摘要:【目的】凋落物回歸影響著杉木(Cunninghamia lanceolata)人工林土壤碳氮循環(huán),是杉木人工林可持續(xù)經(jīng)營和土壤地力維持的重要過程。通過分析添加杉木與木荷(Schima superba)凋落物處理下土壤碳氮含量和酶活性的變化特征,為杉木人工林近自然化改造及林分管理提供依據(jù)?!痉椒ā恳?0年生杉木人工林土壤為研究對象,分別添加杉木凋落物(S)、木荷凋落物(M)以及杉木與木荷凋落物混合物(SM),混合質(zhì)量比例設置為m(杉木)∶m(木荷)=5∶1。通過60 d室內(nèi)培養(yǎng),測定不同處理土壤中銨態(tài)氮(NH+4-N)、硝態(tài)氮(NO-3-N)、土壤有機碳(SOC)、水溶性有機碳(WSOC)、酸溶性有機碳(HHOC)、堿溶性有機碳(AHOC)、難溶性有機碳(ROC)含量及酶活性[β-葡萄糖苷酶(GC),β-N-乙酰氨基葡萄糖苷酶(NAG),多酚氧化酶(PPO),亮氨酸氨基肽酶(LAP)]?;趩我蛩胤讲罘治龊腿哂喾治龇椒ǎ芯坎煌幚硐峦寥捞嫉颗c土壤酶活性的關系,探討添加不同凋落物對杉木人工林土壤碳氮含量及酶活性的影響。【結果】①SM處理的土壤腐殖化程度高于添加單一凋落物的;在添加單一凋落物的處理中,M處理的土壤腐殖化程度較低,土壤中ROC含量占比較高。②處理至15和30 d時,S處理土壤的GC、NAG、PPO酶活性顯著高于M處理土壤的;SM處理的可顯著提高土壤GC和NAG活性。③相關分析表明,土壤中AHOC含量與GC活性呈極顯著正相關;NAG活性與WSOC含量呈極顯著正相關,與NH+4-N含量呈極顯著負相關;而PPO活性與NO-3-N含量呈極顯著負相關,與ROC、HHOC含量呈極顯著正相關(Plt;0.01)。【結論】添加不同凋落物對杉木人工林土壤碳氮含量及酶活性產(chǎn)生顯著影響。與添加木荷凋落物相比,添加杉木凋落物的土壤腐殖化程度較高,與碳氮循環(huán)相關的酶活性較高;與添加單一凋落物相比,添加杉木木荷凋落物混合物更有利于土壤腐殖化程度的提升,提高土壤碳氮轉(zhuǎn)化酶活性,進而有利于杉木人工林土壤碳氮循環(huán)。
關鍵詞:杉木人工林;凋落物分解;碳含量;氮含量;土壤酶
中圖分類號:S718;S714"""" 文獻標志碼:A開放科學(資源服務)標識碼(OSID):
文章編號:1000-2006(2024)05-0131-08
Effects of litter decomposition of Cunninghamia lanceolata and Schima superba on soil carbon contents, nitrogen contents" and enzyme activities in Cunninghamia lanceolata plantations
ZHOU Mengtian, LIU Li, FU Ruoxian, LI Xiaogang*
(College of Ecology" and" Environment, Nanjing Forestry University, Nanjing 210037, China)
Abstract: 【Objective】Litter regression can affect the soil carbon and nitrogen cycle, which is an important process of sustainable management and soil fertility maintenance in" Chinese fir(Cunninghamia lanceolata)plantations. The changes in soil carbon content, nitrogen content, and enzyme activity under the treatment of adding C. lanceolata and Schima superba litter were analyzed to provide" the" basis for nature-approximating transformation and stand management of C. lanceolata plantations.【Method】In the present study, 30-year-old C. lanceolata plantation soil was treated with C. lanceolata litter (S), S. superba litter (M), and a mixture of C. lanceolata and S. superba litter (mixed at a m (S)∶m (M)=5∶1, SM). After 60 days of incubation, the content of" ammonium nitrogen (NH+4-N), nitrate nitrogen (NO-3-N), soil organic carbon (SOC), water soluble organic carbon (WSOC), hydrochloric acid hydrolyzed organic carbon (HHOC), alkaline-hydrolyzable organic carbon (AHOC), recalcitrant organic carbon (ROC), and enzyme activities (β-glucosidase(GC); β-N-acetylglucosaminidase(NAG); polyphenol oxidase(PPO); and leucine aminopeptidase(LAP)) in the soil were measured in the different treatments. The relationship among soil carbon content, nitrogen content, and enzyme activity in different treatments was analyzed, and the effects of different litter on soil carbon content, nitrogen content, and enzyme activity in C. lanceolata plantations were evaluated.【Result】The degree of humification in the soil treated with mixed litter was increased compared to the soils treated with either litter alone. In the single litter treatment, the degree of humification with S. superba treatment was low, and the proportion of soil recalcitrant organic carbon (ROC) was relatively higher."" After 15 and 30 days of incubation, the soil GC, NAG" and PPO enzyme activities with C. lanceolata litter were significantly higher than those with S. superba litter. The decomposition of mixed litter significantly improved soil GC and NAG enzyme activities. The results of redundancy analysis and correlation analysis showed that soil AHOC content was significantly positively correlated with soil GC enzyme activity. NAG enzyme activity was positively correlated with soil WSOC content and negatively correlated with NH+4-N content, while PPO enzyme activity was negatively correlated with NO-3-N content and positively correlated with ROC and HHOC contents (Plt;0.01).【Conclusion】The addition of different litters significantly affects the soil carbon content, nitrogen content, and enzyme activity in C. lanceolata plantations. Compared to the addition of S. superba litter, the addition of C. lanceolata litter results in a higher soil humification degree, as well as higher enzyme activities related to the carbon and nitrogen cycle. Further, the addition of both C. lanceolata and S. superba litter is more beneficial in improving the degree of soil humification, soil carbon invertase activity, and nitrogen invertase activity compared to the addition of either litter alone, thus ultimately benefitting the soil carbon and nitrogen cycle of C. lanceolata plantations.
Keywords:Cunninghamia lanceolate plantation; litter decomposition; carbon content; nitrogen content;soil enzyme
杉木(Cunninghamia lanceolata)是我國重要的用材樹種,其人工林面積居我國首位。然而,長期的純林連栽導致杉木人工林土壤地力衰退問題日漸嚴重,制約著杉木人工林的可持續(xù)經(jīng)營[1]。近年來,針闊樹種的混交造林模式已被廣泛采用,與闊葉樹種混交可增加針葉林凋落物量、提高林分生產(chǎn)力[2-3],從而改善大規(guī)模針葉純林栽培的不利影響[4-5]。研究發(fā)現(xiàn),與針葉純林相比,針闊混交林土壤pH及C、N等含量都有不同程度的增加[6-7]。杉木和木荷(Schima superba)混交是常見的杉木林混交方式,合理比例的杉木木荷混交不僅可以調(diào)整林分結構、提高林分生產(chǎn)力,還可以有效緩解土壤退化、維持土壤碳氮循環(huán)[8]。楊智杰等[9]研究發(fā)現(xiàn)杉木木荷混交林能夠促進木荷單株凋落物的數(shù)量,同時混交林的碳歸還量較杉木純林有明顯提升。此外,杉木木荷混交能夠豐富林內(nèi)物種多樣性,與杉木純林相比可以減輕病蟲害發(fā)生[10]。因此,研究杉木木荷混交對于促進杉木人工林土壤碳氮循環(huán),修復杉木人工林退化有重要意義。
凋落物作為人工林生態(tài)系統(tǒng)碳庫的重要組成部分,是生態(tài)系統(tǒng)碳氮循環(huán)的基礎。不同樹種通過凋落物的初始化學性質(zhì)及特定的生境條件影響其凋落物的分解及養(yǎng)分歸還過程[11]。杉木屬于常綠針葉樹種,凋落物中所含的營養(yǎng)物質(zhì)較少,木質(zhì)素等難降解的物質(zhì)較多,分解較為緩慢;而闊葉樹種具有耐陰性強、凋落物量大等特點[12]。以往研究發(fā)現(xiàn),不同樹種凋落物混合可以促進土壤碳氮循環(huán),有利于提高林分生產(chǎn)力及森林生態(tài)系統(tǒng)穩(wěn)定性[13]。靳云鐸等[14]通過杉木、木荷和閩楠(Phoebe bournei)凋落物分解實驗,發(fā)現(xiàn)添加混合凋落物處理后土壤堿解氮含量提高了9.5%。王淳等[15]通過對華北落葉松(Larix principis-rupprechtii)和闊葉樹種混合分解研究發(fā)現(xiàn),凋落物混合分解可以促進碳的釋放。在凋落物豐富的森林土壤中,腐殖質(zhì)是土壤的重要組分[16],根據(jù)土壤中腐殖質(zhì)的不同狀態(tài)可將土壤有機碳分為水溶性有機碳(胡敏酸,WSOC)、酸溶性有機碳(富里酸,HHOC)、堿溶性有機碳(AHOC)和難溶性有機碳(ROC)[17]。添加不同樹種凋落物可以通過改變土壤中酶活性、微生物群落結構等改善土壤有機質(zhì)的分解,進而影響土壤中不同碳組分的積累或釋放過程[18]。賈樹海等[19]研究發(fā)現(xiàn)混交林土壤有機碳儲量高于針葉純林,并且針闊混交林土壤有機碳組分的構成更有利于土壤腐殖質(zhì)穩(wěn)定。凋落物分解本質(zhì)上是復雜的酶解過程,土壤酶活性是判斷土壤肥力的重要指標之一[20]。袁亞玲等[21]研究發(fā)現(xiàn)針闊凋落物混合分解時土壤纖維二糖水解酶、β-N-乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶等土壤碳氮轉(zhuǎn)化酶活性升高;張曉曦等[22]發(fā)現(xiàn)針闊凋落物混合分解可顯著提高土壤蔗糖酶、羧甲基纖維素酶和多酚氧化酶等碳轉(zhuǎn)化相關酶活性。凋落物的初始化學特征是影響凋落物分解和土壤碳氮循環(huán)的關鍵因素,而土壤中碳、氮組分的動態(tài)是多種生物物理化學變化交互影響的綜合過程,籠統(tǒng)將凋落物作為碳源進行研究可能會忽視土壤碳、氮轉(zhuǎn)換過程中的關鍵環(huán)節(jié)。為此,以30年生杉木人工林土壤為研究對象,通過添加杉木木荷凋落物,分析不同處理下土壤碳氮含量和酶活性的變化特征,為杉木人工林近自然化改造及林分管理提供科學依據(jù)。
1 材料與方法
1.1 土壤及凋落物樣品采集
供試土壤和凋落物于2022年2月26日采自福建省三明市沙縣水南國有林場(117°47′E,26°72′N),該林場以人工林為主,主要樹種為杉木、馬尾松(Pinus massoniana)和木荷。土壤采集自該林場30年生杉木人工林,土壤類型為紅壤,pH為4.5~5.5,總有機碳含量通常在20 g/kg以下。仔細去除植物根系和石塊后,用孔徑2 mm篩對土壤進行篩分、均質(zhì)化后儲存在4" ℃冰箱。選取該林場20年生人工林的杉木和木荷新鮮成熟葉片制備凋落物,帶回實驗室清洗干凈后于105" ℃殺青30 min,65" ℃烘干至質(zhì)量恒定,粉碎機研磨后過孔徑0.25 mm篩并均質(zhì)化。
1.2 實驗設計
采用室內(nèi)培養(yǎng)法,比較添加不同凋落物對土壤碳氮含量及碳氮酶活性的影響。試驗設置了4個處理,包括不添加凋落物(CK)、添加杉木凋落物(S)、添加木荷凋落物(M)以及添加杉木與木荷凋落物混合物(SM),混合質(zhì)量比例設置為m(杉木)∶m(木荷)=5∶1[5]。根據(jù)杉木、木荷凋落物的氮含量確定不同處理中凋落物的添加量(表1),使得每個培養(yǎng)瓶中含有等量的氮(0.25 g/kg)。以不添加凋落物的土壤為對照,比較不同凋落物對土壤碳氮含量及碳氮酶活性的影響。
稱取80 g均質(zhì)化的新鮮杉木人工林土壤于340 mL培養(yǎng)瓶中,根據(jù)凋落物現(xiàn)存量確定每個培養(yǎng)瓶中添加約1 g凋落物[23],培養(yǎng)瓶頂部設有直徑1 cm的透氣孔。所有的培養(yǎng)瓶在25" ℃有氧條件下孵育60 d,每個處理設置3個重復。在培養(yǎng)過程中,通過添加無菌水使含水率維持在36%,每隔7 d通過稱質(zhì)量法補充水分。在培養(yǎng)的第0、15、30、60天進行破壞性取樣,共計39個土樣。
1.3 樣品分析
1.3.1 土壤化學性質(zhì)分析
土壤pH采用電位法測定(水與土體積質(zhì)量比為2.5∶1.0),土壤硝態(tài)氮(NO-3-N)含量采用酚二磺酸比色法測定,銨態(tài)氮(NH+4-N)含量采用靛酚藍比色法測定[3],土壤有機碳(SOC)含量及不同碳組分含量(WSOC、HHOC、AHOC、ROC)浸提方法參考臧榕等[24]的方法,使用TOC儀(Analytik Jena multi C/N 3100,德國)測定,凋落物全氮含量和全碳含量使用元素分析儀(PerkinElmer 2400 Ⅱ,美國)測定。
1.3.2 土壤酶活性分析
土壤酶活性參照土壤酶試劑盒(北京索萊寶公司)使用說明測定,包括參與碳循環(huán)的β-葡萄糖苷酶(β-1,4-glucosidase, BG; EC為3.2.1.21)和多酚氧化酶(polyphenol oxidase, PPO; EC為1.10.3.1),參與氮循環(huán)的β-N-乙酰氨基葡萄糖苷酶(β-1,4-N-acetyl glucosaminidase, NAG; EC為3.2.1.30)和亮氨酸氨基肽酶(leucine aminopeptidase, LAP; EC為3.4.11.1)。其中,BG和NAG在37" ℃下孵育1 h后分別測定400 nm波長處的吸光值;PPO、LAP在30" ℃下孵育1 h后分別測定430、405 nm波長處的吸光值?;钚詥挝粎⒄瘴墨I[25]表示為U/g。
1.4 數(shù)據(jù)處理
試驗數(shù)據(jù)采用 Excel 2019進行統(tǒng)計處理,數(shù)據(jù)分析使用SPSS 26軟件完成,利用Origin 2021軟件進行實驗數(shù)據(jù)圖表繪制。對符合方差齊性的指標進行基于鄧肯(Duncan)雙尾法的單因素方差分析,檢驗添加不同凋落物處理間的土壤養(yǎng)分及酶活的差異顯著性,顯著性水平設置為0.05,對土壤養(yǎng)分和酶活性之間的相關性進行冗余分析。
2 結果與分析
2.1 杉木和木荷凋落物對土壤化學性質(zhì)的影響
測定結果(圖1)顯示,所有處理土壤的pH均呈強酸性,15 d添加杉木凋落物(S處理)土壤的pH顯著高于不添加凋落物的土壤(CK處理),而添加木荷凋落物(M處理)在前期未表現(xiàn)出與CK處理有顯著差異,在培養(yǎng)的第60天顯著高于CK處理;與添加單一凋落物相比,添加杉木與木荷凋落物混合物(SM處理)顯著提高了土壤的pH(Plt;0.05)。添加凋落物的土壤的NO-3-N和NH+4-N含量顯著低于CK處理;添加不同凋落物的土壤的NH+4-N含量表現(xiàn)為:SM處理gt;M處理gt;S處理,S處理和SM處理土壤的NH+4-N含量之間差異顯著(Plt;0.05)。
處理15 d時,添加不同凋落物土壤SOC、WSOC、AHOC、ROC含量與CK處理相比大多均顯著提升(Plt;0.05)。其中,M處理土壤的SOC和ROC含量顯著高于S處理,而S處理土壤中含有更高含量的WSOC和AHOC。SM處理的土壤的AHOC含量與M處理相比顯著提升(Plt;0.05)。添加不同凋落物顯著改變了土壤中不同碳組分的占比(圖2),并且在不同的培養(yǎng)階段表現(xiàn)類似。其中,WSOC和HHOC在添加不同凋落物的總有機質(zhì)中占比部分區(qū)別明顯。
添加單一凋落物的處理中S處理土壤AHOC含量顯著高于CK處理和M處理;SM處理土壤中AHOC占比顯著高于單一添加凋落物的處理(S處理、M處理,60 d除外)(Plt;0.05)。與之不同,所有添加凋落物的處理中,M處理土壤中ROC占比最高,顯著高于S處理和SM處理;與CK處理相比,S處理和SM處理土壤中ROC占比顯著降低(Plt;0.05)。
2.2 杉木和木荷凋落物對土壤碳氮轉(zhuǎn)化酶活性的影響
經(jīng)測定可知,添加凋落物顯著提高了土壤碳氮轉(zhuǎn)化酶的酶活性(圖3)。由圖3可知,在培養(yǎng)的第15天和30天,S處理的土壤中與碳轉(zhuǎn)化相關的GC、PPO活性顯著高于M處理。SM處理的土壤GC活性在培養(yǎng)的30和60 d時顯著升高,而在培養(yǎng)15 d后PPO活性始終顯著低于S處理和M處理(Plt;0.05)。在培養(yǎng)過程中,GC表現(xiàn)出升高的趨勢,而PPO表現(xiàn)出下降的趨勢。與氮轉(zhuǎn)化相關的NAG在S處理的土壤中活性高于M處理;在培養(yǎng)的第15和30天,SM處理的土壤NAG酶活性顯著高于M處理(Plt;0.05),與S處理的無明顯區(qū)別。LAP活性在添加不同凋落物的土壤中未表現(xiàn)出顯著差異,處理15 d后呈降低的趨勢。結果表明,處理至15和30 d時,S處理的土壤GC、PPO、NAG活性與M處理相比較高,而相對CK,SM處理的土壤顯著提高了土壤中的GC和NAG活性(Plt;0.05)。
2.3 土壤碳氮含量與碳氮酶活性的冗余分析
以添加不同凋落物處理土壤化學性質(zhì)為響應變量,以土壤碳氮轉(zhuǎn)化酶為解釋變量進行RDA分析,結果表明,軸1和軸2分別占總變異的43.3%和7.7%(圖4)。
根據(jù)冗余分析中質(zhì)心原理和距離法則,GC活性與AHOC、WSOC、SOC含量呈正相關(圖4),與NH+4-N含量呈負相關,其中AHOC與GC活性相關性最強;PPO活性與ROC、HHOC、SOC、WSOC含量呈正相關,與NH+4-N和NO-3-N含量呈負相關,與HHOC和NO-3-N含量的相關性最強;LAP活性與NO-3-N含量呈負相關;NAG活性與SOC、WSOC、AHOC呈正相關,與NH+4-N和NO-3-N含量呈負相關,其中與NH+4-N和WSOC含量的相關性最強。
NO3-N. 硝態(tài)氮nitrate nitrogen;NH+4-N.氨態(tài)氮ammonia nitrogen;SOC.土壤有機碳 soil organic carbon;WSOC.水溶性有機碳 water soluble organic carbon;HHOC.酸溶性有機碳 hydrochloric"" hydrolyzed organic carbon;AHOC.堿溶性有機碳 alkaline hydrolyzable organic carbon;ROC.難溶性有機碳 recalcitrant organic carbon;GC.β-葡萄糖苷酶 β-1,4-glucosidase;NAG.β-N-乙酰氨基葡萄糖苷酶 β-1,4-N-acetyl glucosaminidase;PPO. 多酚氧化酶 polyphenol oxidase;LAP. 亮氨酸氨基肽酶 leucine aminopeptidase。
根據(jù)冗余分析的結果,選取相關性較強的土壤碳氮轉(zhuǎn)化酶活性與土壤碳氮含量作線性相關分析(圖5)。結果表明,NAG活性與NH+4-N含量呈極顯著負相關,與WSOC含量呈極顯著正相關;PPO活性與NO-3-N含量呈極顯著負相關,與ROC、HHOC含量呈極顯著正相關;GC活性與AHOC含量呈極顯著正相關關系(Plt;0.01)。
3 討 論
在本研究中,與添加木荷凋落物相比,添加混合凋落物的土壤pH顯著提升,說明針闊樹種凋落物混合分解能夠?qū)冡樔~林土壤酸化起到一定的改善作用[3]。在培養(yǎng)的整個過程中,無機氮的存在形式以NH+4-N為主。添加杉木凋落物的土壤NH+4-N含量顯著低于添加木荷的土壤,而與氮轉(zhuǎn)化相關的NAG活性顯著高于木荷處理。這說明杉木凋落物更有利于微生物活動,加速養(yǎng)分周轉(zhuǎn),導致與氮轉(zhuǎn)化相關的NAG活性升高。添加混合凋落物下土壤NH+4-N含量及NAG活性與單一凋落物處理相比有所提升,更有利于土壤養(yǎng)分周轉(zhuǎn)[26]。在本研究中,土壤中SOC含量顯著高于添加杉木凋落物的土壤,這可能是木荷凋落物處理土壤中NH+4-N含量較高的原因之一[27]。
土壤中有機碳主要由AHOC和ROC組成,其中添加木荷凋落物的土壤ROC占比顯著高于添加杉木凋落物的土壤,這可能與木荷凋落物的高碳氮比有關[28];與杉木凋落物混合分解使土壤ROC占比顯著降低,說明凋落物混合分解有利于土壤中的難溶性有機碳分解、加速養(yǎng)分轉(zhuǎn)化[29]。土壤AHOC含量在添加凋落物的處理中表現(xiàn)為:混合分解gt;杉木gt;木荷,這與劉謠等[30]的研究結果一致。AHOC/HHOC(胡敏酸/富里酸)比例的高低通常作為腐殖化程度的表現(xiàn),其中AHOC比例越高,腐殖質(zhì)化程度越高[31]。本研究中添加混合凋落物的土壤腐殖化程度最高,而添加杉木凋落物土壤的AHOC/HHOC顯著高于添加木荷凋落物土壤的,這可能與杉木凋落物碳氮比較低、易轉(zhuǎn)換分解有關[32]。在本研究中,添加杉木處理中與碳轉(zhuǎn)化相關的GC和PPO活性顯著高于木荷處理;凋落物混合添加可有效提升土壤中纖維素降解有關的GC活性,有利于土壤碳素循環(huán),改善土壤肥力。
研究表明微生物利用土壤中的有機碳具有傾向性,優(yōu)先利用易分解的有機質(zhì),土壤中碳氮含量變化是影響土壤酶活性的重要因素之一[33]。本研究中添加混合凋落物顯著提高了土壤中AHOC含量,而土壤AHOC含量與碳轉(zhuǎn)換相關的GC呈極顯著正相關關系(Plt;0.01),說明土壤中碳氮酶活性對土壤腐殖化程度有直接的影響[34]。此外,土壤中與碳轉(zhuǎn)換相關的PPO活性與ROC、HHOC含量之間呈極顯著正相關關系,與NO-3-N含量呈顯極著負相關關系(Plt;0.01),與氮轉(zhuǎn)換相關的NAG活性與WSOC、NH+4-N含量呈極顯著相關(Plt;0.01),說明土壤各碳組分作為酶的底物,其變化同時也影響著碳氮轉(zhuǎn)化酶活性特征[35]。
參考文獻(reference):
[1]王海倫,文仕知,何功秀,等.杉木人工林土壤養(yǎng)分含量與林木器官養(yǎng)分含量及林齡的關系[J].中南林業(yè)科技大學學報,2022,42(10):119-128.WANG H L,WEN S Z,HE G X,et al.Relationship between soil nutrient content,tree organ nutrient content and stand age in Cunninghamia lanceolata plantation[J].J Cent South Univ For Technol,2022,42(10):119-128.DOI: 10.14067/j.cnki.1673-923x.2022.10.014.
[2]汪鳳林,張月全,陳愛玲,等.不同配比的杉木、火力楠凋落物中土壤酶活性的變化及其對凋落物分解的影響[J].福建農(nóng)林大學學報(自然科學版),2017,46(5):576-583.WANG F L,ZHANG Y Q,CHEN A L,et al.Enzyme activity of litter and soil and its effect on litter decomposition under different combinations of Cunninghamia lanceolata and Michelia" macclurei[J].J Fujian Agric For Univ (Nat Sci Ed),2017,46(5):576-583.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2017.05.016.
[3]林開敏,章志琴,鄒雙全,等.杉木與闊葉樹葉凋落物混合分解對土壤性質(zhì)的影響[J].土壤通報,2006,37(2):2258-2262.LIN K M,ZHANG Z Q,ZOU S Q,et al.The influence of Chinese fir mixed with broad-leaf litter decomposition on character of forest soil[J].Chin J Soil Sci,2006,37(2):2258-2262.DOI: 10.19336/j.cnki.trtb.2006.02.011.
[4]周銘忠.杉木與不同闊葉樹種混交造林試驗[J].安徽農(nóng)學通報,2017,23(8):104-105.ZHOU M Z.Afforestation experiment of Chinese fir mixed with different broad-leaved tree species[J].Anhui Agric Sci Bull,2017,23(8):104-105.DOI: 10.16377/j.cnki.issn1007-7731.2017.08.045.
[5]查美琴,成向榮,虞木奎,等.不同混交比例對杉木和大葉櫸幼苗功能性狀的影響[J].生態(tài)學報,2021,41(21):8556-8567.ZHA M Q,CHENG X R,YU M K,et al.Effects of mixing proportion on functional traits of Cunninghumia lanceolata and Zelkova schneideriana seedling[J].Acta Ecol Sin,2021,41(21):8556-8567.DOI: 10.5846/stxb202007311999.
[6]鄧恢.馬尾松闊葉樹混交林土壤理化性質(zhì)比較研究[J].福建林業(yè)科技,2012,39(1):41-44,52.DENG H.Comparison of the soil physical and chemical properties among various Pinus massoniana Lamb. and broadleaved trees mixed plantations[J].J Fujian For Sci Technol,2012,39(1):41-44,52.DOI: 10.3969/j.issn.1002-7351.2012.01.10.
[7]陳杰.白樺+紅松人工混交林生態(tài)效益的研究[J].防護林科技,2019(9):27-28,36.CHEN J.Ecological benefits of artificial mixed forest of Betula platyphylla + Pinus koraiensis[J].Prot For Sci Technol,2019(9):27-28,36.DOI: 10.13601/j.issn.1005-5215.2019.09.008.
[8]夏麗丹,張虹,楊靖宇,等.杉木凋落物土壤生態(tài)功能研究進展[J].世界林業(yè)研究,2019,32(2):7-12.XIA L D,ZHANG H,YANG J Y,et al.Research advances in soil ecological functions of Cunninghamia lanceolata litters[J].World For Res,2019,32(2):7-12.DOI: 10.13348/j.cnki.sjlyyj.2018.0093.y.
[9]楊智杰,陳光水,謝錦升,等.杉木、木荷純林及其混交林凋落物量和碳歸還量[J].應用生態(tài)學報,2010,21(9):2235-2240.YANG Z J,CHEN G S,XIE J S,et al.Litter fall production and carbon return in Cunninghamia lanceolata,Schima superba,and their mixed plantations[J].Chin J Appl Ecol,2010,21(9):2235-2240.DOI: 10.13287/j.1001-9332.2010.0341.
[10]何善飛.杉木、木荷純林及其混交林生長狀況和病蟲害調(diào)查分析[J].南方農(nóng)業(yè),2022,16(18):82-84.HE S F.Investigation and analysis of growth status,disease and insect pests in pure and mixed forests of Cunninghamia lanceolata" and Schima superba[J].South China Agric,2022,16(18):82-84.DOI: 10.19415/j.cnki.1673-890x.2022.18.026.
[11]周庭宇,肖洋,黃慶陽,等.森林凋落物分解的研究進展與展望[J].中國農(nóng)學通報,2022,38(33):44-51.ZHOU T Y,XIAO Y,HUANG Q Y,et al.Forest litter decomposition:research progress and prospect[J].Chin Agric Sci Bull,2022,38(33):44-51.
[12]方碧江.杉木灰木蓮混交林生長情況及土壤理化性質(zhì)[J].森林與環(huán)境學報,2022,42(1):46-52.FANG B J.Analyses on growth and soil physical and chemical properties of Cunninghamia lanceolata and Manglietia conifera mixed forest[J].J For Environ,2022,42(1):46-52.DOI: 10.13324/j.cnki.jfcf.2022.01.006.
[13]沈楊陽,白彥峰,靳云鐸,等.凋落物添加對不同齡級杉木林土壤養(yǎng)分與微生物特性的影響[J].中南林業(yè)科技大學學報,2022,42(3):114-125.SHEN Y Y,BAI Y F,JIN Y D,et al.Effects of litter additions on the soil nutrients and microbial properties in Cunninghamia lanceolata plantations of different stand ages[J].J Cent South Univ For Technol,2022,42(3):114-125.DOI: 10.14067/j.cnki.1673-923x.2022.03.012.
[14]靳云鐸,白彥鋒,沈楊陽,等.施肥和凋落物添加對杉木人工林土壤養(yǎng)分和土壤微生物特性的影響[J].華中農(nóng)業(yè)大學學報,2021,40(5):72-80.JIN Y D,BAI Y F,SHEN Y Y,et al.Effects of fertilization and litter addition on soil nutrient and soil microbial properties of Chinese fir plantation[J].J Huazhong Agric Univ,2021,40(5):72-80.DOI: 10.13300/j.cnki.hnlkxb.2021.05.010.
[15]王淳,董雪婷,杜瑞鵬,等.華北落葉松與闊葉樹種混合凋落葉分解過程中養(yǎng)分釋放和酶活性變化[J].應用生態(tài)學報,2021,32(5):1709-1716.WANG C,DONG X T,DU R P,et al.Changes of nutrient release and enzyme activity during the decomposition of mixed leaf litter of Larix principis-rupprechtiiand broadleaved tree species[J].Chin J Appl Ecol,2021,32(5):1709-1716.DOI: 10.13287/j.1001-9332.202105.008.
[16]NEUMANN M,UKONMAANAHO L,JOHNSON J,et al.Quantifying carbon and nutrient input from litterfall in European forests using field observations and modeling[J].Glob Biogeochem Cycles,2018,32(5):784-798.DOI: 10.1029/2017GB005825.
[17]周燾,王傳寬,周正虎,等.撫育間伐對長白落葉松人工林土壤碳、氮及其組分的影響[J].應用生態(tài)學報,2019,30(5):1651-1658.ZHOU T,WANG C K,ZHOU Z H,et al.Effects of thinning on soil carbon and nitrogen fractions in a Larix olgensis plantation[J].Chin J Appl Ecol,2019,30(5):1651-1658.DOI: 10.13287/j.1001-9332.201905.020.
[18]李其勝,楊凱,蔣偉勤,等.有機(類)肥料對作物產(chǎn)量、土壤養(yǎng)分及土壤微生物多樣性的影響[J].江蘇農(nóng)業(yè)學報,2023,39(8):1772-1783.LI Q S,YANG K,JIANG W Q,et al.Effects of organic-like fertilizers on crop yield,soil nutrients,and soil microbial diversity[J].Jiangsu J Agric Sci,2023,39(8):1772-1783.DOI: 10.3969/j.issn.1000-4440.2023.08.018.
[19]賈樹海,王薇薇,張日升.不同林型土壤有機碳及腐殖質(zhì)組成的分布特征[J].水土保持學報,2017,31(6):189-195.JIA S H,WANG W W,ZHANG R S.Distribution characteristics of soil organic carbon and humus composition in different forest types[J].J Soil Water Conserv,2017,31(6):189-195.DOI: 10.13870/j.cnki.stbcxb.2017.06.031.
[20]GE X G,XIAO W F,ZENG L X,et al.Relationships between soil-litter interface enzyme activities and decomposition in Pinus massoniana plantations in China[J].J Soils Sediments,2017,17(4):996-1008.DOI: 10.1007/s11368-016-1591-2.
[21]袁亞玲,崔寧潔,張丹桔,等. 馬尾松-香椿不同混合比例凋落物分解過程中的生態(tài)酶化學計量動態(tài)[J]. 應用與環(huán)境生物學報,2023,29(3):654-662. YUAN Y L,CUI N J,ZHANG D J, et al. Dynamics of ecoenzymatic stoichiometry of mixed leaf litters of Pinus massoniana and Toona sinensis with different proportions during the decomposition period[J]. Chin J Appl Environ Biol,2023,29(3):654-662. DOI:10.19675/j.cnki.1006-687x.2022.04007.
[22]張曉曦,劉慧,王博雅,等.云杉與闊葉樹種新鮮凋落葉混合分解特征[J].生態(tài)環(huán)境學報,2019,28(2):235-244.ZHANG X X,LIU H,WANG B Y,et al.Characteristics of the mixed decomposition of fresh litter of Picea asperata and broadleaved species[J].Ecol Environ Sci,2019,28(2):235-244.DOI: 10.16258/j.cnki.1674-5906.2019.02.003.
[23]楊玉盛,郭劍芬,林鵬,等.格氏栲天然林與人工林枯枝落葉層碳庫及養(yǎng)分庫[J].生態(tài)學報,2004,24(2):359-367.YANG Y S,GUO J F,LIN P,et al.Carbon and nutrient pools of forest floor in native forest and monoculture plantations in subtropical China[J].Acta Ecol Sin,2004,24(2):359-367.DOI: 10.3321/j.issn:1000-0933.2004.02.029.
[24]臧榕,趙海超,黃智鴻,等.土壤溶解性有機碳組分連續(xù)分級測定方法[J].科技創(chuàng)新導報,2018,15(29):83-87.ZANG R,ZHAO H C,HUANG Z H,et al.Method for continuous grading determination of dissolved organic carbon components in soil[J].Sci Technol Innov Her,2018,15(29):83-87.DOI: 10.16660/j.cnki.1674-098X.2018.29.083.
[25]唐敏,楊開宇,張賽男,等.硒對核桃種仁抗氧化酶活性及果實品質(zhì)的影響[J].南京林業(yè)大學學報(自然科學版),2022,46(5):127-134.TANG M,YANG K Y,ZHANG S N,et al.Effects of selenium on the activities of antioxidant protective enzymes and fruit quality of walnut[J].J Nanjing For Univ (Nat Sci Ed),2022,46(5):127-134.DOI:10.12302/j.issn.1000-2006.202012032.
[26]鄔子俊,段曉清,李文卿,等.混交對亞熱帶針葉樹根際土壤氮礦化和微生物特性的影響[J].生態(tài)學報,2022,42(20):8414-8424.WU Z J,DUAN X Q,LI W Q,et al.Effects of tree mixture on rhizosphere soil nitrogen mineralization and microbial characteristics of coniferous trees in subtropical plantations[J].Acta Ecol Sin,2022,42(20):8414-8424.DOI:10.5846/stxb202110072766.
[27]ACCOE F,BOECKX P,BUSSCHAERT J,et al.Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age[J].Soil Biol Biochem,2004,36(12):2075-2087.DOI: 10.1016/j.soilbio.2004.06.006.
[28]CHENG X L,YANG Y H,LI M,et al.The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China[J].Plant Soil,2013,366(1):415-424.DOI: 10.1007/s11104-012-1446-6.
[29]WANG L F,CHEN Y M,ZHOU Y,et al.Environmental conditions and litter nutrients are key determinants of soluble C,N,and P release during litter mixture decomposition[J].Soil Tillage Res,2021,209:104928.DOI: 10.1016/j.still.2020.104928.
[30]劉謠,焦?jié)杀颍T波,等.川西亞高山森林凋落物去除對土壤腐殖質(zhì)動態(tài)的影響[J].植物生態(tài)學報,2022,46(3):330-339.LIU Y,JIAO Z B,TAN B,et al.Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan,China[J].Chin J Plant Ecol,2022,46(3):330-339.DOI: 10.17521/cjpe.2021.0166.
[31]張日升,賈樹海,王薇薇.樟子松人工林土壤有機碳及腐殖質(zhì)碳組成的變化特征[J].遼寧農(nóng)業(yè)科學,2020(4):1-6.ZHANG R S,JIA S H,WANG W W.Variation characteristics of the composition of soil organic carbon and humus carbon in Pinus sylvestris var. mongolica plantations[J].Liaoning Agric Sci,2020(4):1-6.DOI: 10.3969/j.issn.1002-1728.2020.04.001.
[32]叢高,張志丹,張晉京,等.長白山不同林型土壤有機碳特征[J].水土保持學報,2019,33(3):179-184,191.CONG G,ZHANG Z D,ZHANG J J,et al.Research on characteristics of soil organic carbon in different forest types in Changbai Mountain[J].J Soil Water Conserv,2019,33(3):179-184,191.DOI: 10.13870/j.cnki.stbcxb.2019.03.027.
[33]鮑勇,高穎,曾曉敏,等.中亞熱帶3種典型森林土壤碳氮含量和酶活性的關系[J].植物生態(tài)學報,2018,42(4):508-516.BAO Y,GAO Y,ZENG X M,et al.Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China[J].Chin J Plant Ecol,2018,42(4):508-516.DOI: 10.17521/cjpe.2017.0311.
[34]高海燕,閆德仁,張勝男,等.庫布齊沙漠北緣苔蘚結皮土壤酶活性及腐殖質(zhì)組成特征[J].干旱區(qū)資源與環(huán)境,2023,37(3):162-168.GAO H Y,YAN D R,ZHANG S N,et al.Characteristics of soil enzyme activities and humus composition in mossy crust in the northern edge of Hobq Desert[J].J Arid Land Resour Environ,2023,37(3):162-168.DOI: 10.13448/j.cnki.jalre.2023.075.
[35]張曉曦,劉增文,邴塬皓,等.內(nèi)蒙半干旱低山區(qū)不同純林土壤腐殖質(zhì)分異特征及其與其他生物化學性質(zhì)的關系[J].應用生態(tài)學報,2014,25(10):2819-2825.ZHANG X X,LIU Z W,BING Y H,et al.Soil humus differentiation and correlation with other soil biochemical properties in pure forests in semi-arid low-hilly area of Inner Mongolia,China[J].Chin J Appl Ecol,2014,25(10):2819-2825.DOI: 10.13287/j.1001-9332.20140801.008.
(責任編輯 王國棟)
基金項目:江蘇省碳達峰碳中和科技創(chuàng)新專項資金項目(BE2022420);國家自然科學基金項目(32122056)。
第一作者:周夢田(zmtclh@163.com)。
*通信作者:李孝剛(xgli@njfu.edu.cn),教授。
引文格式:周夢田,劉莉,付若仙,等. 杉木與木荷凋落物分解對杉木人工林土壤碳氮含量和酶活性的影響[J]. 南京林業(yè)大學學報(自然科學版),2024,48(5):131-138.
ZHOU M T, LIU L, FU R X, et al. Effects of litter decomposition of Cunninghamia lanceolata and Schima superba on soil carbon contents, nitrogen contents" and enzyme activities in Cunninghamia lanceolata plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(5):131-138.