国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

獅頭鵝群體遺傳多樣性和體重體尺全基因組關聯(lián)分析

2024-10-14 00:00:00黃紅艷張力允黃智榮伍仲平張續(xù)勐歐陽宏佳陳俊鵬林楨平田允波李秀金黃運茂
畜牧獸醫(yī)學報 2024年9期

摘 要: 旨在探究獅頭鵝群體遺傳多樣性和體重體尺性狀全基因關聯(lián)分析。本試驗隨機選取2年齡休產狀態(tài)的獅頭鵝111只(公鵝20、母鵝91只),進行體重和體尺指標表型測定和二代基因組測序(5×),對測序數(shù)據(jù)進行SNPs位點檢測,計算獅頭鵝群體遺傳多樣性指標,利用單標記回歸混合模型開展SNPs與體重體尺性狀的關聯(lián)分析。本試驗采用Bonferroni法校正,即全基因組水平閾值(0.05/總SNPs)和染色體水平閾值(0.05/染色體SNP數(shù)目),確定顯著性SNPs位點,并對染色體水平顯著性SNPs位點上、下游50 kb進行基因注釋。經過質控,共計獲得7 577 552個有效SNPs用于進一步分析。群體多樣性分析顯示,歷史有效群體含量、最小等位基因頻率、多態(tài)信息含量、觀察雜合度、期望雜合度和近交系數(shù)分別為234、0.25、0.34、0.26、0.34和0.22。共檢測出6 164個連續(xù)純合片段,長度在1.0~2.0 Mb的純合片段占比最多(74.4%)。體重體尺性狀的全基因組關聯(lián)分析發(fā)現(xiàn)38個染色體水平顯著性SNPs,涉及90個基因。其中影響生長發(fā)育相關的基因有7個,即D2HDH、THAP4、ESPNL、EPT1、TNPO3、MCF2L、AIP1。本研究利用二代基因組測序數(shù)據(jù)發(fā)現(xiàn),獅頭鵝群體存在一定程度近交現(xiàn)象,挖掘出與獅頭鵝體重和體尺性狀相關的7個候選基因,可為后續(xù)獅頭鵝群體保種、功能基因研究和分子育種開展提供重要參考。

關鍵詞: 獅頭鵝;群體多樣性;體重體尺性狀;全基因組關聯(lián)分析

中圖分類號:S835.2

文獻標志碼:A 文章編號: 0366-6964(2024)09-3914-11

The Study on Population Genetic Diversity and Genome-wide Association Study of Body

Weight and Size Traits for Lion-head Geese

HUANG" Hongyan1, ZHANG" Liyun1, HUANG" Zhirong1, WU" Zhongping1, ZHANG" Xumeng1,

OUYANG" Hongjia1, CHEN" Junpeng2, LIN" Zhenping2, TIAN" Yunbo1,

LI" Xiujin1*, HUANG" Yunmao1*

(1.Science amp; Technology Innovation Platform of Guangdong Waterfowl Health Breeding,

College of Animal Science amp; Technology, Zhongkai University of Agriculture and

Engineering, Guangzhou 510225," China;

2.Baisha Poultry and

Livestock Origin Research Institute, Shantou 515821," China)

Abstract:" The aim of this study was to investigate the genetic diversity of Lion-head geese and to perform the genome-wide association study of body weight and size traits. In this study, the 111 lion-head geese (20 males and 91 females) were randomly selected. They are two years old and off-season. The phenotypes detection of body weight and size traits and the second-generation genome sequencing (5×) for these geese were performed. SNPs from the sequencing data was called, the genetic diversity indexes was calculated and the association between SNPs and body weight and size traits was performed using the single SNP regression mixed model. The Bonferroni correction was used, i.e., the genome-wide threshold (0.05/a total of SNPs) and the chromosome-wide threshold (0.05/number of SNPs on each chromosome) to define the significant SNPs. The gene annotation was performed based on the 50 kb upstream and downstream of chromosome-wide significant SNPs. By the quality control, a total of 7 577 552 SNPs was obtained for the further analysis. The analysis of genetic diversity found that effective population size, minor allele frequency, polymorphic information content, observed heterozygosity, expected heterozygosity and inbreeding coefficient were 234, 0.25, 0.34, 0.26, 0.34 and 0.22, respectively. A total of 6 164 runs of homozygosity was detected, the high proportion (74.4%) of which ranged from 1.0 Mb to 2.0 Mb. We found 38 chromosome-wide significant SNPs by the association between SNPs and body weight and size traits, and these significant SNPs were involved in 90 genes. Among these genes, D2HDH, THAP4, ESPNL, EPT1,TNPO3, MCF2L and AIP1 were previously reported to affect the growth and development.In this study, by using the second generation genome sequencing data, we found a certain degree of inbreeding phenomenon for the Lion-head geese population and detected 7 candidate genes affecting the body weight and size traits, which can provide important references for the subsequent conservation of the Lion-head geese, the study of gene function and the application of molecular breeding.

Key words: Lion-head goose; population genetic diversity; body weight and size traits; genome-wide association study

*Corresponding authors:HUANG Yunmao, E-mail:huangyunmao@zhku.edu.cn; LI Xiujin,E-mail:lixiujin996@126.com

獅頭鵝是世界體型最大鵝種之一,原產地為廣東饒平縣,中心產區(qū)分布在潮汕地區(qū),其肉質鮮美,是制作潮州名菜—鹵鵝的原材料[1]。獅頭鵝具有體型大、適應性廣、抗病性強和耐粗飼等優(yōu)良生產性能[2]。單核苷酸多態(tài)性(single nucleotide polymorphism,SNP) 是常見的一種分子標記,數(shù)量多,較均勻分布于全基因組,常被用于畜禽群體遺傳多樣性和重要經濟性狀全基因組關聯(lián)分析[3-5]。張順進等[5]基于全基因組測序分析技術,發(fā)現(xiàn)地方品種郟縣紅牛有較為豐富的遺傳變異資源,檢測出影響郟縣紅牛重要經濟性狀的關鍵基因;齊麗娜等[6]基于“京芯一號”SNP芯片技術對新浦東雞群體的種群遺傳多樣性進行分析,發(fā)現(xiàn)新浦東雞公雞群體具有較高的遺傳多樣性,部分個體間親緣關系較近,近交程度較高;馬鈞等[7]通過全基因組重測序技術檢測100頭秦川牛(30頭公牛、70頭母牛)的基因組變異,通過分析群體遺傳多樣性、連續(xù)純合片段分布特征、親緣關系和家系結構等進行基因組信息分析,發(fā)現(xiàn)秦川牛保種群的遺傳多樣性較為豐富,未出現(xiàn)較大程度近交積累;曹宇浩[8]在對地方品種湖羊SNPs與體重性狀進行全基因組關聯(lián)分析中發(fā)現(xiàn)了11個顯著相關的SNPs位點,并首次發(fā)現(xiàn)CNG43和ARHGAP24可作為湖羊體重性狀的候選基因;呂世杰等[9]通過南陽牛SNPs與體重及體尺生長性狀的全基因組關聯(lián)分析,發(fā)現(xiàn)顯著性SNPs位點分布在2、8、11、14、26染色體基因組區(qū)域,篩選得到的11號染色體上8個基因BMP10、IFT172、SDC1、TCF23、TRIM54、RAB1A、VPS54和GDF7與骨生長、肌肉發(fā)育和生長調控有關;姜宏正等[10]研究發(fā)現(xiàn)了20個與儋州雞體尺性狀關聯(lián)的SNPs位點,并篩選到KCNA1、EZH2、TGFBI、LECT2 IL-9、TPK1、FSTL5和AMY2A共8個生長性狀候選基因,為地方雞品種標記輔助選擇提供新的思路[11-14]。

本試驗基于二代基因組測序數(shù)據(jù)分析獅頭鵝群體遺傳多樣性,開展體重體尺性狀的全基因組關聯(lián)分析,挖掘影響獅頭鵝體重體尺性狀的重要分子標記和候選基因,為獅頭鵝保種、生長性能遺傳機制解析和分子標記輔助選擇應用奠定堅實基礎。

1 材料與方法

1.1 試驗材料

本試驗所用獅頭鵝共111只,其中公鵝20只,母鵝91只,均來自汕頭市白沙禽畜原種研究所。所選獅頭鵝均2年齡,處于同一生理狀態(tài)(即休產期),同一環(huán)境條件下,采用統(tǒng)一飼養(yǎng)管理標準。獅頭鵝體重體尺10個指標參考家禽生產性能名詞術語和度量統(tǒng)計方法(NY/T 823—2020)[15]進行測定。體尺性狀包括胸寬、胸深、脛長、骨盆寬、頸圍、頸長、體斜長、龍骨長和脛圍9個指標。胸寬、胸深、脛長和盆骨寬采用游標卡尺測定,頸圍、頸長、體斜長、龍骨長和脛圍采用皮尺進行測定。同時,采集每只鵝翅靜脈血樣3~4 mL,與抗凝劑混勻后送至實驗室-80 ℃冰箱保存。部分血樣(約1 mL)送至深圳華大基因科技有限公司進行二代基因組測序,測序平臺為華大制造DNBseq,測序讀取長度為150 bp,每個樣本平均測序深度約為5×。

1.2 試驗方法

1.2.1 SNP分型對二代基因組測序原始數(shù)據(jù),首先利用軟件SOAPnuke(V1.5.0)進行質控。質控參數(shù)為:-n 0.01-120-q 0.3--adaMR 0.25--ada_trim--polyX 50--minReadLen 150[16-17]。然后,使用BWA (V0.7.17)軟件將質控后數(shù)據(jù)與鴻雁參考基因組(本團隊組裝,尚未發(fā)表)進行比對,并使用SAMTOOLS(V1.9.0)軟件標記重復序列和構建索引,使用GATK(V4.2.3)中的HaplotypeCallar和SelectVariants功能進行變異檢測[18]。

使用Plink(V1.9)軟件對SNP數(shù)據(jù)進行質控,質控標準為:1)保留最小等位基因頻率(minor allele frequency,MAF)gt;0.05的SNPs;2)哈代-溫伯格平衡(Hardy-Weinberg equilibrium, HWE)P值gt;10-6;3)每個樣品的SNPs檢出率大于90%;4)刪除性染色體SNPs位點,最終有111個體和7 577 552個SNPs位點通過質控,用于下一步分析。本試驗使用SnpEff (V5.1.6d)軟件對7 577 552個SNPs進行功能注釋。

1.2.2 群體遺傳多樣性分析

采用SNeP(V1.1)軟件估算歷史有效群體含量(effective population size, Ne)。利用Plink( V1.9.0)軟件計算獅頭鵝群體的最小等位基因頻率(minor allele frequency, MAF)、多態(tài)信息含量(polymorphic information content, PIC)、觀察雜合度(observed heterozygosity, Ho)、期望雜合度(expected heterozygosity, He)、連續(xù)純合片段(runs of homozygosity, ROH)和近交系數(shù)(inbreeding coefficient, F)。通過PopLDdecacy (V3.4.1)分析獅頭鵝群體的連鎖不平衡衰減情況。

1.2.3 體重體尺與全基因組關聯(lián)分析本研究對獅頭鵝體重體尺性狀開展全基因組關聯(lián)分析,模型[19]如下:

y=Xβ+Wq+Zα+e

其中:y為表型值向量;β為固定效應向量(包括性別、PCA的前3個主成分);q為SNP標記效應,α為加性效應向量;e為隨機殘差向量;W為單個SNP位點基因型,編碼為0,1或2;X為連接y與β的關聯(lián)矩陣;Z為連接y與α的關聯(lián)矩陣。假設α~N(0,Gσ2a),其中G是基因組關系矩陣,Gσ2a是加性遺傳方差;e~N(0,IGσ2e),其中I是單位矩陣,Gσ2e是殘差方差。G矩陣按照VanRaden[20](2008)提出第一種方法構建而成。

本試驗使用Plink(V1.90)的LD pruning--indep-pairwise 50 5 0.2 對7 577 552個SNPs進行篩選,獲取325 152獨立SNPs用于全基因關聯(lián)分析,然后利用軟件GEMMA(V0.98)按照模型開展體重體尺性狀的全基因組關聯(lián)分析[21],使用R(V4.3.2)軟件中CMplot程序包繪制Q_Q圖和計算基因組膨脹因子λ值。顯著性SNPs位點通過Bonferroni 校正方法,即全基因組水平閾值(0.05/全基因組SNPs數(shù)目)和染色體水平閾值(0.05/染色體SNPs數(shù)目)確定,因為本研究中發(fā)現(xiàn)的全基因組水平顯著性位點較少,考慮到假陰性的情況,主要選用染色體水平閾值做后續(xù)分析。本試驗通過染色體水平顯著性SNPs位點上、下游50 kb距離的標準篩選候選基因。

2 結 果

2.1 表型數(shù)據(jù)統(tǒng)計

對111只成年獅頭鵝體重和9個體尺指標的表型進行描述統(tǒng)計(表1)。111只獅頭鵝體重范圍為3.98~8.63 kg,平均值為6.11 kg,變異系數(shù)為15.45%。體尺指標的變異系數(shù)范圍為3.99%~8.23%,其中脛長的變異系數(shù)最小3.99%,頸圍的變異系數(shù)最大8.23%。

2.2 二代基因組測序質量

本試驗對111只獅頭鵝進行二代全基因組測序,共獲得約666 Gb高質量的基因組數(shù)據(jù),獲得2 645 394 165條有效讀長,其中平均每個個體獲得reads數(shù)為23 832 379.86 bp,質控后的數(shù)據(jù)大小范圍為5.9~7.3 Gb。Q20(%)范圍為95.88%~98.59%,GC(%)范圍為42.68%~47.06%。

質控合格的7 577 552高質量SNPs在31條常染色體區(qū)域均有分布(圖1),1號染色體具有最多1 379 438個SNPs,31號染色體具有最少的1 241個SNPs。對SNPs位點進行功能注釋,發(fā)現(xiàn)47.18% SNPs位于基因間,36.01%的SNPs位于內含子,1.64%的SNPs位點在編碼區(qū),處于剪切位點受體、剪接位點供體和剪接位點區(qū)域中分布的SNPs位點最少,分別為0.003%、0.004%和0.153%(圖2)。其中,編碼區(qū)有88 192個非同義突變SNPs和110 046個同義突變SNPs,非同義突變/同義突變比例為0.80。

2.3 遺傳多樣性分析

如表2所示,獅頭鵝群體的有效群體含量為234只(13世代以前),最小等位基因頻率為0.25±0.13,多態(tài)信息含量平均為0.34±0.13,觀察雜合度為0.26±0.11,期望雜合度0.34±0.13,個體近交系數(shù)(F)為0.22±0.10。

如表3所示,獅頭鵝群體共檢測出6 164個ROHs,長度在1.0~2.0 Mb之間的ROH數(shù)量最多,為4 583個,占總數(shù)的74.4%;長度大于6 Mb的ROHs數(shù)目為88個,占1.4%。其中,長度最長的ROH位于5號染色體上,為18.86 Mb,而最短的位于3號染色體上,為1.0 Mb。

連鎖不平衡衰減圖展現(xiàn)出獅頭鵝群體基因組LD情況(圖3),在基因組上距離50 kb范圍內的SNPs位點連鎖程度強,而超出50 kb范圍后連鎖程度較弱,即r2lt;0.1。

2.4 體重體尺性狀的全基因組關聯(lián)分析

如表4所示,共計檢出38個染色體水平顯著性SNPs位點,其中包括3個全基因組水平顯著性SNPs位點。對38個染色體水平上顯著性SNPs的功能注釋發(fā)現(xiàn),14個位于基因間區(qū)域,17個位于內含子區(qū)域,7個位于基因上下游區(qū)域。獅頭鵝體重GWAS共篩選到4個染色體水平顯著性 SNPs,涉及到ACKA、T4S1、NEUR4、ESPNL、G3ST2、THAP4、KTHY、ATG4B、D2HDH和CABP8相關基因。Q_Q圖和λ=1.004結果顯示無群體分層現(xiàn)象(圖4)。

基于染色體顯著性SNPs位點,共發(fā)現(xiàn)了90個候選基因,其中,與生長發(fā)育相關的基因有7個,即D2HDH、THAP4、ESPNL、EPT1、TNPO3、MCF2L和AIP1,與神經系統(tǒng)調控相關的基因有9個,即RFT1、CLIP2、CABP8、5HT3A、CLIP2、GPN3、HIP1R、FADS6和HID1,與機體免疫相關的基因有5個,即RFC2、RPF1、RNF14、TIE1和NTAL。

3 討 論

當前,從全基因組水平上評估群體遺傳多樣性已成為主流方向。群體歷史有效含量、多態(tài)信息含量、期望雜合度、觀測雜合度以及最小等位基因頻率是評價群體多樣性的主要參數(shù)。2021年王海龍等[22]利用表型和基因型芯片對2019年北京油雞保種群體進行研究,發(fā)現(xiàn)該保種群有效群體大小從98世代前的595只逐漸降至13世代前的176只,基于ROH評估近交系數(shù)為0.079 8;2017年季華員等[23]報道興國灰鵝群體平均多態(tài)信息含量為0.411 1、平均觀察雜合度為0.384、平均期望雜合度為0.477 5,發(fā)現(xiàn)其遠低于以往報道的其它地方鵝品種的基因雜合度(0.488 0~0.672 7);2023年郭徵力等[24]報道的織金白鵝群體平均多態(tài)信息含量為0.425 1、平均觀察雜合度為0.393 1、平均期望雜合度為0.474 1。本研究中,獅頭鵝群體最小等位基因頻率為0.246、多態(tài)信息含量為0.336、平均觀測雜合度為 0.261、平均期望雜合度為0.336、基于ROH的平均近交系數(shù)為0.223,與前期報道結果相比[25-27],該獅頭鵝群體的遺傳多樣性略低,存在一定程度的近交累積現(xiàn)象。

本試驗通過對獅頭鵝體重、體尺等表型單個性狀進行全基因組關聯(lián)分析,發(fā)現(xiàn)38個SNPs位點與體重體尺表型顯著相關,最后經基因功能注釋,共檢測出90個影響體重體尺性狀表型的候選基因。目前,多次重點報道的影響生長發(fā)育的基因有7個(D2HDH、THAP4、ESPNL、EPT1、TNPO3、MCF2L、AIP1)。D2HDH基因全稱D-2-hydroxyglutarate dehydrogenase,屬于人源FAD結合氧化還原酶/轉移酶4型家族的線粒體酶,可將D-2-羥基戊二酸轉化為2-酮戊二酸。該基因的突變存在于 D-2-羥基戊二酸尿癥中,可導致發(fā)育遲緩、癲癇、肌張力減退和畸形等特征[28-30]。THAP4(THAP domain containing 4,THAP4)是一種蛋白編碼基因,與人類含有THAP結構域同源,參與硝酸鹽和絡氨酸代謝過程,在胚胎早期發(fā)育和視網膜核層中表達,基因功能缺失可導致四肢陣發(fā)性痙攣障礙[31-33]。ESPNL基因全稱Espin-like,是一種肌球蛋白-Ⅲ載體,常與MYO3A和MYO3B基因結合影響胚胎發(fā)育過程中纖毛的形成,纖毛發(fā)育異??蓪е卵鄱澳I臟等多個器官病變發(fā)生[34-36]。EPT1基因又稱為乙醇胺磷酸轉移酶1(ethanolamine phospho transferase 1,EPT1),該基因編碼蛋白可將CDP-乙醇胺催化形成磷脂醇胺,參與線粒體功能的基因下調。2008年Kurz等[37-40]研究發(fā)現(xiàn),EPT1基因可以在不同實驗鼠品系之間的雜交中作為垂體對雌激素反應性的遺傳決定因素,并對小鼠胸腺發(fā)育產生影響。另外,2023年高廣亮等[40]通過GWAS篩選四川白鵝蛋品質相關分子標記,發(fā)現(xiàn)EPT1可能是影響鵝生長發(fā)育潛在功能基因。TNPO3基因又稱轉運蛋白3(transportin-3,TNPO3),將SR剪切因子蛋白從細胞質穿梭到細胞核內,并與SRSF1基因相互作用,進而影響肌肉和衛(wèi)星細胞分化[41-44]。MCF2L基因(Mcf.2transforming sequence-like,MCF2L)是一種MCF2L基因中的變體R11L突變將會影響機體骨骼滑膜成纖維細胞發(fā)生明顯凋亡,可導致滑膜組織發(fā)生病變及功能衰退,是骨關節(jié)炎癥的誘因之一[45-46]。AIP1基因(Apoptosis signal-regulating kinase 1-interacting protein 1,AIP1)參與線粒體膜蛋白或線粒體內部蛋白質相互作用,進而影響炎癥性新生血管形成[47-49]。

4 結 論

本試驗基于二代全基因組測序數(shù)據(jù)的SNPs標記信息分析獅頭鵝群體遺傳多樣性,發(fā)現(xiàn)獅頭鵝群體存在一定程度近交累積現(xiàn)象。通過全基因組SNPs和體重體尺性狀間全基因組關聯(lián)分析,篩選出影響獅頭鵝體重體尺性狀的90個基因,其中7個已多次被報道與畜禽生長發(fā)育有關,值得后續(xù)開展基因功能研究。

參考文獻(References):

[1] 郭精奇.饒平獅頭鵝美譽傳四方[J].源流,2022(8):40-41.

GUO J Q.Raoping lion-head geese’s good reputation spreads across the world[J].Origins,2022(8):40-41.(in Chinese)

[2] 劉思揚,劉秋翔.饒平獅頭鵝[J].廣東畜牧獸醫(yī)科技,2019,44(6):10-13.

LIU S Y,LIU Q X.Lion-head goose from Raoping[J].Guangdong Journal of Animal and Veterinary Science,2019,44(6): 10-13.(in Chinese)

[3] 李國治,鄧衛(wèi)東.基因組測序技術及其應用研究進展[J].安徽農業(yè)科學,2018,46(22):20-22,25.

LI G Z,DENG W D.Research progress and application of genome sequencing technology[J].Journal of Anhui Agricultural Sciences,2018,46(22):20-22,25.(in Chinese)

[4] 范廣軒,王洪亮,邢秀梅.SNP標記的研究進展及其應用[J/OL].特產研究,2023,doi:10.16720/j.cnki.tcyj.2023.209.

FAN G X,WANG H L,XING X M.Advances in SNP marker research and its applications[J/OL].Special Wild Economic Animal and Plant Research,2023,doi:10.16720/j.cnki.tcyj.2023.209.(in Chinese)

[5] 張順進,張花菊,王紅利,等.郟縣紅牛全基因組測序分析及關鍵基因SNP分子標記在育種的應用研究[J].中國牛業(yè)科學,2021,47(5):5-8.

ZHANG S J,ZHANG H J,WANG H L,et al.Whole genome sequencing analysis and application of key gene SNP molecular markers in Jiaxian red cattle breeding[J].China Cattle Science,2021,47(5):5-8.(in Chinese)

[6] 齊麗娜,陸雪林,楊凱旋,等.基于SNP芯片分析新浦東雞的遺傳多樣性和遺傳結構[J].畜牧獸醫(yī)學報,2023,54(12):4962-4971.

QI L N,LU X L,YANG K X,et al.Analysis of genetic diversity and genetic structure of New Pudong chicken based on SNP chips[J].Acta Veterinaria et Zootechnica Sinica,2023,54(12):4962-4971.(in Chinese)

[7] 馬 鈞,樊安平,王武生,等.全基因組重測序解析秦川牛保種群遺傳多樣性和遺傳結構[J].遺傳,2023,45(7):602-616.

MA J,F(xiàn)AN A P,WANG W S,et al.Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing[J].Hereditas (Beijing),2023,45(7):602-616.(in Chinese)

[8] 曹宇浩.湖羊體重性狀GWAS分析與相關SNPs驗證及快速檢測方法的研究[D].南京:南京農業(yè)大學,2020.

CAO Y H.Genome-wide association study of body weights in Hu sheep and related SNPs validation and rapid detection methods[D].Nanjing:Nanjing Agricultural University,2020.(in Chinese)

[9] 呂世杰,陳付英,張子敬,等.南陽牛生長性狀相關基因組區(qū)域全基因組關聯(lián)分析[J].中國畜牧獸醫(yī),2020,47(1):74-82.

LV S J,CHEN F Y,ZHANG Z J,et al.Genomic regions associated with growth traits in Nanyang cattle using genome-wide association analysis[J].China Animal Husbandry amp; Veterinary Medicine,2020,47(1):74-82.(in Chinese)

[10] 姜宏正,荀文娟,侯冠彧,等.家禽重要性狀全基因組關聯(lián)分析研究進展[J].黑龍江畜牧獸醫(yī),2022(11):32-38.

JIANG H Z,XUN W J,HOU G Y,et al.Research progress of genome-wide association analysis of important traits in poultry[J].Heilongjiang Animal Science and Veterinary Medicine,2022(11):32-38.(in Chinese)

[11] 黎旺長,劉瑋瑋,龍佳佳,等.基于基因組重測序的廣西地方豬種遺傳多樣性和選擇信號分析[J].南方農業(yè)學報,2023, 54(8):2415-2422.

LI W C,LIU W W,LONG J J,et al.Genetic diversity and selection signals analysis of Guangxi local pig breeds based on whole-genome resequencing[J].Journal of Southern Agriculture,2023,54(8):2415-2422.(in Chinese)

[12] 田帥帥,鐘梓奇,倪世恒,等.基于全基因組重測序數(shù)據(jù)對文昌雞不同保種群保種現(xiàn)狀的分析[J].黑龍江畜牧獸醫(yī),2023(13):51-54,62,134.

TIAN S S,ZHONG Z Q,NI S H,et al.Analysis of the conservation status of different conservancies of Wenchang chickens based on whole genome resequencing data[J].Heilongjiang Animal Science and Veterinary Medicine,2023(13): 51-54,62, 134.(in Chinese)

[13] 蔣烈戈,彭 健,代 蓉,等.基于基因組SNP信息分析新疆夏洛萊牛群體的遺傳結構和遺傳背景初報[J].草食家畜, 2023(1):9-15.

JIANG L G,PENG J,DAI R,et al.Analysis of genetic structure and background of Xinjiang Charolais based on genomic SNP information[J].Grass-Feeding Livestock,2023(1):9-15.(in Chinese)

[14] 高超群,曹然然,杜文蘋,等.基于全基因組SNP標記分析中國地方雞品種的遺傳多樣性和種群結構[J].畜牧獸醫(yī)學報,2023,54(2):554-562.

GAO C Q,CAO R R,DU W P,et al.Genetic diversity and population structure analysis of Chinese native chicken breeds using genome-wide SNPs[J].Acta Veterinaria et Zootechnica Sinica,2023,54(2):554-562.(in Chinese)

[15] 中華人民共和國農業(yè)農村部.NY/T 823—2020 家禽生產性能名詞術語和度量計算方法[S].北京:中國農業(yè)出版社,2020.

Ministry of Agriculture and Rural Affairs of the People’s Republic of China.NY/T 823—2020 Performance terminology and measurements for poultry[S].Beijing:China Agriculture Press,2020.(in Chinese)

[16] SONG H,CHU J Y,LI W J,et al.A novel approach utilizing domain adversarial neural networks for the detection and classification of selective sweeps[J].Adv Sci (Weinh),2024,11(14):2304842.

[17] ZHANG K L,LIANG J T,F(xiàn)U Y H,et al.AGIDB:a versatile database for genotype imputation and variant decoding across species[J].Nucleic Acids Res,2024,52(D1):D835-D849.

[18] D AZ-MATUS DE LA PARRA M,INOSTROZA K,ALCALDE J A,et al.Characterization of the genetic diversity,structure,and admixture of 7 Chilean chicken breeds[J].Poult Sci,2024,103(2):103238.

[19] VISSCHER P M,WRAY N R,ZHANG Q,et al.10 Years of GWAS discovery:biology,function,and translation[J].Am J Hum Genet,2017,101(1):5-22.

[20] VANRADEN P M.Efficient methods to compute genomic predictions[J].J Dairy Sci,2008,91(11):4414-4423.

[21] ZHAO Q Q,LIN Z P,CHEN J P,et al.Chromosome-level genome assembly of goose provides insight into the adaptation and growth of local goose breeds[J].GigaScience,2022,12:giad003.

[22] 王海龍,王 巧,邢思遠,等.基于表型和基因組信息評價北京油雞保種群保種情況[J].畜牧獸醫(yī)學報,2021,52(9):2406-2415.

WANG H L,WANG Q,XING S Y,et al.Evaluating Beijing you chickens conservation status by phenotype and genome information[J].Acta Veterinaria et Zootechnica Sinica,2021,52(9):2406-2415.(in Chinese)

[23] 季華員,黃江南,李海琴,等.興國灰鵝微衛(wèi)星標記的遺傳多樣性分析[J].畜牧與獸醫(yī),2017,49(8):6-9.

JI H Y,HUANG J N,LI H Q,et al.Genetic diversity analysis of Xingguo gray goose based on microsatellite markers[J].Animal Husbandry amp; Veterinary Medicine,2017,49(8):6-9.(in Chinese)

[24] 郭徵力,趙中龍,楊 紅,等.織金白鵝微衛(wèi)星標記遺傳多樣性及其與體尺指標的關聯(lián)分析[J].農業(yè)生物技術學報,2023, 31(11):2341-2357.

GUO Z L,ZHAO Z L,YANG H,et al.Genetic diversity of microsatellite markers in Zhijin white geese (Anser cygnoides orientalis) and its association analysis with body size indexes[J].Journal of Agricultural Biotechnology,2023, 31(11): 2341-2357.(in Chinese)

[25] 劉繼強,郝曉東,武麗娜,等.全基因組SNP分型技術在畜禽遺傳育種研究中的應用[J].畜牧獸醫(yī)學報,2022,53(12):4123-4137.

LIU J Q,HAO X D,WU L N,et al.Application of whole genome SNP genotyping technology in livestock and poultry genetics and breeding[J].Acta Veterinaria et Zootechnica Sinica,2022,53(12):4123-4137.(in Chinese)

[26] 宋玉樸,孫永峰,馮自強,等.SNP分型檢測技術及其在畜禽遺傳和育種中的應用研究進展[J].中國畜牧雜志,2021,57(7):37-42.

SONG Y P,SUN Y F,F(xiàn)ENG Z Q,et al.Advances in SNP typing techniques and their application in genetic and breeding of livestock and poultry[J].Chinese Journal of Animal Science,2021,57(7):37-42.(in Chinese)

[27] 胡紫平,王立剛,宗文成,等.基于基因組SNP和ROH的劍白香豬群體遺傳結構解析[J].畜牧獸醫(yī)學報,2023,54(10):4117-4125.

HU Z P,WANG L G,ZONG W C,et al.Genetic structure analysis of Jianbai Xiang pig population based on genomic SNP and ROH[J].Acta Veterinaria et Zootechnica Sinica,2023,54(10):4117-4125.(in Chinese)

[28] PHILLIPS E,SASARMAN F,SINASAC D S,et al.D-2-hydroxyglutaric aciduria in a patient with speech delay due to a novel homozygous deletion in the D2HGDH gene[J].Mol Genet Metab Rep,2019,20:100482.

[29] YANG J,ZHU H W,ZHANG T L,et al.Structure,substrate specificity,and catalytic mechanism of human D-2-HGDH and insights into pathogenicity of disease-associated mutations[J].Cell Discov,2021,7(1):3.

[30] DE GOEDE K E,HARBER K J,GORKI F S,et al.D-2-Hydroxyglutarate is an anti-inflammatory immunometabolite that accumulates in macrophages after TLR4 activation[J].Biochim Biophys Acta Mol Basis Dis,2022,1868(9):166427.

[31] GERVAIS V,CAMPAGNE S,DURAND J,et al.NMR studies of a new family of DNA binding proteins:the THAP proteins[J].J Biomol NMR,2013,56(1):3-15.

[32] RICHTER A,HOLLSTEIN R,HEBERT E,et al.In-depth characterization of the homodimerization domain of the transcription factor THAP1 and dystonia-causing mutations therein[J].J Mol Neurosci,2017,62(1):11-16.

[33] SANGHAVI H M,MALLAJOSYULA S S,MAJUMDAR S.Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region[J].BMC Struct Biol,2019,19(1):4.

[34] SALLES F T,MERRITT R C JR,MANOR U,et al.Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments[J].Nat Cell Biol,2009,11(4):443-450.

[35] MERRITT R C,MANOR U,SALLES F T,et al.Myosin IIIB uses an actin-binding motif in its espin-1 cargo to reach the tips of actin protrusions[J].Curr Biol,2012,22(4):320-325.

[36] EBRAHIM S,AVENARIUS M R,GRATI M,et al.Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like[J].Nat Commun,2016,7:10833.

[37] KURZ S G,HANSEN K K,MCLAUGHLIN M T,et al.Tissue-specific actions of the Ept1,Ept2,Ept6,and Ept9 genetic" determinants of responsiveness to estrogens in the female rat[J].Endocrinology,2008,149(8):3850-3859.

[38] AHMED M Y,AL-KHAYAT A,AL-MURSHEDI F,et al.A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy" pathway phospholipid biosynthesis[J].Brain,2017,140(3):547-554.

[39] CHEN Y L,JIANG H G,ZHAN Z K,et al.Restoration of lipid homeostasis between TG and PE by the LXRα-ATGL/EPT1 axis ameliorates hepatosteatosis[J].Cell Death Dis,2023,14(2):85.

[40] 高廣亮,張克山,趙獻芝,等.全基因組關聯(lián)分析篩選鵝蛋品質相關分子標記[J].中國農業(yè)科學,2023,56(19):3894-3904.

GAO G L,ZHANG K S,ZHAO X Z,et al.Identification of molecular markers associated with goose egg quality through genome-wide association analysis[J].Scientia Agricultura Sinica,2023,56(19):3894-3904.(in Chinese)

[41] BAYER M,BOLLER S,RAMAMOOTHY S,et al.Tnpo3 enables EBF1 function in conditions of antagonistic Notch signaling[J]. Genes Dev,2022,36(15-16):901-915.

[42] COSTA R,RODIA M T,PACILIO S,et al.LGMD D2 TNPO3-related:from clinical spectrum to pathogenetic mechanism[J].Front Neurol,2022,13:840683.

[43] POYATOS-GARC A J,BL ZQUEZ-BERNAL ",SELVA-GIM NEZ M,et al.CRISPR-Cas9 editing of a TNPO3 mutation in a muscle cell model of limb-girdle muscular dystrophy type D2[J].Mol Ther Nucleic Acids,2023,31:324-338.

[44] COSTA R,RODIA M T,ZINI N,et al.Morphological study of TNPO3 and SRSF1 interaction during myogenesis by combining confocal,structured illumination and electron microscopy analysis[J].Mol Cell Biochem,2021,476(4):1797-1811.

[45] DAY-WILLIAMS A G,SOUTHAM L,PANOUTSOPOULOU K,et al.A variant in MCF2L is associated with osteoarthritis[J].Am J Hum Genet,2011,89(3):446-450.

[46] 許永權,張金山,施純南,等.骨性關節(jié)炎相關基因MCF2L可增加滑膜成纖維細胞凋亡及誘導炎癥反應[J].基因組學與應用生物學, 2017,36(6):2137-2142.

XU Y Q,ZHANG J S,SHI C N,et al.Osteoarthritis related genes MCF2L could increase apoptosis of synovial fibroblastsand induce inflammatory response[J].Genomics and Applied Biology,2017,36(6):2137-2142.(in Chinese)

[47] YANG L,LI Y Y,LING X X,et al.A common genetic variant (97906Cgt;A) of DAB2IP/AIP1 is associated with an increased risk and early onset of lung cancer in Chinese males[J].PLoS One,2011,6(10):e26944.

[48] LI Z,LI L,ZHANG H F,et al.Short AIP1 (ASK1-interacting protein-1) isoform localizes to the mitochondria and promotes vascular dysfunction[J].Arterioscler Thromb Vasc Biol,2020,40(1):112-127.

[49] LI Q Y,HUA X,LI L P,et al.AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model[J].Cell Commun Signal,2022,20(1):59.

(編輯 郭云雁)

元阳县| 富源县| 襄垣县| 德化县| 会同县| 六安市| 乌审旗| 体育| 乌鲁木齐市| 托克托县| 嘉义市| 武冈市| 隆尧县| 阳信县| 陆河县| 思茅市| 阿图什市| 芜湖市| 德格县| 昆山市| 抚州市| 邻水| 临桂县| 长寿区| 谢通门县| 平谷区| 邢台县| 攀枝花市| 武穴市| 阿鲁科尔沁旗| 神池县| 竹北市| 保靖县| 景东| 乐至县| 浦城县| 宜君县| 崇文区| 扎兰屯市| 汕头市| 兴义市|