纖維細(xì)胞(chicken embryonic fibroblasts,CEF)可作為研究禽類脂肪形成的潛在細(xì)胞模型[25-26],由于原代細(xì)胞經(jīng)過多次傳代之后會(huì)失去成脂分化的能力,因此雞胚胎成纖維細(xì)胞DF-1細(xì)胞系成為禽類脂肪形成的新細(xì)胞模型[31-34]。雞的永生化脂肪前體細(xì)胞系ICP1(immortalized chicken preadipocyte 1)和ICP2(immortalized chicken preadipocyte 2)也是研究雞脂肪代謝的體外研究模型[35-37]。而對(duì)于鴿的脂肪細(xì)胞分化的研究尚未見相關(guān)報(bào)道。
已報(bào)道的脂肪前體細(xì)胞主要是來源于腹部皮下脂肪和肌間脂肪[28,38],皮下脂肪前體細(xì)胞比肌間脂肪前體細(xì)胞能夠積累更多的脂滴[18,39],因此,對(duì)于脂肪生物培育肉的制備,選用皮下脂肪前體細(xì)胞作為種子細(xì)胞更合適。禽類原代脂肪前體細(xì)胞的獲得主要使用Ⅰ型膠原酶消化[18,27,40],其次是Ⅱ型膠原酶[26,39]消化,也有研究者將膠原酶Ⅰ和Ⅱ聯(lián)用分離肌間脂肪前體細(xì)胞[18]。Ⅰ型膠原酶用來分離皮下脂肪的工作濃度目前報(bào)道的有1 mg·mL-1[40]、2 mg·mL-1[27]、0.2 U·μL-1[18]、500 U·mL-1[41],Ⅱ型膠原酶主要用來分離肌間脂肪前體細(xì)胞,使用濃度為1 mg·mL-1[39]或3.2 mg·mL-1[26]。Ⅰ型膠原酶和Ⅱ型膠原酶的消化溫度均為37 ℃。本研究分離的是鴿皮下脂肪細(xì)胞,因此,選用了Ⅰ型膠原酶,濃度為2 mg·mL-1。
常規(guī)的分離脂肪前體細(xì)胞的步驟包括剪碎、膠原酶消化、終止消化、過濾、離心、去除紅細(xì)胞及離心后重懸鋪細(xì)胞培養(yǎng)皿/板。步驟非常繁瑣,容易污染,且細(xì)胞會(huì)因離心受到機(jī)械損傷。本研究中,改良后的分離方法簡化了操作步驟,存在多種優(yōu)點(diǎn),包括:1)無需使用離心機(jī)設(shè)備,避免了離心造成的細(xì)胞損傷;2)無需去除紅細(xì)胞,通過后續(xù)換液去除紅細(xì)胞,減少操作步驟,減少污染的可能性;3)無需去除膠原酶溶液,減少操作步驟,減少污染,同時(shí)充分利用了培養(yǎng)基,避免了培養(yǎng)基的浪費(fèi);4)一些成熟脂肪細(xì)胞通過去分化成為脂肪前體細(xì)胞,增加了脂肪前體細(xì)胞的數(shù)目。
目前報(bào)道的關(guān)于雞[39]、鴨[42]和鵝[18]的脂肪細(xì)胞培養(yǎng)溫度均是37 ℃,考慮到禽類的體溫比較高,本課題組在前期對(duì)鴿骨骼肌衛(wèi)星細(xì)胞的培養(yǎng)研究時(shí)發(fā)現(xiàn)41 ℃適合鴿細(xì)胞培養(yǎng)(專利申請(qǐng)?zhí)枺篊N202010700601.9)。因此,本研究探索了37 ℃和41 ℃對(duì)鴿脂肪前體細(xì)胞增殖的影響,發(fā)現(xiàn)41 ℃更有利于鴿脂肪前體細(xì)胞的生長。
禽類的脂肪合成主要是在肝臟進(jìn)行,所以禽類脂肪細(xì)胞分化方法也與哺乳動(dòng)物脂肪前體細(xì)胞的成脂分化方法有很大差異。油酸或油酸鈉是常用的禽類脂肪細(xì)胞成脂分化誘導(dǎo)試劑[43]?;A(chǔ)培養(yǎng)基中僅添加雞血清可以促進(jìn)DF-1、CEF、鵪鶉胚胎成纖維細(xì)胞(quail embryonic fibroblasts,QEF)、鴨胚胎成纖維細(xì)胞(duck embryonic fibroblasts,DEF)、火雞胚胎成纖維細(xì)胞(turkey embryonic fibroblasts,TEF)的成脂分化,且呈劑量依賴性,而基礎(chǔ)培養(yǎng)基中僅添加含胎牛血清(fetal bovine serum,F(xiàn)BS)并不能促進(jìn)細(xì)胞產(chǎn)生脂滴[25,31,44]。在添加雞血清的基礎(chǔ)上添加油酸、亞油酸和胰島素或/和全反式維甲酸促使細(xì)胞中的脂滴明顯增多,即促進(jìn)分化[26,31]。也有研究表明,在基礎(chǔ)培養(yǎng)基中添加雞血清的基礎(chǔ)上添加胰島素、DEX、肝素和NPY也能促進(jìn)脂肪細(xì)胞分化[41]。在不添加任何血清的情況下,在培養(yǎng)基中僅添加胰島素、轉(zhuǎn)鐵蛋白和外源脂肪酸也能使雞的脂肪源血管基質(zhì)部分細(xì)胞(stromal-vascular cells,SVCs)成脂分化[45]。雞尾酒法(INS、DEX和IBMX)聯(lián)合油酸一起使用可以用于雞和鴨脂肪細(xì)胞分化[27,30],在雞尾酒法基礎(chǔ)上添加油酸和羅格列酮可以誘導(dǎo)鴨和鵝脂肪細(xì)胞的成脂分化[18,29,40]。本研究借鑒已報(bào)道的成脂分化方法,使用添加有胰島素和油酸鈉的含10% FBS的DMEM培養(yǎng)基進(jìn)行成脂誘導(dǎo)分化,分化6 d的脂肪細(xì)胞中有大量的小脂滴。脂滴的主要成分是TAG,在本研究中,鴿脂肪細(xì)胞中的TAG相對(duì)含量隨著分化時(shí)間的增加逐步增加,分化相關(guān)基因也在誘導(dǎo)分化后顯著上調(diào),說明胰島素和油酸鈉可以用于鴿脂肪前體細(xì)胞的成脂誘導(dǎo)分化。
4 結(jié) 論
本研究成功建立了鴿脂肪前體細(xì)胞分離培養(yǎng)體系及成脂誘導(dǎo)分化方法,可為深入研究鴿脂肪前體細(xì)胞增殖與分化分子機(jī)制及脂肪沉積提供良好試驗(yàn)材料,同時(shí)為細(xì)胞培育肉的制備提供種子細(xì)胞和技術(shù)指導(dǎo)。
參考文獻(xiàn)(References):
[1] ZHAO X Y,HU H M,WANG C,et al.A comparison of methods for effective differentiation of the frozen-thawed 3T3-L1 cells[J].Anal Biochem,2019,568:57-64.
[2] BRYANT C J.Culture,meat,and cultured meat[J].J Anim Sci,2020,98(8):skaa172.
[3] CHEN L,GUTTIERES D,KOENIGSBERG A,et al.Large-scale cultured meat production:trends,challenges and promising biomanufacturing technologies[J].Biomaterials,2022,280:121274.
[4] DUTTA S D,GANGULY K,JEONG M S,et al.Bioengineered lab-grown meat-like constructs through 3D bioprinting of antioxidative protein hydrolysates[J].ACS Appl Mater Interfaces,2022,14(30):34513-34526.
[5] SINGH A,KUMAR V,SINGH S K,et al.Recent advances in bioengineered scaffold for in vitro meat production[J].Cell Tissue Res,2023,391(2):235-247.
[6] SEAH J S H,SINGH S,TAN L P,et al.Scaffolds for the manufacture of cultured meat[J].Crit Rev Biotechnol,2022,42(2):311-323.
[7] SUGII S,WONG C Y Q,LWIN A K O,et al.Alternative fat:redefining adipocytes for biomanufacturing cultivated meat[J].Trends Biotechnol,2023,41(5):686-700.
[8] JARA T C,PARK K,VAHMANI P,et al.Stem cell-based strategies and challenges for production of cultivated meat[J].Nat Food,2023,4(10):841-853.
[9] SHAIKH S,LEE E,AHMAD K,et al.Cell types used for cultured meat production and the importance of myokines[J]. Foods,2021,10(10):2318.
[10] LI C H,YANG I H,KE C J,et al.The production of fat-containing cultured meat by stacking aligned muscle layers and adipose Layers formed from gelatin-soymilk scaffold[J].Front Bioeng Biotechnol,2022,10:875069.
[11] BOMKAMP C,MUSGROVE L,MARQUES D M C,et al.Differentiation and maturation of muscle and fat cells in cultivated seafood:lessons from developmental biology[J].Mar Biotechnol (NY),2023,25(1):1-29.
[12] MEHTA F,THEUNISSEN R,POST M J.Adipogenesis from bovine precursors[J].RNNING S B.Myogenesis.New York: Humana,2019:111-125.Methods Mol Biol, 2019,1889:111-125.
[13] CUI T T,HUANG J X,SUN Y N,et al.KLF2 inhibits chicken preadipocyte differentiation at least in part via directly repressing PPARγ transcript variant 1 expression[J].Front Cell Dev Biol,2021,9:627102.
[14] 陳 蘭,張 濤,丁 浩,等.Kruppel樣因子15對(duì)和盈黑雞前體脂肪細(xì)胞增殖分化的影響[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(7): 2118-2129.
CHEN L,ZHANG T,DING H,et al.Effects of Krüppel-like factor 15 gene on proliferation and differentiation of preadipocytes of heying black chickens[J].Acta Veterinaria et Zootechnica Sinica,2022,53(7):2118-2129.(in Chinese)
[15] 王東雪,賀月華,王春秀,等.TIMP3對(duì)雞前脂肪細(xì)胞增殖與分化的影響[J].中國畜牧雜志,2024,60(4):154-160.
WANG D X,HE Y H,WANG C X,et al.Effects of TIMP3 on proliferation and differentiation of chicken preadipocytes[J].Chinese Journal of Animal Science,2024,60(4):154-160.(in Chinese)
[16] WANG Z,YIN Z T,ZHANG F,et al.Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks[J].BMC Genomics,2019,20(1):688.
[17] 尚圓圓,張小輝,戶運(yùn)奇,等.肌肉組織液對(duì)番鴨脂肪細(xì)胞增殖分化和脂質(zhì)沉積的影響[J].中國家禽,2023,45(12):16-20.
SHANG Y Y,ZHANG X H,HU Y Q,et al.Effect of muscle tissue fluid on proliferation,differentiation and lipid deposition of muscovy duck adipocytes[J].China Poultry,2023,45(12):16-20.(in Chinese)
[18] HUO W R,WENG K Q,GU T T,et al.Identification and characterization of the adipogenesis in intramuscular and subcutaneous adipocytes of the goose (Anser cygnoides)[J].Anim Biotechnol,2022,33(6):1181-1189.
[19] 史明月,張雪蓮,楊曉奮,等.NR1H3基因調(diào)控豬前體脂肪細(xì)胞分化的研究[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(7):2094-2103.
SHI M Y,ZHANG X L,YANG X F,et al.Study on NR1H3 gene regulating differentiation of porcine preadipocyte[J].Acta Veterinaria et Zootechnica Sinica,2022,53(7):2094-2103.(in Chinese)
[20] 王 森,師俊華,王之盛,等.牦牛不同部位前體脂肪細(xì)胞分離鑒定及分化關(guān)鍵基因表達(dá)研究[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(3):755-765.
WANG S,SHI J H,WANG Z S,et al.Isolation and identification of preadipocytes from different parts of yak and expression of key genes for differentiation[J].Acta Veterinaria et Zootechnica Sinica,2022,53(3):755-765.(in Chinese)
[21] 張寒月,趙 丹,梁 煜,等.miR-150靶向AOC3調(diào)控綿羊前體脂肪細(xì)胞分化的研究[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(8):3262-3274.
ZHANG H Y,ZHAO D,LIANG Y,et al.miR-150 Regulates ovine preadipocyte differentiation by targeting AOC3[J].Acta Veterinaria et Zootechnica Sinica,2023,54(8):3262-3274.(in Chinese)
[22] QIU B,SIMON M C.BODIPY 493/503 staining of neutral lipid droplets for microscopy and quantification by flow cytometry[J].Bio Protoc,2016,6(17):e1912.
[23] YAP W S,CHOUDHURY D,SUNTORNNOND R.Towards biomanufacturing of cultured meat[J].Trends Biotechnol,2023, 41(3):292-294.
[24] LIU P P,SONG W J,BASSEY A P,et al.Preparation and quality evaluation of cultured fat[J].J Agric Food Chem,2023, 71(9):4113-4122.
[25] KIM D H,LEE J,SUH Y,et al.Adipogenic and myogenic potentials of chicken embryonic fibroblasts in vitro:combination of fatty acids and insulin induces adipogenesis[J].Lipids,2020,55(2):163-171.
[26] KIM D H,LEE J,SUH Y,et al.Research note:all-trans retinoic acids induce adipogenic differentiation of chicken embryonic fibroblasts and preadipocytes[J].Poult Sci,2020,99(12):7142-7146.
[27] LI G X,CHEN Y,JIN W J,et al.Effects of miR-125b-5p on preadipocyte proliferation and differentiation in chicken[J].Mol Biol Rep,2021,48(1):491-502.
[28] SUN G R,ZHANG M,SUN J W,et al.Krüppel-like factor KLF9 inhibits chicken intramuscular preadipocyte differentiation[J].Br Poult Sci,2019,60(6):790-797.
[29] WANG L D,HU X D,WANG S S,et al.MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation[J].Anim Biosci,2022,35(9):1327-1339.
[30] PAN Z Y,LI X W,WU D S,et al.The duck RXRA gene promotes adipogenesis and correlates with feed efficiency[J].Animals (Basel),2023,13(4):680.
[31] LEE J,KIM D H,SUH Y,et al.Research note:potential usage of DF-1 cell line as a new cell model for avian adipogenesis[J].Poult Sci,2021,100(5):101057.
[32] SUN Y H,ZHAI G Y,LI R,et al.RXRα positively regulates expression of the chicken PLIN1 gene in a PPARγ-independent manner and promotes adipogenesis[J].Front Cell Dev Biol,2020,8:349.
[33] SUN Y N,XU H,LI J W,et al.Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4[J].Biochim Biophys Acta Gene Regul Mech,2023,1866(1):194899.
[34] ZHANG X Y,CHENG B H,MA Y Y,et al.Genome-wide survey and functional analysis reveal TCF21 promotes chicken preadipocyte differentiation by directly upregulating HTR2A[J].Biochem Biophys Res Commun,2022,587:131-138.
[35] WANG W,ZHANG T M,WU C Y,et al.Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR[J].PLoS One,2017,12(5):e0177348.
[36] LI X Q,SUN D D,WANG Z,et al.Transcriptional regulatory mechanism of NR2F2 and ZNF423 in avian preadipocyte differentiation[J].Gene,2023,897:148106.
[37] ZHANG J,CAI B L,MA M T,et al.ALDH1A1 inhibits chicken preadipocytes′ proliferation and differentiation via the PPARγ pathway in vitro and invivo[J].Int J Mol Sci,2020,21(9):3150.
[38] ZHANG M,MA X F,ZHAI Y H,et al.Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis[J].J Agric Food Chem,2020,68(11):3678-3688.
[39] ZHANG M,LI F,MA X F,et al.Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro[J].BMC Genomics,2019,20(1):743.
[40] WANG L D,LIANG W S,WANG S S,et al.Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J].PLoS One,2020,15(7):e0236069.
[41] SHIPP S L,CLINE M A,GILBERT E R.Promotion of adipogenesis by neuropeptide Y during the later stages of chicken preadipocyte differentiation[J].Physiol Rep,2016,4(21):e13006.
[42] HE J,TIAN Y,LI J J,et al.Expression pattern of adipocyte fatty acid-binding protein gene in different tissues and its regulation of genes related to adipocyte differentiation in duck[J].Poult Sci,2012,91(9):2270-2274.
[43] SHANG Z C,GUO L,WANG N,et al.Oleate promotes differentiation of chicken primary preadipocytes in vitro[J].Biosci Rep,2014,34(1):e00093.
[44] KIM D H,LEE J,SUH Y,et al.Research note:adipogenic differentiation of embryonic fibroblasts of chicken,turkey,duck,and quail in vitro by medium containing chicken serum alone[J].Poult Sci,2021,100(8):101277.
[45] MATSUBARA Y,ENDO T,KANO K.Fatty acids but not dexamethasone are essential inducers for chick adipocyte differentiation in vitro[J].Comp Biochem Physiol A Mol Integr Physiol,2008,151(4):511-518.
(編輯 郭云雁)