摘 要: 旨在探究miR-127對(duì)綿羊骨骼肌成肌細(xì)胞增殖與分化的影響,并通過(guò)鑒定miR-127上游核心啟動(dòng)子區(qū)域篩選調(diào)控其表達(dá)的轉(zhuǎn)錄因子。本研究以體外分離培養(yǎng)的小尾寒羊胎羊骨骼肌原代成肌細(xì)胞為試驗(yàn)材料,過(guò)表達(dá)或干擾miR-127后,采用RT-qPCR、EdU染色、流式細(xì)胞儀分析、免疫熒光染色等方法探究miR-127對(duì)綿羊成肌細(xì)胞增殖、凋亡和分化的影響?;谏镄畔W(xué)分析和雙熒光素酶報(bào)告試驗(yàn)預(yù)測(cè)并鑒定綿羊miR-127核心啟動(dòng)子區(qū)域及其轉(zhuǎn)錄因子。結(jié)果表明,在綿羊成肌細(xì)胞中過(guò)表達(dá)miR-127后,促進(jìn)了細(xì)胞增殖相關(guān)基因PCNA、CDK4的表達(dá)(Plt;0.01);抑制了細(xì)胞凋亡相關(guān)基因Caspase3、BAX的表達(dá)(Plt;0.05);EdU結(jié)果顯示,綿羊成肌細(xì)胞中過(guò)表達(dá)miR-127后,細(xì)胞陽(yáng)性率顯著提升(Plt;0.05);流式細(xì)胞儀分析顯示,miR-127過(guò)表達(dá)可顯著增加成肌細(xì)胞S期和G2期細(xì)胞比例并減少成肌細(xì)胞的凋亡。在細(xì)胞分化試驗(yàn)中,過(guò)表達(dá)miR-127顯著增加了成肌細(xì)胞分化相關(guān)基因MYOD1和MYHC mRNA的表達(dá)水平(Plt;0.05),顯著增加了MYHC的陽(yáng)性肌管面積(Plt;0.05)。抑制miR-127表達(dá)則出現(xiàn)與上述相反的結(jié)果。這些結(jié)果表明,miR-127顯著促進(jìn)了綿羊成肌細(xì)胞增殖、分化,并抑制其凋亡。為進(jìn)一步揭示調(diào)控miR-127表達(dá)的調(diào)控因子,雙熒光素酶活性檢測(cè)結(jié)果顯示,miR-127上游1 500~1 800 bp(miR-127-P6)區(qū)段活性最高,推斷其為miR-127的核心啟動(dòng)子區(qū)。生物信息學(xué)預(yù)測(cè)表明,在miR-127核心啟動(dòng)子區(qū)存在一個(gè)與轉(zhuǎn)錄因子PAX3的結(jié)合位點(diǎn)。在綿羊成肌細(xì)胞中過(guò)表達(dá)轉(zhuǎn)錄因子PAX3后,miR-127啟動(dòng)子活性和miR-127的表達(dá)均極顯著增加(Plt;0.01)。本研究表明,綿羊miR-127顯著促進(jìn)綿羊骨骼肌成肌細(xì)胞增殖分化,減少了成肌細(xì)胞凋亡,進(jìn)而參與骨骼肌成肌細(xì)胞的發(fā)育過(guò)程;進(jìn)一步研究發(fā)現(xiàn),綿羊miR-127上游的1 500~1 800 bp是其核心啟動(dòng)子區(qū),轉(zhuǎn)錄因子PAX3正向調(diào)節(jié)miR-127的轉(zhuǎn)錄。本研究為進(jìn)一步探究綿羊肌肉生長(zhǎng)發(fā)育性狀的分子機(jī)制提供了理論參考。
關(guān)鍵詞: 綿羊;成肌細(xì)胞增殖分化;miR-127;轉(zhuǎn)錄因子PAX3
中圖分類號(hào):S826.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào): 0366-6964(2024)09-3864-12
miR-127 Regulated the Proliferation and Differentiation of Sheep Skeletal Myoblasts
and Its Transcription Factor PAX3 Screening
JIA" Yuhang" GUO" Liangfu3, ZHANG" Runan1, ZHAO" Ayong2, LIU" Yufang1*, CHU" Mingxing1*
(1.State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science,
Chinese Academy of Agricultural Sciences, Beijing 100193," China;
2.College of Animal
Science and Technology· College of Veterinary Medicine, Zhejiang Agriculture and
Forestry University, Hangzhou 311300," China; 3.Yuncheng County Animal Husbandry
Service Center, Yuncheng 274700," China)
Abstract:" The aim of this study was to investigate the effects of miR-127 on the skeletal myoblast proliferation and differentiation in sheep, and to screen for transcription factors that regulate the expression of miR-127 by identifying its upstream core promoter region. In this study, primary skeletal muscle myoblasts of small-tailed Han fetal sheep were used as experimental materials. After overexpression or inhibition of miR-127, the RT-qPCR, EdU staining, flow cytometry analysis, and immunofluorescence staining were used to detect the effects of miR-127 on the proliferation, apoptosis and differentiation of sheep myoblasts. The bioinformatics analysis and dual luciferase reporting assay were used to predict and identify the sheep miR-127 core promoter region and its transcription factors. The results showed that overexpression of miR-127 in sheep myoblasts promoted the expression of cell proliferation related genes PCNA and CDK4 (Plt;0.01), and inhibited the expressions of cell apoptosis related genes Caspase3 and BAX (Plt;0.05). EdU results showed that the positive rate of sheep myoblasts was significantly increased after miR-127 overexpression (Plt;0.05). Flow cytometry analysis showed that overexpression of miR-127 significantly increased the proportion of S and G2 phase myoblasts and decreased the apoptosis of myoblasts. In the cell differentiation assay, overexpression of miR-127 significantly increased the mRNA expression levels of myoblast differentiation related genes MYOD1 and MYHC (Plt;0.05), and significantly increased the MYHC positive myotube area (Plt;0.05). The opposite result was found after miR-127 inhibition. In order to further reveal the regulatory factors regulating the expression of miR-127, the dual luciferase activity assay showed that the 1 500-1 800 bp (miR-127-P6) region upstream of miR-127 had the highest activity, which was inferred to be the core promoter region of miR-127. Bioinformatics predictions revealed a site in the core promoter region of miR-127 that bound to the transcription factor PAX3. Overexpression of the transcription factor PAX3 in sheep myoblasts significantly increased the promoter activity and the expression of miR-127 (Plt;0.01). This study showed that sheep miR-127 significantly promoted the proliferation and differentiation of skeletal muscle myoblasts and reduced their apoptosis, which participated in their development process. Further studies showed that 1 500-1 800 bp upstream was the core promoter region of sheep miR-127, and the transcription factor PAX3 positively regulated the transcription of miR-127. This study provided a theoretical reference for further exploring the molecular mechanism of sheep muscle growth and development.
Key words: sheep; myoblast proliferation and differentiation; miR-127; transcription factor PAX3
*Corresponding authors:LIU Yufang, E-mail: aigaiy@126.com; CHU Mingxing, E-mail:mxchu@263.net
骨骼肌細(xì)胞的增殖和分化對(duì)于畜禽生產(chǎn)具有重要意義[1-2]。在畜禽生產(chǎn)中,肌肉生長(zhǎng)和發(fā)育直接影響著肉類的產(chǎn)量和質(zhì)量。了解成肌細(xì)胞增殖和分化的機(jī)制可以幫助人們控制肌肉生長(zhǎng)速度,提高肉類產(chǎn)量,同時(shí)改善肌肉質(zhì)量,提高肉類的營(yíng)養(yǎng)價(jià)值和口感。肌肉細(xì)胞的生長(zhǎng)發(fā)育受眾多基因、轉(zhuǎn)錄因子及短鏈非編碼RNA的調(diào)控[3-5]。microRNA(miRNA)是一種細(xì)胞內(nèi)源性長(zhǎng)度約18~24 bp的非編碼且高度保守的RNA[6],已被發(fā)現(xiàn)參與動(dòng)植物生長(zhǎng)發(fā)育的各個(gè)環(huán)節(jié)。大量研究表明,miRNA作為反式作用因子,通過(guò)靶向靶基因的3′UTR區(qū)域在不同物種的骨骼肌細(xì)胞增殖分化過(guò)程中發(fā)揮重要作用。在小鼠這類模式動(dòng)物中,miRNA調(diào)控肌肉生長(zhǎng)發(fā)育的研究開(kāi)展較為廣泛,研究人員利用分子生物學(xué)試驗(yàn)發(fā)現(xiàn),miR-143通過(guò)負(fù)向調(diào)控IGFBP5(insulin like growth factor binding protein 5)基因的表達(dá)在小鼠肌肉發(fā)生過(guò)程中發(fā)揮作用[7]。在家禽的研究中發(fā)現(xiàn),雞骨骼肌衛(wèi)星細(xì)胞的增殖和分化受到miR-21-5p轉(zhuǎn)錄后調(diào)節(jié)KLF3(KLF transcription factor 3)表達(dá)的影響,而成肌細(xì)胞的增殖和分化則與miR-320-3p靶向CFL2(cofilin 2)調(diào)節(jié)肌動(dòng)蛋白重塑有關(guān)[8-9]。在反芻動(dòng)物中,miR-377負(fù)調(diào)控 FHL2(four and a half LIM domains 2)抑制牛骨骼肌衛(wèi)星細(xì)胞的增殖和分化[10],而miR-27b則通過(guò)靶向MSTN(myostatin)促進(jìn)了綿羊骨骼肌衛(wèi)星細(xì)胞增殖[11]。以上這些研究均表明miRNA在畜禽肌肉生長(zhǎng)發(fā)育中發(fā)揮著重要作用。
miRNA是在mRNA轉(zhuǎn)錄過(guò)程中伴隨產(chǎn)生的,針對(duì)miRNA的轉(zhuǎn)錄過(guò)程及其轉(zhuǎn)錄因子進(jìn)行了大量的研究。在小鼠胚胎發(fā)育過(guò)程中,胚胎干細(xì)胞中Cyclin E的高水平表達(dá)可歸因于轉(zhuǎn)錄因子Esrrb(estrogen related receptor beta)的轉(zhuǎn)錄激活以及與其負(fù)調(diào)控子miR-15a的協(xié)同作用[12]。在小鼠C1C12細(xì)胞中,miR-1a-3p、miR-206-3p、miR-24-3p和miR-486-5p可通過(guò)靶向轉(zhuǎn)錄因子MRTF-A(myocardin related transcription factor A)的3′UTR區(qū)域調(diào)控小鼠成肌細(xì)胞的分化[13]。在肌肉細(xì)胞分化過(guò)程中,成肌轉(zhuǎn)錄因子MyoD(myogenic differentiation)通過(guò)與miR-206啟動(dòng)子結(jié)合誘導(dǎo)miR-206表達(dá)上調(diào)來(lái)增加肌肉細(xì)胞分化[14]。本課題組前期綿羊肌肉全轉(zhuǎn)錄組測(cè)序結(jié)果表明,在相同飼養(yǎng)條件下,miR-127在產(chǎn)肉率高的蘇尼特羊背最長(zhǎng)肌組織中的表達(dá)水平顯著高于產(chǎn)肉率低的小尾寒羊,推測(cè)其在綿羊成肌細(xì)胞增殖分化過(guò)程中發(fā)揮調(diào)控作用。因此,本試驗(yàn)分離了綿羊原代成肌細(xì)胞,通過(guò)干擾/過(guò)表達(dá)調(diào)控成肌細(xì)胞中miR-127的表達(dá)水平,探究了miR-127對(duì)體外綿羊成肌細(xì)胞增殖分化的作用以及調(diào)控其轉(zhuǎn)錄的上游通路,為進(jìn)一步揭示miRNA在綿羊肌肉生長(zhǎng)發(fā)育性狀中的分子機(jī)制及高產(chǎn)肉量綿羊培育提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
DMEM培養(yǎng)基、opti-MEM減血清培養(yǎng)基、胎牛血清(FBS)、馬血清(HS)、PBS磷酸緩沖液、0.25%胰蛋白酶、青霉素、鏈霉素均購(gòu)自Gibco公司;LipofectamineTM 2000購(gòu)自Thermo Fisher Scientific公司;全RNA提取試劑盒購(gòu)自天根生化科技(北京)有限公司;PBST、DAPI、多聚甲醛、DNA 含量檢測(cè)試劑盒(細(xì)胞周期)購(gòu)自Solarbio 公司;BeyoClick EdU-594細(xì)胞增殖檢測(cè)試劑盒、Annexin V-FITC細(xì)胞凋亡檢測(cè)試劑盒購(gòu)自上海碧云天生物技術(shù)有限公司;Dual Luciferase Reporter Assay Kit、HiScript III All-in-one RT SuperMix Perfect for qPCR、Taq Pro Universal SYBR qPCR Master Mix購(gòu)自南京諾唯贊生物科技有限公司。
1.2 綿羊成肌細(xì)胞分離、培養(yǎng)與鑒定
綿羊胚胎試驗(yàn)樣品來(lái)自天津市農(nóng)業(yè)科學(xué)院動(dòng)物實(shí)驗(yàn)基地,將10只生長(zhǎng)時(shí)期一致的新鮮小尾寒羊胚胎經(jīng)生理鹽水(0.9%)沖洗后低溫保存帶回實(shí)驗(yàn)室,采集胎羊背最長(zhǎng)肌,在PBS濕潤(rùn)環(huán)境下使用無(wú)菌剪刀剔除血管及結(jié)締組織,將剩余的肌肉組織剪成肉糜狀,加入適量胰蛋白酶放入搖床4 ℃消化過(guò)夜,消化結(jié)束后依次過(guò)70 μm和40 μm細(xì)胞篩,過(guò)濾液1 000 r·min-1離心10 min,取適量完全培養(yǎng)基重懸細(xì)胞沉淀后轉(zhuǎn)移至10 cm2細(xì)胞培養(yǎng)皿,放置于37 ℃、5% CO2的細(xì)胞培養(yǎng)箱中培養(yǎng)。利用免疫熒光法鑒定成肌細(xì)胞純度,將細(xì)胞懸液接種在內(nèi)置細(xì)胞爬片的6孔板中,培養(yǎng)至細(xì)胞密度達(dá)到70%時(shí),加入4%多聚甲醛固定20 min,PBS洗滌5 min×3次,采用0.1%(TritonX-100)4 ℃通透15 min,PBS 洗滌5 min×3次;5%羊血清室溫封閉30 min,除去封閉液滴加一抗Desmin,4 ℃孵育過(guò)夜;次日PBST洗滌5 min×3次,避光滴加二抗(goat anti-rabbit IgG),室溫孵育2 h,PBST洗滌5 min×3次;DAPI復(fù)染細(xì)胞核5 min,用PBS洗滌5 min×3次,滴加抗熒光猝滅劑封片,鏡檢,采集圖像。
1.3 綿羊成肌細(xì)胞誘導(dǎo)分化
取正常培養(yǎng)的綿羊成肌細(xì)胞接種于6孔板,待細(xì)胞匯合度達(dá)到90%,更換為分化培養(yǎng)基(含2%馬血清的高糖DMEM培養(yǎng)基),誘導(dǎo)分化7 d,觀察綿羊成肌細(xì)胞的分化情況。
1.4 質(zhì)粒構(gòu)建
根據(jù)PAX3(Paired Box 3)的CDS區(qū)序列設(shè)計(jì)合成pcDNA3.1-PAX3過(guò)表達(dá)載體;根據(jù)oar-miR-127的序列設(shè)計(jì)合成oar-miR-127的模擬物(mimics)和抑制劑(inhibitor),載體序列信息見(jiàn)表1,載體均在上海吉瑪制藥技術(shù)有限公司合成。
1.5 基因表達(dá)水平檢測(cè)
將成肌細(xì)胞接種于6孔板,細(xì)胞密度生長(zhǎng)到70%時(shí)分別轉(zhuǎn)染miR-127 mimics和mimics NC、miR-127 inhibitor、inhibitor NC至成肌細(xì)胞中,每組試驗(yàn)3個(gè)生物學(xué)重復(fù),6 h后更換為完全培養(yǎng)基,繼續(xù)培養(yǎng)48 h后收集細(xì)胞,根據(jù)天根總RNA提取試劑盒說(shuō)明(天根,北京)提取細(xì)胞總RNA,用HiScript III All-in-one RT SuperMix Perfect for qPCR反轉(zhuǎn)錄成cDNA,最后利用Taq Pro Universal SYBR qPCR Master Mix以cDNA為模板進(jìn)行RT-qPCR,檢測(cè)成肌細(xì)胞增殖相關(guān)基因PCNA(proliferating cell nuclear antigen)和CDK4(cyclin dependent kinase 4)的表達(dá)水平、成肌細(xì)胞凋亡相關(guān)基因BAX(BCL2 associated X, apoptosis regulator)和caspase3(CASP3)的表達(dá)水平、成肌細(xì)胞分化相關(guān)基因MYOD1(myogenic differentiation)和MYHC表達(dá)水平,分別以U6和β-actin(actin beta)作為miR-127及目的基因內(nèi)參,采用2-ΔΔCt法計(jì)算相對(duì)表達(dá)量。引物序列信息見(jiàn)表2。
1.6 EdU檢測(cè)細(xì)胞增殖
將成肌細(xì)胞接種于6孔板中,待其密度生長(zhǎng)到70%,轉(zhuǎn)染miR-127 mimics、mimics NC、miR-127 inhibitor、inhibitor NC質(zhì)粒,每組試驗(yàn)3個(gè)生物學(xué)重復(fù),48 h后按照BeyoClickTMEdU-594細(xì)胞增殖檢測(cè)試劑盒說(shuō)明書(shū)對(duì)細(xì)胞進(jìn)行相應(yīng)處理,染色完成后每個(gè)樣品隨機(jī)選擇3個(gè)視野,在熒光顯微鏡下進(jìn)行細(xì)胞計(jì)數(shù),計(jì)算增殖率。
增殖率=(新增殖的細(xì)胞數(shù)/細(xì)胞總數(shù))×100%。
1.7 流式細(xì)胞儀檢測(cè)細(xì)胞周期與凋亡
在6孔板中接種成肌細(xì)胞,當(dāng)細(xì)胞密度達(dá)到70%時(shí)分別轉(zhuǎn)染miR-127 mimics、mimics NC、miR-127 inhibitor、inhibitor NC,每組試驗(yàn)3個(gè)生物學(xué)重復(fù),48 h收集細(xì)胞,采用DNA 含量檢測(cè)試劑盒(細(xì)胞周期)檢測(cè)各組細(xì)胞周期情況。利用Annexin V-FITC細(xì)胞凋亡檢測(cè)試劑盒檢測(cè)細(xì)胞凋亡情況。使用BD Accuri C6流式細(xì)胞儀檢測(cè)細(xì)胞周期和細(xì)胞凋亡率。每個(gè)樣品3個(gè)重復(fù),試驗(yàn)結(jié)果使用BD FlowJoTM軟件進(jìn)行分析。
1.8 綿羊miR-127啟動(dòng)子區(qū)域克隆
根據(jù)NCBI數(shù)據(jù)庫(kù)下載綿羊miR-127(ENSOARG00020018632,chromosome 18, NC_056071.1∶63420419-63422419)基因組序列,利用Primer Premier 5.0設(shè)計(jì)綿羊miR-127啟動(dòng)子的上、下游引物(表3),并以小尾寒羊成肌細(xì)胞基因組DNA為模板擴(kuò)增miR-127啟動(dòng)子片段。PCR產(chǎn)物送生工生物工程上海股份有限公司測(cè)序。
1.9 熒光素酶載體構(gòu)建
將PCR擴(kuò)增得到的miR-127啟動(dòng)子序列分別截短,交由上海吉瑪制藥技術(shù)有限公司合成。在截短片段上、下游分別引入限制性內(nèi)切酶Mlu I和Xho I酶切位點(diǎn),將不同長(zhǎng)度的片段序列連接至pGL3-Basic載體上,將連接產(chǎn)物轉(zhuǎn)化細(xì)菌感受態(tài)細(xì)胞,對(duì)長(zhǎng)出的克隆先進(jìn)行酶切鑒定,證明目的基因已經(jīng)定向連入目的載體。對(duì)陽(yáng)性克隆進(jìn)行測(cè)序和分析比對(duì),比對(duì)正確的即為構(gòu)建成功的目的基因表達(dá)質(zhì)粒載體。將構(gòu)建好的質(zhì)粒載體進(jìn)行超純?nèi)?nèi)毒素抽提。抽提后的質(zhì)粒用于細(xì)胞轉(zhuǎn)染,測(cè)定濃度后于-20 ℃保存。
1.10 熒光素酶活性檢測(cè)
將分離獲得的綿羊成肌細(xì)胞接種到24孔板,待細(xì)胞密度達(dá)到70%,共轉(zhuǎn)染pGL3-Basic和miR-127啟動(dòng)子重組質(zhì)粒,使用 Dual Luciferase Reporter Assay Kit試劑盒,按照生產(chǎn)商的說(shuō)明進(jìn)行熒光素酶活性檢測(cè)。每組3個(gè)重復(fù),轉(zhuǎn)染48 h后用PBS洗滌細(xì)胞兩次,加入1×Cell Lysis Buffer,振搖裂解5 min,吹打并吸取細(xì)胞裂解產(chǎn)物至1.5 mL離心管中,11 200 r·min-1 (12 000×g)常溫離心2 min,取上清用于后續(xù)檢測(cè)。取100 μL平衡至室溫的Luciferase Substrate加入酶標(biāo)板中,小心吸取20 μL細(xì)胞裂解上清至酶標(biāo)板孔中,迅速混勻后立即于酶標(biāo)儀中檢測(cè) Firefly luciferase報(bào)告基因活性,在以上反應(yīng)液中加入100 μL新鮮配制的Renilla substrate工作液,迅速混勻后立即于酶標(biāo)儀中檢測(cè)Renilla luciferase報(bào)告基因活性,計(jì)算各孔的螢火蟲(chóng)發(fā)光與Renilla發(fā)光比值,將樣品孔比值與對(duì)照組比值進(jìn)行歸一化處理。
1.11 miR-127核心啟動(dòng)子區(qū)域轉(zhuǎn)錄因子預(yù)測(cè)
使用AnimalTFDB v4.0(http://bioinfo.life.hust.edu.cn/AnimalTFDB4/#/)預(yù)測(cè)與綿羊miR-127核心啟動(dòng)子區(qū)域可能結(jié)合的轉(zhuǎn)錄因子及其結(jié)合位點(diǎn)。
1.12 統(tǒng)計(jì)分析
試驗(yàn)結(jié)果利用SPSS 19進(jìn)行統(tǒng)計(jì)分析,并使用軟件GraphPad Prism 9.0做柱狀圖,熒光定量PCR結(jié)果以GAPDH作為內(nèi)參使用2-ΔΔct計(jì)算基因的相對(duì)表達(dá)量;利用獨(dú)立樣本t檢驗(yàn)對(duì)兩組試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析;利用單因素方差分析對(duì)多組試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)處理,所有結(jié)果以“平均數(shù)±標(biāo)準(zhǔn)差(Mean±SD)”表示,Plt;0.05和Plt;0.01表示差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 綿羊骨骼肌成肌細(xì)胞分離、培養(yǎng)與鑒定
分離得到的原代成肌細(xì)胞呈紡錘形,形態(tài)均一(圖1A)。對(duì)培養(yǎng)的成肌細(xì)胞進(jìn)行誘導(dǎo)分化,結(jié)果顯示誘導(dǎo)分化7 d后,細(xì)胞開(kāi)始融合產(chǎn)生大量肌管(圖1B)。對(duì)分離得到的原代成肌細(xì)胞進(jìn)行免疫熒光鑒定,結(jié)果顯示成肌細(xì)胞標(biāo)志基因Desmin在細(xì)胞中大量表達(dá)(圖1C)。由此說(shuō)明,本研究所分離獲得的是高純度的綿羊成肌細(xì)胞可用于后續(xù)試驗(yàn)研究。
2.2 miR-127對(duì)綿羊成肌細(xì)胞增殖的影響
為了研究miR-127對(duì)綿羊成肌細(xì)胞增殖的影響,將構(gòu)建的miR-127 mimics、mimics NC、miR-127 inhibitor、inhibitor NC質(zhì)粒轉(zhuǎn)染至綿羊成肌細(xì)胞,48 h后提取細(xì)胞總RNA,利用RT-qPCR檢測(cè)miR-127表達(dá)水平,結(jié)果顯示構(gòu)建的miR-127 mimics、miR-127 inhibitor質(zhì)粒分別過(guò)表達(dá)和抑制了miR-127的表達(dá)(Plt;0.01,圖2A)。EdU結(jié)果顯示,過(guò)表達(dá)miR-127顯著促進(jìn)了成肌細(xì)胞增殖,抑制其表達(dá)后則相反(Plt;0.05,圖2B)。RT-qPCR結(jié)果顯示,在綿羊成肌細(xì)胞中過(guò)表達(dá)miR-127后,細(xì)胞增殖標(biāo)志基因PCNA和CDK4的表達(dá)水平顯著增加(Plt;0.01,圖2C),S期和G2期細(xì)胞數(shù)量增加,G1期細(xì)胞數(shù)量減少(圖2D),抑制其表達(dá)后則相反。
2.3 miR-127對(duì)綿羊成肌細(xì)胞凋亡的影響
過(guò)表達(dá)miR-127顯著降低了綿羊成肌細(xì)胞中BAX和caspase3的表達(dá)水平(Plt;0.05,圖3A),抑制其表達(dá)后則相反。此外,通過(guò)細(xì)胞凋亡檢測(cè)試劑盒進(jìn)一步評(píng)估了miR-127對(duì)綿羊成肌細(xì)胞凋亡的影響。流式細(xì)胞儀分析結(jié)果顯示,miR-127 mimics組凋亡率(9.2%)明顯低于mimics NC組(12.5%),而miR-127 inhibitor組凋亡率(13.3.%)明顯高于inhibitor NC組(10.9%)(圖3B)。
2.4 miR-127對(duì)成肌細(xì)胞分化的影響
不同處理組綿羊成肌細(xì)胞誘導(dǎo)分化結(jié)果顯示,過(guò)表達(dá)miR-127后明顯促進(jìn)了綿羊成肌細(xì)胞肌管的形成,肌管數(shù)量及大小明顯提升(圖4A),成肌細(xì)胞分化標(biāo)志基因MYHC(myosin heavy chain)的熒光強(qiáng)度顯著增加(Plt;0.05,圖4B),成肌細(xì)胞分化標(biāo)志基因MYOD1和MYHC的表達(dá)水平顯著升高(Plt;0.05,圖4C)。抑制 miR-127表達(dá)后則相反。
2.5 綿羊miR-127核心啟動(dòng)子區(qū)鑒定
根據(jù)擴(kuò)增的miR-127啟動(dòng)子序列,利用pGL3-Basic質(zhì)粒構(gòu)建miR-127上游啟動(dòng)子區(qū)不同長(zhǎng)度片段的熒光素酶表達(dá)質(zhì)粒,分別為miR-127-P1(0/+300 bp)、miR-127-P2(0/+600 bp)、miR-127-P3(0/+900 bp)、miR-127-P4(0/+1 200 bp)、miR-127-P5(0/+1 500 bp)、miR-127-P6(0/+1 800 bp)和miR-127-P7(0/+2 000 bp)。將不同長(zhǎng)度片段的熒光素酶報(bào)告質(zhì)粒分別轉(zhuǎn)染至綿羊成肌細(xì)胞中,48 h后收集細(xì)胞,檢測(cè)雙熒光素酶活性。結(jié)果顯示,miR-127-P6的熒光素酶活性極顯著高于空載體pGL3-Basic和其他片段,表明該片段為綿羊miR-127上游的核心啟動(dòng)子(Plt;0.01,圖5A)。利用在線軟件AnimalTFDB v4.0預(yù)測(cè)了綿羊miR-127-P6序列中有轉(zhuǎn)錄因子PAX3的結(jié)合位點(diǎn)(圖5B)。
2.6 轉(zhuǎn)錄因子PAX3促進(jìn)綿羊miR-127在成肌細(xì)胞中的轉(zhuǎn)錄
將構(gòu)建的轉(zhuǎn)錄因子PAX3過(guò)表達(dá)質(zhì)粒與miR-127-P6質(zhì)粒共轉(zhuǎn)染至綿羊成肌細(xì)胞中,48 h后收集細(xì)胞檢測(cè)雙熒光素酶活性。結(jié)果顯示,轉(zhuǎn)錄因子PAX3過(guò)表達(dá)后綿羊成肌細(xì)胞中miR-127-P6啟動(dòng)子活性顯著升高(Plt;0.01,圖6A),同時(shí)檢測(cè)到miR-127的表達(dá)水平也極顯著上調(diào)(Plt;0.01,圖6B)。上述結(jié)果表明,轉(zhuǎn)錄因子PAX3可促進(jìn)綿羊成肌細(xì)胞中miR-217轉(zhuǎn)錄。
3 討 論
miRNA在骨骼肌的肌源性分化和肌肉再生中發(fā)揮作用,如miR-133介導(dǎo)的Hedgehog通路調(diào)控協(xié)調(diào)胚胎肌生成[15];miR-217-5p可直接與FGFR2(fibroblast growth factor receptor 2)的3′-非翻譯區(qū)結(jié)合,充當(dāng)骨骼肌干細(xì)胞中的肌生成啟動(dòng)子,并可能調(diào)節(jié)骨骼肌干細(xì)胞的肌生成[16]。在肌營(yíng)養(yǎng)不良小鼠模型中,miR-378的缺乏使肌營(yíng)養(yǎng)不良蛋白缺陷型肌肉衛(wèi)星細(xì)胞(mSCs)的融合加?。?7]。miR-100-5p通過(guò)Trib2/mTOR/S6K信號(hào)通路調(diào)節(jié)骨骼肌肌生成[18]。miRNA-127通過(guò)靶向S1PR3(sphingosine-1-phosphate receptor 3)增強(qiáng)成肌細(xì)胞增殖分化[19]。這些研究結(jié)果表明,miRNA在肌肉生長(zhǎng)、肌細(xì)胞增殖發(fā)育中發(fā)揮重要作用。本研究證實(shí),miR-127過(guò)表達(dá)可顯著增加與細(xì)胞增殖相關(guān)基因PCNA和CDK4的表達(dá),抑制了凋亡相關(guān)基因Caspase3和BAX的表達(dá)。此外,miR-127過(guò)表達(dá)還提高了細(xì)胞的DNA合成率,增加了S期和G2期細(xì)胞的比例,進(jìn)一步證實(shí)了其促進(jìn)細(xì)胞增殖的作用。在細(xì)胞分化方面,miR-127過(guò)表達(dá)顯著增加了成肌細(xì)胞分化相關(guān)基因MYOD1和MYHC的表達(dá)水平,同時(shí)增加了肌管形成的陽(yáng)性肌管面積,表明miR-127對(duì)綿羊骨骼肌成肌細(xì)胞的分化也具有促進(jìn)作用。miR-127過(guò)表達(dá)顯著促進(jìn)成肌細(xì)胞增殖、分化,并抑制了成肌細(xì)胞凋亡。這一發(fā)現(xiàn)與前人的研究相一致,說(shuō)明miR-127在調(diào)控綿羊骨骼肌發(fā)育過(guò)程中發(fā)揮重要作用。
miRNA是一類短鏈非編碼RNA分子,可通過(guò)調(diào)控下游基因的表達(dá)在細(xì)胞生物學(xué)過(guò)程中發(fā)揮重要作用[20-22]。目前對(duì)于miRNA的研究主要集中在其對(duì)下游靶基因的調(diào)控關(guān)系上,然而已有研究人員注意到解析調(diào)控miRNA轉(zhuǎn)錄的上游調(diào)控機(jī)制也同樣十分重要。轉(zhuǎn)錄因子是一類能夠調(diào)控基因轉(zhuǎn)錄的蛋白質(zhì)[23-26]。miRNA與轉(zhuǎn)錄因子之間存在著復(fù)雜的相互作用關(guān)系。許多轉(zhuǎn)錄因子可以調(diào)控miRNA的轉(zhuǎn)錄[27-28]。近期研究揭示了轉(zhuǎn)錄因子在調(diào)控miRNA表達(dá)及細(xì)胞功能中的重要作用。例如,轉(zhuǎn)錄因子MYOD已被發(fā)現(xiàn)能夠直接與miR-182的啟動(dòng)子區(qū)域結(jié)合,從而增強(qiáng)miR-182的表達(dá)水平,這一過(guò)程在小鼠肉瘤組織轉(zhuǎn)移中起到促進(jìn)作用[29]。此外,研究還指出轉(zhuǎn)錄因子AP-2α(adaptor protein complex 2)能夠特異性結(jié)合小鼠miR-25-3p的核心啟動(dòng)子區(qū)域,激活miR-25的成熟表達(dá),進(jìn)而對(duì)小鼠C2C12細(xì)胞的代謝過(guò)程進(jìn)行調(diào)節(jié)[30]。進(jìn)一步的研究發(fā)現(xiàn),轉(zhuǎn)錄因子SNAIL(snail zinc finger protein)與miR-28-3p和miR-193a-5p相互作用,在人成肌細(xì)胞的肌源性分化中發(fā)揮作用[31]。在血管平滑肌細(xì)胞中,轉(zhuǎn)錄因子c-Myb(MYB proto-oncogene)通過(guò)miR-143/145的轉(zhuǎn)錄激活,對(duì)細(xì)胞的增殖和分化過(guò)程進(jìn)行精細(xì)調(diào)控[32]。這些發(fā)現(xiàn)突顯了轉(zhuǎn)錄因子在細(xì)胞生物學(xué)過(guò)程中的關(guān)鍵角色,以及它們通過(guò)miRNA介導(dǎo)的基因調(diào)控網(wǎng)絡(luò)在疾病發(fā)生發(fā)展中的重要性,而且轉(zhuǎn)錄因子結(jié)合基因序列的不同位置,發(fā)揮著不同的調(diào)控作用,進(jìn)而調(diào)控基因的轉(zhuǎn)錄活性及其表達(dá)[33]。
PAX轉(zhuǎn)錄因子家族是一個(gè)與發(fā)育相關(guān)的重要家族,主要包括PAX3、PAX4、PAX6、PAX7[34]。其中轉(zhuǎn)錄因子PAX3對(duì)于肌肉細(xì)胞的增殖和分化起著關(guān)鍵作用。PAX3在胚胎期間參與了肌肉細(xì)胞的形成和發(fā)育過(guò)程,轉(zhuǎn)錄因子PAX3在體外和體內(nèi)引導(dǎo)小鼠胚胎成血管細(xì)胞向骨骼肌發(fā)生過(guò)程中起著至關(guān)重要的作用[35-37]。同時(shí)在成體肌肉組織中也發(fā)揮著重要作用。研究表明,PAX3和PAX7作為轉(zhuǎn)錄因子在肌肉損傷中通過(guò)H3K4甲基化機(jī)制和刺激基因激活的染色質(zhì)修飾誘導(dǎo)細(xì)胞分裂,這種調(diào)節(jié)可以加速骨骼肌損傷的愈合修復(fù),尤其是骨骼肌的損傷[38]。PAX3和miR-127在功能上都能夠促進(jìn)肌生成及誘導(dǎo)分化,推測(cè)轉(zhuǎn)錄因子PAX3能夠調(diào)控miR-127的轉(zhuǎn)錄。在本研究鑒定出miR-127的核心啟動(dòng)子區(qū)域(上游1 500~1 800 bp)存在轉(zhuǎn)錄因子PAX3結(jié)合位點(diǎn),推測(cè)轉(zhuǎn)錄因子PAX3是調(diào)控綿羊成肌細(xì)胞中miR-127表達(dá)的重要調(diào)控元件,雙熒光素酶檢測(cè)結(jié)果也表明PAX3可有效促進(jìn)miR-127轉(zhuǎn)錄活性,顯著上調(diào)miR-127的表達(dá)水平。本結(jié)果證實(shí)了轉(zhuǎn)錄因子PAX3調(diào)控miR-127在綿羊成肌細(xì)胞中轉(zhuǎn)錄的假設(shè)。
4 結(jié) 論
本研究表明,miR-127能夠促進(jìn)綿羊成肌細(xì)胞增殖和分化,減少成肌細(xì)胞凋亡,對(duì)綿羊成肌細(xì)胞發(fā)育具有積極作用。進(jìn)一步研究發(fā)現(xiàn),miR-127的核心啟動(dòng)子區(qū)域?yàn)?1 500/+1 800 bp,在綿羊成肌細(xì)胞中轉(zhuǎn)錄因子PAX3可與該片段結(jié)合并能夠正向調(diào)節(jié)miR-127的轉(zhuǎn)錄。本研究為探索miRNA在綿羊肌肉生長(zhǎng)發(fā)育調(diào)控以及綿羊育種中的應(yīng)用提供了理論依據(jù)。
參考文獻(xiàn)(References):
[1] 康國(guó)磊,王 凈,王紅娜,等.肌肽的生理作用及其在畜禽生產(chǎn)中的應(yīng)用研究進(jìn)展[J].中國(guó)畜牧雜志,2022,58(9):58-62.
KANG G L,WANG J,WANG H N,et al.Research progress on physiological role of carnosine and its application in livestock and poultry production[J].Chinese Journal of Animal Science,2022,58(9):58-62.(in Chinese)
[2] CHEN P R,LEE K.Invited review:inhibitors of myostatin as methods of enhancing muscle growth and development[J].J Anim Sci,2016,94(8):3125-3134.
[3] HERN NDEZ-HERN NDEZ J M,GARC A-GONZ LEZ E G,BRUN C E,et al.The myogenic regulatory factors,determinants of muscle development,cell identity and regeneration[J].Semin Cell Dev Biol,2017,72:10-18.
[4] UMANSKY K B,GRUENBAUM-COHEN Y,TSOORY M,et al.Runx1 transcription factor is required for myoblasts proliferation during muscle regeneration[J].PLoS Genet,2015,11(8):e1005457.
[5] LI Y Y,CHEN X N,SUN H,et al.Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases[J].Cancer Lett,2018,417:58-64.
[6] HERKENHOFF M E,OLIVEIRA A C,NACHTIGALL P G,et al.Fishing into the microRNA transcriptome[J].Front Genet,2018,9:88.
[7] SORIANO-ARROQUIA A,MCCORMICK R,MOLLOY AP,et al.Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration[J].Aging Cell,2016,15(2):361-369.
[8] ZHANG D H,RAN J S,LI J J,et al.miR-21-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting KLF3 in chicken[J].Genes (Basel),2021,12(6):814.
[9] NGUYEN M T,LEE W.MiR-320-3p regulates the proliferation and differentiation of myogenic progenitor cells by modulating actin remodeling[J].Int J Mol Sci,2022,23(2):801.
[10] ZHU Y,LI P,DAN X G,et al.miR-377 inhibits proliferation and differentiation of bovine skeletal muscle satellite cells by targeting FHL2[J].Genes (Basel),2022,13(6):947.
[11] ZHANG W,WANG S Y,DENG S Y,et al.MiR-27b promotes sheep skeletal muscle satellite cell proliferation by targeting myostatin gene[J].J Genet,2018,97(5):1107-1117.
[12] GONNOT F,LANGER D,BOURILLOT P Y,et al.Regulation of cyclin E by transcription factors of the nave pluripotency network in mouse embryonic stem cells[J].Cell Cycle,2019,18(20):2697-2712.
[13] HOLSTEIN I,SINGH A K,POHL F,et al.Post-transcriptional regulation of MRTF-A by miRNAs during myogenic differentiation of myoblasts[J].Nucl Acids Res,2020,48(16):8927-8942.
[14] KOUTALIANOS D,KOUTSOULIDOU A,MASTROYIANNOPOULOS N P,et al.MyoD transcription factor induces myogenesis by inhibiting Twist-1 through miR-206[J].J Cell Sci,2015,128(19):3631-3645.
[15] MOK G F,LOZANO-VELASCO E,MANIOU E,et al.miR-133-mediated regulation of the Hedgehog pathway orchestrates embryo myogenesis[J].Development,2018,145(12):dev159657.
[16] ZHU M H,CHEN G,YANG Y,et al.miR-217-5p regulates myogenesis in skeletal muscle stem cells by targeting FGFR2[J].Mol Med Rep,2020,22(2):850-858.
[17] PODKALICKA P,MUCHA O,BRONISZ-BUDZYN'SKA I,et al.Lack of miR-378 attenuates muscular dystrophy in mdx mice[J].JCI Insight,2020,5(11):e135576.
[18] WANG K M,LIUFU S,YU Z G,et al.miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway[J].Int J Mol Sci,2023,24(10):8906.
[19] ZHAI L L,WU R M,HAN W H,et al.miR-127 enhances myogenic cell differentiation by targeting S1PR3[J].Cell Death Dis,2017,8(3):e2707.
[20] DE SOUSA M C,GJORGJIEVA M,DOLICKA D,et al.Deciphering miRNAs’ action through miRNA editing[J].Int J Mol Sci,2019,20(24):6249.
[21] SU J L,CHEN P S,JOHANSSON G,et al.Function and regulation of let-7 family microRNAs[J].MicroRNA,2012,1(1):34-39.
[22] FABIAN M R,SONENBERG N,F(xiàn)ILIPOWICZ W.Regulation of mRNA translation and stability by microRNAs[J].Annu Rev Biochem,2010,79:351-379.
[23] ZAMMIT P S.Function of the myogenic regulatory factors Myf5,MyoD,Myogenin and MRF4 in skeletal muscle,satellite cells and regenerative myogenesis[J].Semin Cell Dev Biol,2017,72:19-32.
[24] LIANG H Y,WARD W F.PGC-1α:a key regulator of energy metabolism[J].Adv Physiol Educ,2006,30(4):145-151.
[25] JIANG Y,QIAN H Y.Transcription factors:key regulatory targets of vascular smooth muscle cell in atherosclerosis[J].Mol Med,2023,29(1):2.
[26] TAYLOR D F,BISHOP D J.Transcription factor movement and exercise-induced mitochondrial biogenesis in human skeletal muscle:current knowledge and future perspectives[J].Int J Mol Sci,2022,23(3):1517.
[27] ARORA S,RANA R,CHHABRA A,et al.miRNA-transcription factor interactions:a combinatorial regulation of gene expression[J].Mol Genet Genomics,2013,288(3-4):77-87.
[28] ASHRAFIZADEH M,ZARRABI A,OROUEI S M,et al.Interplay between SOX9 transcription factor and microRNAs in cancer[J].Int J Biol Macromol,2021,183:681-694.
[29] DODD R D,SACHDEVA M,MITO J K,et al.Myogenic transcription factors regulate pro-metastatic miR-182[J].Oncogene,2016,35(14):1868-1875.
[30] DU Y,ZHAO Y,WANG Y,et al.MiR-25-3p regulates the differentiation of intramuscular preadipocytes in goat via targeting KLF4[J].Arch Anim Breed,2021,64(1):17-25.
[31] SKRZYPEK K,NIESZPOREK A,BADYRA B,et al.Enhancement of myogenic differentiation and inhibition of rhabdomyosarcoma progression by miR-28-3p and miR-193a-5p regulated by SNAIL[J].Mol Ther Nucl Acids,2021,24:888-904.
[32] CHANDY M,ISHIDA M,SHIKATANI E A,et al.c-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells[J].PLoS One,2018,13(8):e0202778.
[33] GUY J L,MOR G G.Transcription factor-binding site identification and enrichment analysis[M]//ALVERO A B,MOR G G.Detection of Cell Death Mechanisms:Methods and Protocols.New York:Humana,2021:241-261.
[34] NAVET S,BURESI A,BARATTE S,et al.The Pax gene family:highlights from cephalopods[J].PLoS One,2017,12(3):e0172719.
[35] LAGHA M,KORMISH J D,ROCANCOURT D,et al.Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program[J].Genes Dev,2008,22(13):1828-1837.
[36] MAGLI A,SCHNETTLER E,RINALDI F,et al.Functional dissection of Pax3 in paraxial mesoderm development and myogenesis[J].Stem Cells,2013,31(1):59-70.
[37] MESSINA G,SIRABELLA D,MONTEVERDE S,et al.Skeletal muscle differentiation of embryonic mesoangioblasts requires Pax3 activity[J].Stem Cells,2009,27(1):157-164.
[38] AZHAR M,WARDHANI B W K,RENESTEEN E.The regenerative potential of Pax3/Pax7 on skeletal muscle injury[J].J Genet Eng Biotechnol,2022,20(1):143.
(編輯 郭云雁)