摘 要: 旨在基于長純合片段(ROH)和選擇信號iHS分析北京黑豬群體的遺傳結(jié)構(gòu),挖掘與經(jīng)濟(jì)性狀相關(guān)的候選基因。本研究的對象為北京黑豬群體,平均日齡為210 d。對729頭北京黑豬的illumina Porcine 50K芯片數(shù)據(jù)進(jìn)行質(zhì)控和填充后,進(jìn)行ROH和iHS的分析。本研究選擇參與組成ROHs的前1%的SNPs作為ROH島的閾值,將超過此閾值的區(qū)域稱為ROH島。保留標(biāo)準(zhǔn)化的iHS值中排在前1%的所有SNPs位點,將位點上下游各延伸200 kb作為選擇信號iHS得到的強受選擇區(qū)域。將選擇信號的強受選擇區(qū)域與ROH島重疊的區(qū)段定為本研究的候選區(qū)域。本研究最終保留724個體和45 585個SNPs,通過ROH分析共識別到10個ROH島,這些島內(nèi)包含449個SNPs。iHS分析的結(jié)果顯示,保留得分排在前1%的位點后,共有376個強受選擇位點。最終,在iHS的強受選擇區(qū)域與ROH島的5個重疊區(qū)域內(nèi)注釋到18個基因,其中包括一些已知的影響豬肉質(zhì)和生長發(fā)育過程的基因。本研究分析了北京黑豬群體ROH的分布,并結(jié)合選擇信號,揭示了北京黑豬受選擇的位點和候選基因,該研究結(jié)果為深入探討北京黑豬的群體特性及經(jīng)濟(jì)性狀的遺傳機制提供重要參考。
關(guān)鍵詞: 北京黑豬;芯片數(shù)據(jù);ROH;iHS
中圖分類號:S828.2
文獻(xiàn)標(biāo)志碼:A
文章編號: 0366-6964(2024)09-3833-10
Analysis of the Whole Genome Run of Homozygosity (ROH) and Selection Signal in Beijing
Black Pigs
TIAN" Jingjing, WANG" Xiaoqing, LI" Mianyan, WANG" Hailing, WU" Qitian, WANG" Lixian, ZHANG" Longchao*, ZHAO" Fuping*
(Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193," China)
Abstract:" This study aimed to investigate the genetic structure of the Beijing black pigs based on runs of homozygosity (ROH) and selection signals iHS analysis and to identify candidate genes related to economic traits. The subjects of this study were Beijing black pigs, with an average age of 210 days. After quality control and imputation of the illumina Porcine 50K chip data from 729 Beijing black pigs, the ROH and iHS were analyzed. In this study, the threshold for ROH islands was set at the SNPs that constituted the top 1% of ROHs, and regions exceeding this threshold were termed ROH islands. All SNPs in the top 1% of standardized iHS values were retained, and the areas extending 200 kb upstream and downstream of these SNPs were considered as the strong selection regions obtained by the iHS. The overlapping areas between the strong selection regions of the selection signals and the ROH islands were defined as the candidate regions for this study." In this study, 724 individuals and 45 585 SNPs were retained, and a total of 10 ROH islands containing 449 SNPs were identified by ROH analysis, and the results of iHS analysis showed that a total of 376 strongly selected SNPs were retained after the top 1% SNPs with the highest score were retained. In the end, a total of 18 genes in the overlapping regions of the 5 strongly selected regions of iHS and ROH islands were annotated, including some genes known to affect pork quality and growth and development. This study analyzed the distribution of ROH in the Beijing black pigs and revealed potential selected SNPs and candidate genes combined with selection signals. The results provide an important reference for further exploring the population characteristics and genetic mechanisms of economic traits of Beijing black pigs.
Key words: Beijing black pig; chip data; ROH; iHS
*Corresponding authors:ZHANG Longchao, E-mail: zhlchias@163.com; ZHAO Fuping, E-mail: zhaofuping@caas.cn
二倍體生物中,當(dāng)來自共同祖先單倍型的兩個拷貝聚集在一個個體時會產(chǎn)生純合片段,即長純合片段(runs of homozygosity, ROH)[1]。ROH在不同個體基因組中的長度、數(shù)目及分布頻率不同。Gibson等[2]首次分析了人類染色體上純合片段的長度、分布情況等,得出了不同長度的ROH在基因組中的分布頻率并不相同的結(jié)論。隨著SNP芯片技術(shù)及重測序技術(shù)的廣泛應(yīng)用,畜禽上ROH的研究也逐漸增多,Gorssen等[3]基于8種動物的中高密度SNP芯片信息進(jìn)行ROH分析,結(jié)果對每種動物的ROH分布情況進(jìn)行了概述,以及對同一群體中的ROH島位點對動物發(fā)病率的影響進(jìn)行了研究。Nani和Peagaricano[4]評估ROH與牛受胎率的相關(guān)性后發(fā)現(xiàn),ROH長度及均值等都與公牛的生育力呈負(fù)相關(guān)。目前,ROH在豬基因組研究中已得到較為廣泛的應(yīng)用,如分析遺傳多樣性[5],評估近交衰退[6],鑒定候選基因[7],推斷群體歷史[8]及基因組選擇[9]等。
在選擇過程中,優(yōu)勢的單倍型會被優(yōu)先選擇并在種群中傳播,因此通過分析單倍型,可以獲得位點選擇的信息。2006年,Voight等[10]提出了iHS分析,iHS全稱為綜合單倍型評分(integrated haplotype score),主要用于檢測基因組上的自然選擇和人工選擇信號。iHS值需要進(jìn)行標(biāo)準(zhǔn)化處理,且iHS值具有方向性?;谶x擇信號能夠揭示群體歷史,檢測群體內(nèi)受選擇的位點及區(qū)域。Wang等[11]基于選擇信號發(fā)現(xiàn)目前的萊蕪豬比18年前具有更豐富的遺傳多樣性。此外,該研究基于ROH、iHS及EigenGWAS分析,確定了一些影響萊蕪豬脂肪沉積、繁殖和生長的候選基因。Zhang等[12]進(jìn)行丹麥大白豬和杜洛克豬的選擇信號分析,共鑒定到67個候選區(qū)域。為了探討印度4種家豬品種的遺傳多樣性指標(biāo),有研究進(jìn)行了iHS和XP-EHH等選擇信號分析,發(fā)現(xiàn)了印度豬品種中與生長、繁殖和肉質(zhì)等相關(guān)的基因[13]。龍熙等[14]運用iHS等方法分析合川黑豬群體在基因組上受選擇的區(qū)域,發(fā)現(xiàn)合川黑豬繁殖和免疫性狀相關(guān)的基因受到了一定程度的選擇作用。
北京黑豬是由巴克夏、蘇聯(lián)大白豬等與河北定縣豬、深縣豬等雜交而成的培育品種。本研究使用北京黑豬50K芯片數(shù)據(jù)進(jìn)行ROH檢測和選擇信號分析,旨在從不同角度分析近交和自然選擇對北京黑豬群體結(jié)構(gòu)特性的影響,揭示影響北京黑豬重要經(jīng)濟(jì)性狀的分子標(biāo)記和候選基因,從而為北京黑豬的保種選育提供數(shù)據(jù)參考。
1 材料與方法
1.1 試驗動物
本研究收集來自北京黑六牧業(yè)科技有限公司的729頭北京黑豬,采集北京黑豬組織樣品使用DNA提取試劑盒(DNA Mini Kit)提取DNA,使用超微量分光光度計(IMPLEN)檢測DNA濃度,OD260 nm/OD280 nm的濃度介于1.8~2.1,提取合格的DNA樣品用于基因分型。
1.2 基因分型及質(zhì)控和填充
本研究對729頭北京黑豬使用illumina Porcine 50K芯片進(jìn)行基因分型,該芯片為Susscrofa 11.1版本,包含50 697個位點,包含18條常染色體和2條性染色體及未知位置位點。使用PLINKv1.90[15]進(jìn)行基因型的質(zhì)控,質(zhì)控條件為:1)去除位于性染色體及位置未知的位點;2)次等位基因頻率(MAF)gt;0.01;3)標(biāo)記基因型檢出率gt;95%;4)個體基因型檢出率gt;95%。質(zhì)控后保留724個體,45 585個常染色體SNPs用于后續(xù)的基因型填充及數(shù)據(jù)分析。對724頭北京黑豬質(zhì)控后的芯片數(shù)據(jù)使用Beagle v5.2.5[16]軟件進(jìn)行個體間相互填充,beagle填充命令為java-Xmx120g-jar/home/beagle.22Jul22.46e.jar gt=bj_allchr.vcf impute=true out=beagle_bj。
1.3 ROH的檢測與分類
研究使用PLINKv1.90[15]進(jìn)行724頭北京黑豬芯片數(shù)據(jù)的ROH檢測,采用滑動窗口的方法對所有個體的基因型進(jìn)行ROH檢測,PLINK檢測ROH的參數(shù)為:1)ROH的最小長度為1 Mb;2)ROH中相鄰SNPs間的最大距離小于1 Mb;3)ROH中SNPs最小密度為100 kb/SNP;4)滑動窗口的大小為50個SNPs,滑動窗口每次滑動1個SNP;5)每個滑動窗口中最多允許1個雜合子;6)窗口的閾值為0.01;7)每個ROH都至少由46個SNPs組成。具體計算公式由Lencz等[17]提出:
l=logeαns×niloge1-het
其中,α為ROH假陽性率(本研究設(shè)為0.05),ns為個體的SNPs數(shù),ni為個體數(shù),het為全部SNPs中雜合子的比例。
本研究中,依據(jù)ROH的長度將ROHs分為6類:總長度、1~5 Mb、5~10 Mb、10~20 Mb、20~40 Mb及gt;40 Mb。分別統(tǒng)計了每個類別ROHs的數(shù)目、百分比、平均長度、總長度及長度占的百分比。此外,還統(tǒng)計了每條染色體上ROHs的數(shù)目及百分比、ROHs在每條染色體上的覆蓋度。
1.4 ROH島鑒定及估計近交系數(shù)評估
ROH島是由基因組中高頻的長純合片段(ROH)組成的區(qū)域。在分析方法中,通常使用滑動窗口法來檢測ROH,通過計算個體中每個SNP參與ROH的頻數(shù)并計算ROH中SNP出現(xiàn)的比例。對檢測到的所有ROH進(jìn)行整理分析,最終選擇參與組成ROHs前1%的SNPs作為ROH島的閾值[18-19]。超過此閾值的所有SNPs區(qū)域則稱為ROH島。
基于ROH的近交系數(shù)FROH是通過計算基因型中ROH的長度來評估近交程度,F(xiàn)ROH的計算公式為:
FROH=∑LROHiLauto
其中,LROHi為個體i的ROH總長度,Lauto為芯片中常染色體SNPs的總長度。
1.5 選擇信號iHS分析
本研究中,iHS方法的計算公式是:
iHS=lniHHAiHHD
其中,iHS表示單倍型積分值,iHHA表示祖先等位基因的EHH積分值,iHHD表示推斷等位基因的EHH積分值。本研究使用R語言的rehh包進(jìn)行基因組所有SNPs的綜合單倍型評分(iHS),在對得到的iHS值進(jìn)行標(biāo)準(zhǔn)化后,對所有標(biāo)準(zhǔn)化的iHS值取絕對值,保留iHS值為前1%的所有SNP位點,將前1%的所有位點定義為強受選擇位點。
1.6 候選區(qū)域基因功能注釋
將“1.5”得到的強受選擇位點上、下游各延伸200 kb作為選擇信號iHS得到的強受選擇區(qū)域。本研究將iHS的強受選擇區(qū)域與ROH島重疊的區(qū)段定為候選區(qū)域。使用Ensembl(https://asia.ensembl.org/)數(shù)據(jù)庫中biomart工具(訪問時間為2024年2月23日)對所有候選區(qū)域進(jìn)行基因注釋,并通過查閱文獻(xiàn)確定候選區(qū)域中基因的生物學(xué)功能。
2 結(jié) 果
2.1 ROH基本統(tǒng)計
本研究在724頭北京黑豬中共檢測到47 201個ROHs。將ROHs分成5類進(jìn)行基本統(tǒng)計的結(jié)果如表1和圖1所示。由統(tǒng)計表可以看出,每個類別ROHs的分布是不均勻的,其中1~5 Mb范圍的ROH數(shù)目最多,為28 315個,總長度也是最長的,為86 848.9 Mb。而lt;10 Mb的ROH數(shù)目占ROH總數(shù)據(jù)的85.14%,lt;10 Mb的ROH總長度占所有類別ROH總長度的55.65%,在北京黑豬群體中短ROH數(shù)目占比最高。
圖2是ROH在不同染色體上的分布情況圖和ROH在不同染色體上的覆蓋率圖,由圖可知,ROH在不同染色體上的分布是不均勻的,在1號染色體上ROH的總數(shù)目最多,17號染色體上的總數(shù)目最少。此外,在6號染色體ROH的覆蓋率最高,2號染色體的覆蓋率最低。
2.2 ROH島及基于ROH的近交系數(shù)
本研究中將參與組成ROH的所有SNPs中前1%所有SNPs組成的區(qū)域定為ROH島。經(jīng)計算,將閾值線定為45.856%,基于閾值線共鑒定到10個ROH島(圖3和表2)。10個ROH島中共包含449個SNPs,共注釋到65個基因。ROH島的前54個SNPs都位于SSC15的25.47~27.08Mb區(qū)域,該區(qū)域包含CNTNAP5等基因。此外,6號染色體和15號染色體的ROH島區(qū)段最長,分別包含112和119個位點,6號染色體覆蓋的基因數(shù)最多。
本研究基于每個個體的ROH信息進(jìn)行近交系數(shù)的估計。將基于ROH估計的近交系數(shù)分為6類:ROH總長度的FROH_total、ROH長度在1~5Mb的FROH1-5、長度在5~10Mb的FROH5-10、長度在10~20Mb的FROH10-20、長度在20~40Mb的FROH20-40、長度gt;40Mb的FROHgt;40。分別求各類近交系數(shù),結(jié)果見表3。其中FROH1-5和FROH5-10的值相近,F(xiàn)ROHgt;40的值最小。
2.3 選擇信號iHS
iHS是基于單倍型進(jìn)行檢測的選擇信號,通過單倍型純合子來檢測受選擇的突變位點及區(qū)域。本研究通過選擇信號檢測,在724頭北京黑豬群體中得到了37 602個具有iHS值的SNPs標(biāo)記。將得到的iHS值進(jìn)行標(biāo)準(zhǔn)化后,在保留iHS值為前1%的所有SNPs位點后共有376個強受選擇位點,全基因組范圍內(nèi)標(biāo)準(zhǔn)化iHS值的分布如圖4所示。結(jié)果表明,最高點的iHS值為4.79,iHS最大值的位點位于15號染色體上的27.0~27.5Mb區(qū)域,該區(qū)域包含CNTNAP基因。此外,強受選擇位點數(shù)在不同染色體上存在明顯差異,其中在6號染色體上強受選擇位點數(shù)最多,為128個位點,而在18號染色體上沒有強受選擇位點。將376個強受選擇位點上、下游各延伸200 kb,使用biomart進(jìn)行基因注釋共注釋到817個基因。對注釋到的基因使用kobas數(shù)據(jù)庫(http://bioinfo.org/kobas)進(jìn)行GO和KEGG的富集分析,保留校正P valuelt;0.01,count>4的條目后,共保留54個條目,其中GO條目29個,KEGG通路25個,GO和KEGG富集結(jié)果的可視化分別見圖5和圖6。
2.4 候選區(qū)域基因注釋
將iHS的強受選擇區(qū)域與ROH島重疊的區(qū)段作為候選區(qū)域,共發(fā)現(xiàn)5個候選區(qū)域。候選區(qū)域分別有兩個位于6號染色體和15號染色體,有1個區(qū)域位于5號染色體,候選區(qū)域的總長度約6.4 Mb(表4)。使用biomart對候選區(qū)域進(jìn)行基因注釋,共注釋到SLC4A8、SCN8A、FIGNL2等18個基因。
3 討 論
本研究共鑒定到10個ROH島,其中一些區(qū)域在其他豬種也被鑒定為ROH顯著區(qū)域。如巴克夏豬6號染色體的5.52~6.51 Mb區(qū)域[20],萊蕪豬13號染色體的2.5~2.7 Mb區(qū)域[21],松遼黑豬7號染色體的71.28~74.92 Mb區(qū)域[22],金華豬15號染色體的25.9~27.2 Mb區(qū)域[23]。此外,本研究中的ROH島也鑒定到了一些豬重要經(jīng)濟(jì)性狀的基因,如SSC13上的COL6A6基因與豬的早期發(fā)育及豬乳頭數(shù)有關(guān)[24-25],SH3BP5基因參與陸川豬肌肉發(fā)育[26],PLCL2基因與長白豬的飼料效率有關(guān)[27],GALNT15基因影響杜洛克×二花臉F2群體的肉質(zhì)性狀及商業(yè)豬種的脂肪沉積[28-29]。SSC5上SCN8A基因影響商業(yè)豬種公豬精液性狀,也與豬多發(fā)性先天性關(guān)節(jié)病有關(guān)[30]。SSC7上PRKD1和NFATC4基因與豬的窩產(chǎn)子數(shù)有關(guān)[31-32],F(xiàn)OXG1基因與約克夏豬的脂肪沉積性狀有關(guān)[33]。SSC9上DGAT2基因是影響北京黑豬肉質(zhì)性狀和其他豬種背膘厚的候選基因[34-35],此外還是參與西方商業(yè)豬種脂質(zhì)代謝的過表達(dá)基因,影響豬脂肪沉積,及與雜交豬脂肪和肉類中的脂肪酸含量有關(guān)[36]。以上這些基因都是在已有的研究中鑒定到的,且在本研究中是ROH島包含的基因。
選擇信號iHS中共鑒定到了376個強受選擇位點,對上下游各延伸200 kb的強受選擇區(qū)域使用biomart共注釋到817個基因。對注釋到的基因使用kobas進(jìn)行富集分析,共富集到54個條目。其中,富集到的GO條目主要與鈣離子傳導(dǎo)、脂質(zhì)代謝過程、磷脂的結(jié)合和代謝過程、細(xì)胞周期調(diào)控及氨基酸的跨膜轉(zhuǎn)運等相關(guān),而KEGG富集分析到的通路主要有細(xì)胞因子間受體相互作用及乙醚脂質(zhì)代謝等。將iHS的強受選擇區(qū)域與ROH島重疊的區(qū)段作為候選區(qū)域,共發(fā)現(xiàn)5個候選區(qū)域,在候選區(qū)域中注釋到了一些可能影響北京黑豬經(jīng)濟(jì)性狀的基因。其中BCO1基因是一種能夠?qū)㈩惡}卜素裂解為視黃醛的酶,該基因是類胡蘿卜素影響脂質(zhì)代謝所必需的[37],β-胡蘿卜素通過調(diào)節(jié)BCO1活性能夠調(diào)節(jié)雞成肌細(xì)胞的增殖分化[38]。此外,已有研究發(fā)現(xiàn)BCO1基因是影響快大型黃羽肉雞胸肌肉色的關(guān)鍵候選基因[39]。SCN8A基因是影響大白豬精液性狀的基因,Marques等[30]為了確定與大白豬4個精液性狀(運動性、進(jìn)行性運動、射精精子細(xì)胞數(shù)和總形態(tài)缺陷)相關(guān)的QTL區(qū)域,進(jìn)行了加權(quán)一步法的GWAS分析,鑒定出了SCN8A等候選基因作為影響精液性狀的基因。Jiang等[20]在對西方豬種進(jìn)行遺傳結(jié)果分析時發(fā)現(xiàn),CDH13等基因與西方豬的肌肉和骨骼發(fā)育有關(guān),此外,豬體型特征是最直接的生產(chǎn)指標(biāo),能充分反映豬的生長狀況,CDH13基因也與約克夏豬的體型有關(guān)[40]。滴水性狀是豬肉質(zhì)量評估的一個重要指標(biāo),有研究在滴水性狀GWAS中最顯著位點注釋到了CDYL2基因[41],而CDYL2基因參與催化和代謝過程。此外,也有研究發(fā)現(xiàn)CDYL2基因是影響清平豬乳頭數(shù)的候選基因[42],該基因與乳腺發(fā)育有關(guān)。HSBP1基因是一種熱休克因子結(jié)合蛋白,其是熱休克反應(yīng)的負(fù)調(diào)節(jié)因子,HSBP1在物種間高度保守,并在細(xì)胞核中普遍表達(dá)和定位,該基因能夠保護(hù)細(xì)胞在熱應(yīng)激狀態(tài)下免受應(yīng)激損傷,是動物耐熱性的候選基因[43]。
4 結(jié) 論
本研究分析了北京黑豬群體ROH的分布模式,對ROH的分布進(jìn)行了基本統(tǒng)計。檢測到的ROH中,短ROH數(shù)目占比最高(59.99%),而基于ROH的近交系數(shù)為0.185,這表明北京黑豬的近交發(fā)生在較遠(yuǎn)世代。ROH島中鑒定到了一些與豬脂肪沉積、體型特征、肌肉和骨骼發(fā)育以及產(chǎn)仔數(shù)等相關(guān)的基因。選擇信號iHS強受選擇區(qū)域注釋的基因主要富集在了鈣離子傳導(dǎo)、脂質(zhì)代謝及細(xì)胞周期調(diào)控等條目。在iHS的強受選擇區(qū)域與ROH島重疊的候選區(qū)域注釋到的基因主要與豬精液性狀、豬肌肉和骨骼發(fā)育及體型等相關(guān)。上述研究結(jié)果為探究北京黑豬的長純合片段和選擇特征及重要經(jīng)濟(jì)性狀的遺傳機制提供重要參考。
參考文獻(xiàn)(References):
[1] KIRIN M,MCQUILLAN R,F(xiàn)RANKLIN C S,et al.Genomic runs of homozygosity record population history and consanguinity[J]. PLoS One,2010,5(11):e13996.
[2] GIBSON J,MORTON N E,COLLINS A.Extended tracts of homozygosity in outbred human populations[J].Hum Mol Genet, 2006, 15(5):789-795.
[3] GORSSEN W,MEYERMANS R,JANSSENS S,et al.A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species[J].Genet Sel Evol,2021,53(1):2.
[4] NANI J P,PE AGARICANO F.Whole-genome homozygosity mapping reveals candidate regions affecting bull fertility in US Holstein cattle[J].BMC Genomics,2020,21(1):338.
[5] ZORC M,KORPUT D,GVOZDANOVIC' K,et al.Genetic diversity and population structure of six autochthonous pig breeds from Croatia,Serbia,and Slovenia[J].Genet Sel Evol,2022,54(1):30.
[6] SHI L Y,WANG L G,LIU J X,et al.Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population[J].J Anim Sci Biotechnol,2020,11:46.
[7] ZHAN H W,ZHANG S X,ZHANG K L,et al.Genome-wide patterns of homozygosity and relevant characterizations on the population structure in Pitrain pigs[J].Genes (Basel),2020,11(5):577.
[8] JOAQUIM L B,CHUD T C S,MARCHESI J A P,et al.Genomic structure of a crossbred Landrace pig population[J].PLoS One,2019,14(2):e0212266.
[9] ZHAO F P,ZHANG P F,WANG X Q,et al.Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement[J].J Anim Sci Biotechnol,2023,14(1):87.
[10] VOIGHT B F,KUDARAVALLI S,WEN X Q,et al.A map of recent positive selection in the human genome[J].PLoS Biol,2006,4(3):e72.
[11] WANG X P,ZHANG H,HUANG M,et al.Whole-genome SNP markers reveal conservation status,signatures of selection,and introgression in Chinese Laiwu pigs[J].Evol Appl,2021,14(2):383-398.
[12] ZHANG S X,ZHANG K L,PENG X,et al.Selective sweep analysis reveals extensive parallel selection traits between large white and Duroc pigs[J].Evol Appl,2020,13(10):2807-2820.
[13] A V,KUMAR A,MAHALA S,et al.Revelation of genetic diversity and genomic footprints of adaptation in Indian pig breeds[J].Gene,2024,893:147950.
[14] 龍 熙,陳 力,吳平先,等.合川黑豬保種群遺傳結(jié)構(gòu)及選擇信號分析[J].畜牧獸醫(yī)學(xué)報,2023,54(5):1854-1867.
LONG X,CHEN L,WU P X,et al.Evaluation of the genetic structure and selection signatures in Hechuan black pigs conserved population[J].Acta Veterinaria et Zootechnica Sinica,2023,54(5):1854-1867.(in Chinese)
[15] PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.
[16] BROWNING S R,BROWNING B L.Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[J].Am J Hum Genet,2007,81(5):1084-1097.
[17] LENCZ T,LAMBERT C,DEROSSE P,et al.MALHOTRA.Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia[J].Proc Natl Acad Sci U S A,2007,104(50):19942-19947.
[18] MASTRANGELO S,CIANI E,SARDINA M T,et al.Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds[J].Anim Genet,2018,49(1):71-81.
[19] 莫家遠(yuǎn),李月月,路玉潔,等.廣西地方豬群體遺傳結(jié)構(gòu)、選擇信號分析和ROH檢測[J].中國畜牧雜志,2021,57(S1):206-213.
MO J Y,LI Y Y,LU Y J,et al.Genetic structure,selection signal analysis and ROH detection of pigs in the Guangxi province[J].Chinese Journal of Animal Science,2021,57(S1):206-213.(in Chinese)
[20] JIANG Y,LI X J,LIU J L,et al.Genome-wide detection of genetic structure and runs of homozygosity analysis in Anhui indigenous and Western commercial pig breeds using PorcineSNP80k data[J].BMC Genomics,2022,23(1):373.
[21] FANG Y F,HAO X Y,XU Z,et al.Genome-wide detection of runs of homozygosity in Laiwu pigs revealed by sequencing data[J].Front Genet,2021,12:629966.
[22] XIE R,SHI L Y,LIU J X,et al.Genome-wide scan for runs of homozygosity identifies candidate genes in three pig breeds[J].Animals (Basel),2019,9(8):518.
[23] XU Z,SUN H,ZHANG Z,et al.Assessment of autozygosity derived from runs of homozygosity in Jinhua pigs disclosed by sequencing data[J].Front Genet,2019,10:274.
[24] TEIXEIRA S A,MARQUES D B D,COSTA T C,et al.Transcription landscape of the early developmental biology in pigs[J].Animals (Basel),2021,11(5):1443.
[25] MARTINS T F,BRAGA MAGALH ES A F,VERARDO L L,et al.Functional analysis of litter size and number of teats in pigs:from GWAS to post-GWAS[J].Theriogenology 2022,193:157-166.
[26] MIAO W W,MA Z Q,TANG Z Y,et al.Integrative ATAC-seq and RNA-seq analysis of the longissimus muscle of Luchuan and duroc pigs[J].Front Nutr,2021,8:742672.
[27] FU L,JIANG Y,WANG C L,et al.A genome-wide association study on feed efficiency related traits in landrace pigs[J].Front Genet,2020,11:692.
[28] VALD S-HERN NDEZ J,F(xiàn)OLCH J M,CRESPO-PIAZUELO D,et al.Identification of candidate regulatory genes for intramuscular fatty acid composition in pigs by transcriptome analysis[J].Genet Sel Evol,2024,56(1):12.
[29] ZHANG J,WANG J Y,MA C,et al.Comparative transcriptomic analysis of mRNAs,miRNAs and lncRNAs in the Longissimus dorsi muscles between fat-type and lean-type pigs[J].Biomolecules,2022,12(9):1294.
[30] MARQUES D B D,BASTIAANSEN J W M,BROEKHUIJSE M L W J,et al.Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs[J].Genet Sel Evol,2018,50(1):40.
[31] SELL-KUBIAK E,DOBRZANSKI J,DERKS M F L,et al.Meta-analysis of SNPs determining litter traits in pigs[J].Genes (Basel),2022,13(10):1730.
[32] CHEN Z T,YE S P,TENG J Y,et al.Genome-wide association studies for the number of animals born alive and dead in duroc pigs[J].Theriogenology,2019,139:36-42.
[33] VAHEDI S M,SALEK ARDESTANI S,KARIMI K,et al.Weighted single-step GWAS for body mass index and scans for recent signatures of selection in Yorkshire pigs[J].J Hered,2022,113(3):325-335.
[34] LIU X,TIAN W L,WANG L G,et al.Integrated analysis of long non-coding RNA and mRNA to reveal putative candidate genes associated with backfat quality in Beijing black pig[J].Foods,2022,11(22):3654.
[35] ZANG L,WANG Y D,SUN B X,et al.Identification of a 13bp indel polymorphism in the 3′-UTR of DGAT2 gene associated with backfat thickness and lean percentage in pigs[J].Gene,2016,576(2):729-733.
[36] CUI Z J,WANG X Z,LIAO S M,et al.Effects of medium-chain fatty acid glycerides on nutrient metabolism and energy utilization in weaned piglets[J].Front Vet Sci,2022,9:938888.
[37] CORONEL J,YU J S,PILLI N,et al.The conversion of β-carotene to vitamin A in adipocytes drives the anti-obesogenic effects of β-carotene in mice[J].Mol Metab,2022,66:101640.
[38] 楊欣婷,鄭麥青,譚曉冬,等.快大型黃羽肉雞肉品質(zhì)性狀的遺傳參數(shù)估計和關(guān)鍵基因挖掘[J].畜牧獸醫(yī)學(xué)報,2021,52(9):2416-2428.
YANG X T,ZHENG M Q,TAN X D,et al.Genetic parameters estimation and key genes identification for meat quality traits of fast-growing yellow-feather meat-type chickens[J].Acta Veterinaria et Zootechnica Sinica,2021,52(9):2416-2428.(in Chinese)
[39] PRAUD C,AL AHMADIEH S,VOLDOIRE E,et al.Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production[J].Exp Cell Res,2017,358(2):140-146.
[40] LIU H T,SONG H L,JIANG Y F,et al.A single-step genome wide association study on body size traits using imputation-based whole-genome sequence data in Yorkshire pigs[J].Front Genet,2021,12:629049.
[41] WANG H Y,WANG X Y,LI M L,et al.Genome-wide association study reveals genetic loci and candidate genes for meat quality traits in a four-way crossbred pig population[J].Front Gene,2023,14:1001352.
[42] LIU Z Z,LI H,ZHONG Z X,et al.A whole genome sequencing-based genome-wide association study reveals the potential associations of teat number in Qingping pigs[J].Animals (Basel),2022,12(9):1057.
[43] HARIYONO D N H,PRIHANDINI P W.Association of selected gene polymorphisms with thermotolerance traits in cattle-A review[J].Anim Biosci,2022,35(11):1635-1648.
(編輯 郭云雁)