摘 要: 鐵死亡(ferroptosis)是一種鐵和脂質過氧化依賴性的程序性死亡方式,觸發(fā)鐵死亡的必要條件是細胞內活性氧物質堆積到致死量。由脂質過氧化反應產生的脂質活性氧會作用于細胞膜上的脂質分子,導致脂質過氧化和膜損傷,因此脂質過氧化是鐵死亡的顯著特征。長鏈酯酰輔酶A合成酶4(long-chain acyl-CoA synthetase 4, ACSL4)在調節(jié)脂質代謝方面具有關鍵作用,其主要功能是將多不飽和脂肪酸酯化并插入膜磷脂中,從而加速脂質過氧化的發(fā)生并推動鐵死亡。ACSL4介導的鐵死亡主要受到轉錄、轉錄后和翻譯后水平上的調控影響,在脂質過氧化依賴性的疾病中發(fā)揮著重要作用。本文旨在介紹鐵死亡的發(fā)生機制,重點闡述了ACSL4受到的上游調控從而介導鐵死亡的機制,為研究ACSL4介導鐵死亡機制提供理論依據。
關鍵詞: ACSL4;鐵死亡;脂質過氧化;上游調控機制
中圖分類號:S852.3
文獻標志碼:A
文章編號: 0366-6964(2024)09-3792-10
The Mechanism of Long-Chain acyl-CoA Synthetase 4-mediated Ferroptosis
FU" Hongyu, LI" Yue, CUI" Han, LI" Jiuzhi, XU" Wanxue, WANG" Xi, FAN" Ruifeng*
(College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271017," China)
Abstract:" Ferroptosis is an iron and lipid peroxidation-dependent mode of programmed death, and it is triggered when the accumulation of reactive oxygen species reaches a lethal level within the cell. Lipid reactive oxygen species produced by lipid peroxidation act on lipid molecules on cell membranes, resulting in lipid peroxidation and membrane damage, so lipid peroxidation is a prominent feature of ferroptosis. Long-chain acyl-CoA synthetase 4 (ACSL4) plays a crucial role in regulating lipid metabolism, primarily by esterifying polyunsaturated fatty acids and incorporating them into membrane phospholipids, thereby accelerating lipid peroxidation and driving ferroptosis. ACSL4-mediated ferroptosis is mainly regulated at transcriptional, post-transcriptional, and post-translational levels and plays an important role in lipid peroxidation-dependent diseases. The purpose of this study is to elucidate the mechanisms underlying ferroptosis, focusing on the upstream regulation of ACSL4 and consequently mechanism of ferroptosis, providing a theoretical basis for investigation into the mechanisms of ACSL4-mediated ferroptosis.
Key words: long-chain acyl-CoA synthetase 4; ferroptosis; lipid peroxidation; upstream regulation mechanism
*Corresponding author:" FAN Ruifeng, E-mail: fanruifeng@sdau.edu.cn
細胞死亡是機體生長發(fā)育過程中的重要環(huán)節(jié),標志著細胞生命的結束,分為被動性死亡(如壞死)和程序性死亡。除了經典的凋亡和自噬外,鐵死亡(ferroptosis)作為一種新型的程序性死亡方式,在2012年被Dixon等[1]首次提出。鐵死亡以鐵離子積累和脂質過氧化為主要特征,并伴隨著細胞形態(tài)、代謝和蛋白表達的變化,與凋亡、程序性壞死等程序性死亡方式有明顯區(qū)別[2]。發(fā)生鐵死亡的細胞表現為線粒體體積變小,雙層膜密度增加,線粒體嵴減少或消失[1,3-4]。
脂質過氧化是鐵死亡的標志性特征之一,主要是膜結構(如線粒體膜、內質網膜和細胞膜)上的多不飽和脂肪酸(polyunsaturated fatty acid, PUFA)受到氧化。膜結構上PUFA的含量決定了脂質過氧化的程度,其過度堆積是鐵死亡發(fā)生的必要條件[5]。長鏈酯酰輔酶A合成酶4(long-chain acyl-CoA synthetase 4, ACSL4)作為鐵死亡過程中的關鍵基因,可以促進PUFA酯化,參與細胞脂質重組,改變膜磷脂組成,增加細胞對鐵死亡的敏感性。由此可見,ASCL4介導的脂質過氧化是調控鐵死亡的重要節(jié)點。
1 鐵死亡機制
鐵死亡的調節(jié)機制錯綜復雜,涉及一系列的信號傳導。鐵超載和脂質過氧化都會導致活性氧(reactive oxygen species, ROS)積累,正常情況下細胞內的抗氧化系統被激活用于清除ROS;但ROS的持續(xù)產生導致抗氧化酶活性降低或抗氧化物耗竭,抗氧化系統失衡,進而觸發(fā)細胞鐵死亡。所以,鐵超載、抗氧化系統失衡和脂質過氧化被廣泛認為是導致鐵死亡的主要機制。
1.1 鐵超載
鐵元素是機體必需的微量元素,雖然需求量很少,但其缺乏或超載都會影響機體生理功能。為了維持機體內鐵的動態(tài)平衡,機體通過協調各種基因的表達,嚴格控制著全身和細胞內的鐵代謝。細胞內的鐵穩(wěn)態(tài)主要是由鐵反應元件-鐵調節(jié)蛋白(iron responsive element-iron regulatory protein, IRE-IRP)調控,通過識別mRNA上的IRE調節(jié)鐵代謝。IRP主要與IRE mRNA的5′或3′非翻譯區(qū)(untranslated region, UTR)結合調控鐵穩(wěn)態(tài),如轉鐵蛋白受體1(transferrin receptor 1, TFR1)、鐵蛋白重鏈亞基(ferritin heavy chain 1, FTH1)以及鐵離子外排蛋白(ferroportin, FPN)等[6]。當細胞中缺鐵時,IRP會結合FTH1和FPN的5′端的IRE以抑制其翻譯,并結合TFR1中的3′端的IRE來抑制其降解;而當鐵滿足自身代謝需求時,IRP發(fā)生降解,與IRE mRNA的結合停止,保證細胞內鐵穩(wěn)態(tài)平衡[7-10]。此外,肝臟合成并分泌的鐵調素進入血液循環(huán),與FPN結合,使FPN的結構改變,發(fā)生磷酸化,促進其泛素化降解,減少鐵從細胞排出從而間接調節(jié)鐵穩(wěn)態(tài)。FPN是一種鐵輸出蛋白,主要作用是將Fe2+運出細胞,維持細胞所需的鐵水平,避免細胞毒性。因此,參與鐵的攝取、儲存及輸出的蛋白都可以通過調節(jié)細胞內的鐵水平影響鐵死亡。細胞內Fe2+大部分在胞質的不穩(wěn)定鐵池中儲存,少部分被FTH1氧化為Fe3+儲存于鐵蛋白。此外,核受體輔助激活蛋白4(nuclear receptor coactivator 4, NCOA4)可以靶向FTH1通過自噬溶酶體降解,大量釋放Fe2+促進鐵死亡[11]。
1.2 抗氧化系統失衡
細胞內抗氧化系統紊亂,ROS清除障礙,在細胞中大量堆積導致細胞鐵死亡。谷氨酸/胱氨酸逆向轉運體(system Xc-)作為一種細胞膜膜蛋白,負責轉運細胞內谷氨酸和胱氨酸,由溶質載體家族7成員11(solute carrier family 7 member 11, SLC7A11)和SLC3A2共同組成,而SLC7A11負責主要的轉運活性,用于合成谷胱甘肽(glutathione, GSH)和維持GSH過氧化物酶4(glutathione peroxidase 4, GPX4)活性,抑制細胞鐵死亡。研究發(fā)現,有許多化合物會抑制SLC7A11,如埃拉斯汀、索拉非尼和柳氮磺砒啶等可導致胱氨酸轉運減少、GSH耗竭,進而觸發(fā)細胞鐵死亡[12]。ROS抑制劑主要是通過激活system Xc-/GPX4軸,抑制氟化物誘導的肝細胞鐵死亡[13]。GPX4作為一種以GSH為底物的過氧化物酶,主要將脂質過氧化物還原為羥基衍生物發(fā)揮抗氧化作用。抑制GSH的合成是誘導鐵死亡的經典方法[14]。GSH合成抑制會導致癌細胞發(fā)生鐵死亡,如結直腸癌[15]、肝癌[16]和乳腺癌[17]等。此外,GPX4還是一種硒蛋白,以硒代半胱氨酸為活性中心,在機體缺硒的情況下GPX4活性也隨之降低,進而增加細胞對鐵死亡的敏感性[18]。GPX4抑制劑如RSL3和FIN56等可以與GPX4的親核氨基酸殘基結合,導致GPX4失活,脂質過氧化物堆積,驅動鐵死亡。因此,GSH的含量和GPX4的活性對維持細胞內氧化還原穩(wěn)態(tài)具有重要意義。
1.3 脂質過氧化
脂質過氧化介導的膜損傷對鐵死亡具有主導作用。脂質過氧化作用既可以發(fā)生在游離的PUFA上,也可以發(fā)生在含PUFA的膜磷脂上,其中膜磷脂上的PUFA氧化是鐵死亡發(fā)生的主要驅動因素。脂質過氧化可以由非酶促的自氧化作用誘發(fā),也可以由酶促反應誘發(fā)。脂質過氧化破壞細胞膜結構,降低細胞膜流動性,引發(fā)細胞內離子濃度失衡。此外,脂質過氧化物也與DNA、蛋白質和其他親核分子結合,進一步加劇細胞毒性。正常生理條件下,脂質過氧化物可以被GPX4還原為脂質醇避免細胞損傷。細胞代謝紊亂或抗氧化酶活性降低會導致脂質過氧化物堆積,進而誘導細胞鐵死亡。脂質過氧化產物丙二醛和4-羥基壬烯醛也具有明顯的細胞毒性[19]。丙二醛過度積累與心血管疾病、阿爾茨海默癥和帕金森氏癥等疾病的發(fā)生發(fā)展密切相關[20-21],而4-羥基壬烯醛是一種有毒的親電子化合物,在脂多糖誘導的急性肺損傷中促使細胞增殖并加劇疾病的發(fā)展[22]。綜上所述,鐵超載、抗氧化系統紊亂以及脂質過氧化彼此聯系,任何一個環(huán)節(jié)失調都可能導致鐵死亡的發(fā)生,其中脂質過氧化不僅是鐵死亡的標志事件,還是鐵死亡的直接誘因。
2 ACSL4
2.1 ACSL4的結構
ACSL4是長鏈酯酰輔酶A合成酶家族(long-chain acyl-CoA synthetases, ACSLs)的同工酶之一,主要分布在富含類固醇物質的組織或細胞中(如腎上腺、卵巢等)。ACSLs包括5種不同亞型(ACSL1、ACSL3、ACSL4、ACSL5、ACSL6),每種亞型都發(fā)揮不同作用,其中ACSL4主要參與花生四烯酸(arachidonic acid, AA)和腎上腺素酸的代謝[23]。ACSLs由NH2末端、熒光素酶樣區(qū)域1和2、連接兩個熒光素酶樣區(qū)域的接頭和COOH末端五個區(qū)域組成[24]。與其他亞型的ACSLs相比,ACSL4蛋白的NH2端缺少50個氨基酸,這可能是ACSL4偏好不同脂肪酸的原因。
2.2 ACSL4的功能
ACSL4與脂質代謝密切相關。肌肉中脂肪含量的多少與畜禽肉類品質的提高密切相關。有研究發(fā)現,位于豬的X染色體上ACSL4基因靠近肌內脂肪的數量性狀位點,直接參與豬肌內脂肪生成[25-26]。提高ACSL4的表達可以增加豬肌內脂肪細胞中脂肪酸的含量,提高豬肉的營養(yǎng)價值[27-28]。
脂質代謝紊亂是癌癥常發(fā)的主要原因之一[29],如肝癌、前列腺癌和乳腺癌等。肝臟作為脂質代謝的主要器官,而脂質代謝紊亂是導致肝癌常發(fā)的重要原因。大量臨床數據表明,ACSL4的表達水平與肝癌預后不良直接相關[30],ACSL4高表達可以明顯縮短肝癌患者的生存周期[31-32]。索拉非尼作為一類治療肝癌的主要藥物,其耐藥性的產生也與ACSL4的表達呈正相關[33]。有研究發(fā)現,原癌基因ETS1會促進miR-23a-3p轉錄,進而抑制ACSL4介導的鐵死亡,導致肝癌患者對索拉非尼產生耐藥性[34]。
此外,ACSL4的表達還與神經系統的發(fā)育以及免疫反應有關。在神經發(fā)育方面,ACSL4可以通過影響脂肪酸代謝對神經系統的發(fā)育和功能進行調節(jié),ACSL4基因上與智力障礙相關的位點突變后,導致ACSL4失去活性,影響脂質代謝從而導致大腦發(fā)育缺陷[35]。而在炎癥反應方面,ACSL4過表達會誘導細胞死亡并招募巨噬細胞和嗜中性粒細胞,從而引起炎癥級聯反應[36]。綜上所述,ACSL4在動物育種、癌癥以及耐藥性研究、神經發(fā)育和炎癥反應等方面發(fā)揮重要作用,但是由于其可以影響脂質代謝,所以在鐵死亡過程中起著決定性作用。
2.3 ACSL4介導鐵死亡
ACSL4作為調節(jié)細胞內脂質代謝的關鍵酶,可以將AA和腎上腺素酸等PUFA酰化為PUFA-CoA,然后由溶血磷脂酰膽堿?;D移酶3(lysophosphatidyl-choline acyltransferase 3, LPCAT3)將PUFA-CoA插入磷脂酰乙醇胺(phosphatidyl ethanolamine, PE)中生成PUFA-PE。PUFA-PE被脂氧合酶(lipoxygenases, ALOX)氧化成有害的脂質過氧化物。此外,ACSL3可以將單不飽和脂肪酸從PE中將PUFA置換出來抑制ACSL4介導的鐵死亡。因此,ACSL4和LPCAT3是發(fā)生脂質過氧化的關鍵酶。研究發(fā)現,敲除GPX4的細胞在正常培養(yǎng)條件下不能存活并且發(fā)生鐵死亡,而ACSL4和GPX4雙敲除的細胞可以長時間存活并免于鐵死亡,表明ACSL4在調控細胞鐵死亡中發(fā)揮關鍵作用[37-38]。噻唑烷酮類藥物能抑制鐵死亡的發(fā)生,而羅格列酮(rosiglitazone, ROSI)會選擇性地抑制ACSL4,而不是其他ACSLs亞型[39],所以,ROSI是ACSL4最有效的抑制劑。研究發(fā)現,只有在鐵死亡發(fā)生之前應用ROSI治療時才能獲得保護作用,這表明ACSL4可能在鐵死亡發(fā)展早期起作用[40]。另有研究發(fā)現,阿貝西利(abemaciclib)也是一種ACSL4選擇性抑制劑,通過下調ACSL4表達而抑制鐵死亡[41-42]。綜上所述,ACSL4介導的脂質過氧化在鐵死亡發(fā)展過程中具有關鍵作用。
3 ACSL4介導鐵死亡的上游調控機制
3.1 轉錄調控
轉錄因子在轉錄過程中起關鍵作用。ACSL4啟動子序列上有眾多轉錄因子的結合位點,可以促進其轉錄促進鐵死亡。特殊蛋白1(special protein 1, Sp1)是一種與啟動子序列中的GC-box區(qū)域結合的經典轉錄因子。將小鼠ACSL4啟動子和部分外顯子的核酸序列克隆后發(fā)現,ACSL4啟動子區(qū)域存在與Sp1特異性結合的基序[43-44]。Sp1激活ACSL4轉錄進而促進鐵死亡,加重人骨關節(jié)炎的進展[45]。Cui等[46]對人類、小鼠和大鼠的ACSL4啟動子序列分析發(fā)現,在位于ACSL4轉錄起始位點上游1 000 bp內存在缺氧誘導因子1α(hypoxia inducible factor-1α, HIF-1α)的結合位點。轉錄輔助因子Yes蛋白(yes-associated protein, YAP)也參與ACSL4的轉錄[47]。YAP-ACSL4軸介導鐵死亡參與草酸鈣結石沉積誘導的腎纖維化[48]。此外,γ-干擾素(γ-interferon, IFN-γ)也可以充當ACSL4的轉錄因子,促進ACSL4轉錄,誘導腫瘤細胞鐵死亡[49-50]。相關機制見圖1。
3.2 轉錄后調控
轉錄后調控主要是指非編碼RNA(non-coding RNA, ncRNA)對RNA進行的調控。MicroRNA(miRNA)、長鏈非編碼RNA(long non-coding RNA, lncRNA)和環(huán)狀RNA(circular RNA, circRNA)等ncRNA都參與調控ACSL4 mRNA影響鐵死亡,詳見圖2。
3.2.1 MiRNA調控ACSL4" MiRNA是一類長度為21~25個核苷酸的ncRNA,參與調控細胞增殖、分化以及鐵死亡等生理、病理過程。
MiRNA與Ago蛋白結合形成RNA誘導的沉默復合物,通過結合mRNA的3’UTR抑制基因表達。在卵巢癌中,miR-424-5p直接靶向調控ACSL4 mRNA,增加癌細胞的鐵死亡抗性[51]。MiR-130b-3p可以直接靶向ACSL4抵抗鐵死亡,減輕膿毒性心肌病的發(fā)生[52]。在腎臟移植期間,由于缺血會導致miR-20a-5p高表達,抑制ACSL4依賴性的鐵死亡,緩解缺血再灌注導致的腎臟損傷,增加腎移植的成功率[53]。在心肌細胞來源的外泌體中,miR-22-3p通過抑制ACSL4進而抑制心血管疾病對鐵死亡的敏感性[54]。
3.2.2 LncRNA調控ACSL4" LncRNA是一種長度大于200個核苷酸的 ncRNA,具有mRNA降解、剪接和翻譯調控等功能。越來越多研究表明,lncRNA主要通過三種方式調控ACSL4介導的鐵死亡。第一,lncRNA可以和ACSL4 mRNA直接結合。比如lncRNA NEAT1和ACSL4 mRNA有一個直接結合的靶區(qū),通過與其結合阻礙ACSL4 mRNA翻譯,并抑制ACSL4蛋白表達,降低非小細胞肺癌細胞對鐵死亡的敏感性[55]。第二,lncRNA通過與RNA結合蛋白相互作用,調節(jié)ACSL4 mRNA穩(wěn)定性。Sun等[56]發(fā)現,人尿源性干細胞分泌的外泌體中富含lncRNA TUG1,可以與絲氨酸/精氨酸剪接因子1相互作用,促進ACSL4 mRNA降解進而抑制鐵死亡,減輕腎臟缺血再灌注損傷。LncRNA HOTAIR與參與無義介導的mRNA降解途徑的活化蛋白UPF1競爭性結合,阻止UPF1直接與ACSL4 mRNA結合,抑制ACSL4 mRNA降解,促進缺氧誘導的腦組織鐵死亡[57]。第三,lncRNA可以競爭性結合miRNA調控ACSL4 mRNA表達。如lncRNA H19與miR-106b-5p競爭性結合ACSL4 mRNA,通過上調ACSL4的表達促進鐵死亡,加重腦出血導致的機體損傷[58]。LncAABR07025387.1通過“海綿”miR-205上調ACSL4 mRNA的表達,加重缺血再灌注導致的心肌細胞鐵死亡[59]。LncRNA ZFAS1與miR-7-5p競爭性結合ACSL4 mRNA,促進人糖尿病視網膜病變中的內皮細胞鐵死亡[60]。
3.2.3 CircRNA調控ACSL4" CircRNA是一類具有共價閉環(huán)結構的RNA,結構穩(wěn)定,在細胞凋亡、自噬和鐵死亡等細胞死亡過程中發(fā)揮重要作用。
目前研究表明,circRNA也可以充當競爭性內源RNA對ACSL4介導的鐵死亡進行調控。例如,circLMO1作為“海綿”吸附miR-4192,增加ACSL4 mRNA表達,促進人宮頸癌細胞鐵死亡[61]。CircCarm1與ACSL4 mRNA競爭性結合miR-3098-3p,上調mRNA表達,從而參與調控急性腦梗死進展[62]。此外,circRNA可以與RNA結合蛋白結合調控ACSL4。在膿毒癥誘導的急性肺損傷中,高表達的circEXOC5與RNA結合蛋白結合,增強ACSL4 mRNA穩(wěn)定性從而促進鐵死亡,加重肺損傷[63]。
翻譯后水平調控是指對RNA翻譯形成的蛋白的調控,主要包括蛋白折疊、轉運和結構修飾等(如磷酸化、乙酰化和泛素化等)。
研究發(fā)現,磷酸化的ACSL4可以更好地在鐵死亡過程發(fā)揮作用。Zhang等[64]通過CRISPR-Cas9及激酶抑制劑庫篩選發(fā)現,脂質過氧化會激活蛋白激酶C家族βΙΙ,活化的蛋白激酶在Thr328處磷酸化ACSL4并激活,促進PUFA-CoA形成,進一步放大脂質過氧化以誘導鐵死亡。
ACSL4主要是催化AA代謝加重鐵死亡,而AA是一種機體生命活動必需的PUFA,可以通過外源性或內源性途徑進入細胞內,維持細胞生命活動。近期研究發(fā)現,機體腦缺血會導致神經元內凝血酶增加,促進AA的產生,而ACSL4會將游離AA轉化為AA-CoA促進鐵死亡,加重腦損傷[65]。除此以外,AA通過泛素-蛋白酶體途徑降解ACSL4蛋白[66]。AA被細胞色素P450代謝為20-羥基二十烷四烯酸(20-HETE),激活蛋白激酶C信號通路,促進E3泛素連接酶FBXO10對ACSL4的多泛素化,進而促進ACSL4的降解抑制細胞鐵死亡[67]。所以,AA不僅可以被ACSL4酯化,反過來也可以促進ACSL4的降解。
HIF-1α不僅可以與ACSL4啟動子區(qū)域結合促進其轉錄,還可以參與其泛素-蛋白酶體途徑的降解。HIF-1α誘導lncRNA CBSLR招募YTHDF2蛋白和CBS mRNA形成CBSLR/YTHDF2/CBS復合物,以m6A依賴性方式降低CBS mRNA的穩(wěn)定性。CBS表達降低致使ACSL4蛋白的精氨酸甲基化水平降低,ACSL4蛋白被泛素-蛋白酶體途徑降解,導致胃癌細胞對鐵死亡的敏感性降低[68]。此外,內質網相關E3泛素連接酶HRD1也參與介導ACSL4的泛素化降解,抑制胃癌細胞鐵死亡[69]。藥物Polyphyllin I 通過抑制DNA甲基轉移酶1進而抑制ACSL4的啟動子甲基化,促進前列腺癌細胞鐵死亡,發(fā)揮抗癌作用[70]。相關機制見圖3。
4 問題及展望
鐵死亡作為一種獨特的細胞死亡方式,自2012年提出以來,成為人們研究疾病機制的熱點。鐵死亡不僅與人類疾病相關,還與畜禽疾病相關,如病毒性疾病、細菌性疾病、寄生蟲疾病和重金屬毒性等。由于ACSL4具有調節(jié)脂質代謝的功能,所以在鐵死亡中發(fā)揮重要作用,并且近年來的研究已經證明靶向ACSL4或與其相關的調控分子是一種有前景的治療策略。ACSL4介導鐵死亡的途徑主要受到轉錄、轉錄后和翻譯后相關機制的調控,為了更好地研究ACSL4介導鐵死亡在疾病中的作用,可以針對這些調控機制進行深入研究。目前ACSL4介導鐵死亡的機制研究主要是集中在人類的癌癥、腎臟疾病和肝臟疾病等方面,而在畜禽疾病方面,ACSL4被當作鐵死亡的標志物,其調控機制尚需深入探討。因此,深入研究ACSL4介導鐵死亡途徑的調控機制,可以為治療畜禽疾病提供新的思路和靶點。同時,有助于拓展我們對ACSL4在生物體內復雜調控網絡的認識,為未來研究ACSL4在畜禽疾病中的作用奠定基礎。
參考文獻(References):
[1] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
[2] 石 續(xù), 徐世文. 細胞焦亡與人和動物相關疾病的研究進展[J]. 塔里木大學學報, 2023, 35(3):1-11.
SHI X, XU S W. Research progress of pyroptosis in human and animal-related diseases[J]. Journal of Tarim University, 2023, 35(3):1-11. (in Chinese)
[3] CHEN X, LI J B, KANG R, et al. Ferroptosis:machinery and regulation[J]. Autophagy, 2021, 17(9):2054-2081.
[4] YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15(3):234-245.
[5] LIN Z, LIU J, KANG R, et al. Lipid metabolism in ferroptosis[J]. Adv Biol, 2021, 5(8):2100396.
[6] ANDERSON C P, SHEN M, EISENSTEIN R S, et al. Mammalian iron metabolism and its control by iron regulatory proteins[J]. Biochim Biophys Acta Mol Cell Res, 2012, 1823(9):1468-1483.
[7] MACKENZIE E L, IWASAKI K, TSUJI Y. Intracellular iron transport and storage: from molecular mechanisms to health implications[J]. Antioxid Redox Signal, 2008, 10(6):997-1030.
[8] HENTZE M W, MUCKENTHALER M U, GALY B, et al. Two to tango: regulation of mammalian iron metabolism[J]. Cell, 2010, 142(1):24-38.
[9] KHN L C. Iron regulatory proteins and their role in controlling iron metabolism[J]. Metallomics, 2015, 7(2):232-243.
[10] BOGDAN A R, MIYAZAWA M, HASHIMOTO K, et al. Regulators of iron homeostasis: new players in metabolism, cell death, and disease[J]. Trends Biochem Sci, 2016, 41(3):274-286.
[11] MASALDAN S, CLATWORTHY S A S, GAMELL C, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018, 14:100-115.
[12] SATO M, KUSUMI R, HAMASHIMA S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells[J]. Sci Rep, 2018, 8(1):968.
[13] ZHAO Y F, LIU X Y, LIANG C, et al. α-lipoic acid alleviated fluoride-induced hepatocyte injury via inhibiting ferroptosis[J]. J Agric Food Chem, 2022, 70(50):15962-15971.
[14] YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2):317-331.
[15] SUI X, ZHANG R N, LIU S P, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018, 9:1371.
[16] CHEN Y, ZHU G Q, LIU Y, et al. O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer[J]. Cell Signall, 2019, 63:109384.
[17] YANG J J, ZHOU Y L, XIE S D, et al. Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer[J]. J Exp Clin Cancer Res, 2021, 40(1):206.
[18] BRIGELIUS-FLOH "R, FLOH "L. Regulatory phenomena in the glutathione peroxidase superfamily[J]. Antioxid Redox Signal, 2020, 33(7):498-516.
[19] ILARI S, GIANCOTTI L A, LAURO F, et al. Natural antioxidant control of neuropathic pain—exploring the role of mitochondrial SIRT3 pathway[J]. Antioxidants (Basel), 2020, 9(11):1103.
[20] ZILINYI R, CZOMPA A, CZEGLEDI A, et al. The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity:the role of autophagy[J]. Molecules, 2018, 23(5):1184.
[21] SONG B, CHA Y N, KO S, et al. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models[J]. J Clin Investig, 2020, 130(2):904-920.
[22] LIU P F, FENG Y T, LI H W, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis[J]. Cell Mol Biol Lett, 2020, 25(1):10.
[23] 張秀娟, 李 玲, 葉棋濃. 長鏈脂酰輔酶A合成酶家族與惡性腫瘤[J]. 中國生物化學與分子生物學報, 2022, 38(7):875-884.
ZHANG X J, LI L, YE Q N. The long chain acyl-coenzyme a synthetase family and malignant tumors[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(7):875-884. (in Chinese)
[24] KANG M J, FUJINO T, SASANO H, et al. A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis[J]. Proc Natl Acad Sci U S A, 1997, 94(7):2880-2884.
[25] CHEN J N, JIANG Y Z, CEN W M, et al. Distribution of H-FABP and ACSL4 gene polymorphisms and their associations with intramuscular fat content and backfat thickness in different pig populations[J]. Genet Mol Res, 2014, 13(3):6759-6772.
[26] RUS'C' A, SIECZKOWSKA H, KRZCIO E, et al. The association between acyl-CoA synthetase (ACSL4) polymorphism and intramuscular fat content in (Landrace×Yorkshire)×Duroc pigs[J]. Meat Sci, 2011, 89(4):440-443.
[27] REN H Y, ZHANG H Y, HUA Z D, et al. ACSL4 directs intramuscular adipogenesis and fatty acid composition in pigs[J]. Animals, 2022, 12(1):119.
[28] LI M, ZHANG N, LI J, et al. MiR-23b promotes porcine preadipocyte differentiation via SESN3 and ACSL4[J]. Cells, 2022, 11(15):2339.
[29] 王 群, 孫雨欣, 王海峰. 脂滴表面蛋白perilipin家族在癌癥中的研究進展[J]. 昆明醫(yī)科大學學報, 2023, 44(8):139-144.
WANG Q, SUN Y X, WANG H F. Research progress of perilipin family of lipid droplet surface proteins in cancer[J]. J Kunming Med Univ, 2023, 44(8):139-144. (in Chinese)
[30] GRUBE J, WOITOK M M, MOHS A, et al. ACSL4-dependent ferroptosis does not represent a tumor-suppressive mechanism but ACSL4 rather promotes liver cancer progression[J]. Cell Death Dis, 2022, 13(8):704.
[31] CHEN J R, DING C F, CHEN Y H, et al. ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis[J]. Oncogenesis, 2020, 9(4):42.
[32] 羅 菲, 任鑫鑫, 羅沙柳, 等. 人ACSL4基因真核表達載體的構建及其生物學功能研究[J]. 軍事醫(yī)學, 2020, 44(7):500-505.
LUO F, REN X X, LUO S L, et al. Construction of eukaryotic expression vector of human ACSL4 gene and its biological function[J]. Military Medical Sciences, 2020, 44(7):500-505. (in Chinese)
[33] FENG J, LU P Z, ZHU G Z, et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma[J]. Acta Pharmacol Sin, 2021, 42(1):160-170.
[34] LU Y, CHAN Y T, TAN H Y, et al. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2022, 41(1):3.
[35] KANTOJ RVI K, KOTALA I, REHNSTR M K, et al. Fine mapping of Xq11. 1-q21. 33 and mutation screening of RPS6KA6, ZNF711, ACSL4, DLG3, and IL1RAPL2 for autism spectrum disorders (ASD)[J]. Autism Res, 2011, 4(3):228-233.
[36] WANG Y, ZHANG M H, BI R, et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury[J]. Redox Biol, 2022, 51:102262.
[37] KAGAN V E, MAO G W, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1):81-90.
[38] YUAN H, LI X M, ZHANG X Y, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochem Bioph Res Commun, 2016, 478(3):1338-1343.
[39] KIM J H, LEWIN T M, COLEMAN R A. Expression and characterization of recombinant rat acyl-CoA synthetases 1, 4, and 5[J]. J Biol Chem, 2001, 276(27):24667-24673.
[40] DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98.
[41] DUAN J J, WANG Z, DUAN R, et al. Therapeutic targeting of hepatic ACSL4 ameliorates NASH in mice[J]. Hepatology, 2022, 75(1):140-153.
[42] 李 磊, 葉澤華, 夏煜琦, 等. ACSL4抑制劑對草酸鈣結石致小鼠腎損傷及間質纖維化的影響[J]. 中華實用診斷與治療雜志, 2023, 37(10):999-1003.
LI L, YE Z H, XIA Y Q, et al. Effect of ACSL4 inhibitor on calcium oxalate stone-induced renal injury and interstitial fibrosis in mice[J]. Journal of Chinese Practical Diagnosis and Therapy, 2023, 37(10):999-1003. (in Chinese)
[43] LI Y, FENG D C, WANG Z Y, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11):2284-2299.
[44] ORLANDO U, COOKE M, MACIEL F C, et al. Characterization of the mouse promoter region of the acyl-CoA synthetase 4 gene:Role of Sp1 and CREB[J]. Mol Cell Endocrinol, 2013, 369(1-2):15-26.
[45] HE W, LIN X C, CHEN K Y. Specificity protein 1-mediated ACSL4 transcription promoted the osteoarthritis progression through suppressing the ferroptosis of chondrocytes[J]. J Orthop Surg Res, 2023, 18(1):188.
[46] CUI Y, ZHANG Y, ZHAO X L, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[J]. Brain Behav Immun, 2021, 93:312-321.
[47] 蘭輝宇, 東 麗, 郭瑞芳. Hippo信號通路及其在結直腸癌的作用研究進展[J]. 內蒙古醫(yī)學雜志, 2022, 54(5):602-604.
LAN H Y, DONG L, GUO R F. Progress in the study of Hippo signalling pathway and its role in colorectal cancer[J]. Inner Mongolia Medical Journal, 2022, 54(5):602-604. (in Chinese)
[48] LI L, YE Z H, XIA Y Q, et al. YAP/ACSL4 pathway-mediated ferroptosis promotes renal fibrosis in the presence of kidney stones[J]. Biomedicines, 2023, 11(10):2692.
[49] LIAO P, WANG W M, WANG W C, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J]. Cancer Cell, 2022, 40(4):365-378. e6.
[50] LIU Y, NIU R, DENG R P, et al. Multi-enzyme Co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism[J]. J Am Chem Soc, 2023, 145(16):8965-8978.
[51] MA L L, LIANG L, ZHOU D, et al. Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4[J]. Neoplasma, 2021, 68(1):165-173.
[52] QI Z, LIU R H, JU H N, et al. microRNA-130b-3p attenuates septic cardiomyopathy by regulating the AMPK/mTOR signaling pathways and directly targeting ACSL4 against ferroptosis[J]. Int J Biol Sci, 2023, 19(13):4223-4241.
[53] SHI L, SONG Z X, LI Y Z, et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis[J]. Am J Transplant, 2023, 23(1):11-25.
[54] YUAN Y, MEI Z T, QU Z Z, et al. Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure[J]. Signal Transduct Target Ther, 2023, 8(1):121.
[55] WU H X, LIU A W. Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer[J]. J Int Med Res, 2021, 49(3):300060521996183.
[56] SUN Z J, WU J Y, BI Q, et al. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis[J]. Stem Cell Res Ther, 2022, 13(1):297.
[57] JIN Z L, GAO W Y, LIAO S J, et al. Paeonol inhibits the progression of intracerebral haemorrhage by mediating the HOTAIR/UPF1/ACSL4 axis[J]. ASN Neuro, 2021, 13:1-14.
[58] CHEN B, WANG H R, LV C L, et al. Long non-coding RNA H19 protects against intracerebral hemorrhage injuries via regulating microRNA-106b-5p/acyl-CoA synthetase long chain family member 4 axis[J]. Bioengineered, 2021, 12(1):4004-4015.
[59] SUN W X, WU X, YU P, et al. LncAABR07025387.1 enhances myocardial ischemia/reperfusion injury via miR-205/ACSL4-mediated ferroptosis[J]. Front Cell Dev Biol, 2022, 10:672391.
[60] LIU Y, ZHANG Z Y, YANG J, et al. lncRNA ZFAS1 positively facilitates endothelial ferroptosis via miR-7-5p/ACSL4 axis in diabetic retinopathy[J]. Oxid Med Cell Longev, 2022, 2022:9004738.
[61] OU R Y, LU S, WANG L H, et al. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis[J]. Front Oncol, 2022, 12:858598.
[62] MAO R, LIU H. Depletion of mmu_circ_0001751 (circular RNA Carm1) protects against acute cerebral infarction injuries by binding with microRNA-3098-3p to regulate acyl-CoA synthetase long-chain family member 4[J]. Bioengineered, 2022, 13(2):4063-4075.
[63] WANG W, XU R L, ZHAO H M, et al. CircEXOC5 promotes ferroptosis by enhancing ACSL4 mRNA stability via binding to PTBP1 in sepsis-induced acute lung injury[J]. Immunobiology, 2022, 227(4):152219.
[64] ZHANG H L, HU B X, LI Z L, et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis[J]. Nat Cell Biol, 2022, 24(1):88-98.
[65] TUO Q Z, LIU Y, XIANG Z, et al. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion[J]. Signal Transduct Target Ther, 2022, 7(1):59.
[66] KAN C F K, SINGH A B, STAFFORINI D M, et al. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation[J]. J Lipid Res, 2014, 55(8):1657-1667.
[67] CHEN C C, YANG Y B, GUO Y G, et al. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer[J]. Cell Death Dis, 2023, 14(4):271.
[68] YANG H, HU Y R, WENG M Z, et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer[J]. J Adv Res, 2022, 37:91-106.
[69] SHAO C J, ZHOU H L, GAO X Z, et al. Downregulation of miR-221-3p promotes the ferroptosis in gastric cancer cells via upregulation of ATF3 to mediate the transcription inhibition of GPX4 and HRD1[J]. Trans Oncol, 2023, 32:101649.
[70] ZOU P L, CHEN Z, HE Q X, et al. Polyphyllin I induces ferroptosis in castration-resistant prostate cancer cells through the ERK/DNMT1/ACSL4 axis[J]. Prostate, 2024, 84(1):64-73.
(編輯 白永平)