[摘要]目的探討不同時間急性束縛應(yīng)激(ARS)對雄性CD1小鼠運(yùn)動、焦慮及抑郁樣行為的影響。方法將8周齡CD1雄性小鼠隨機(jī)分為對照組、ARS 0.5 h組、ARS 1.0 h組、ARS 2.0 h組和ARS 4.0 h組,每組10只。造模后分別進(jìn)行糖水偏好實(shí)驗(yàn)、曠場實(shí)驗(yàn)和高架十字迷宮實(shí)驗(yàn)。結(jié)果糖水偏好實(shí)驗(yàn)結(jié)果顯示,與對照組相比,ARS各組小鼠蔗糖偏好百分比無明顯差異。曠場實(shí)驗(yàn)結(jié)果顯示,與對照組相比,ARS各組小鼠總移動距離和運(yùn)動速度無明顯差異。高架十字迷宮實(shí)驗(yàn)結(jié)果顯示,與對照組相比,ARS 0.5 h組、ARS 1.0 h組和ARS 2.0 h組小鼠進(jìn)入開放臂的次數(shù)顯著減少(q=4.483~6.150,P<0.01),在開放臂中停留時間明顯減少(q=3.607~4.665,P<0.05);ARS 4.0 h組小鼠進(jìn)入到開放臂中的時間和次數(shù)與對照組相比無明顯差異。結(jié)論不同時間ARS不影響CD1小鼠的抑郁樣行為及運(yùn)動能力,但ARS 0.5、1.0和2.0 h能誘導(dǎo)CD1小鼠產(chǎn)生焦慮樣行為。
[關(guān)鍵詞]急性束縛應(yīng)激;心理困擾;焦慮;移動;抑郁;小鼠,近交ICR
[中圖分類號]R395.6;R749.72
[文獻(xiàn)標(biāo)志碼]A
[文章編號]2096-5532(2024)04-0483-04doi:10.11712/jms.2096-5532.2024.60.080
[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240625.1037.001;2024-06-2616:34:54Influence of different durations of acute restraint stress on the motor ability and emotion of male CD1 mice
WANG Xiaoya, PAN Xuening, XU Xufeng, XIE Junxia, XU Huamin
(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China); [Abstract]ObjectiveTo investigate the influence of different durations of acute restraint stress (ARS) on motor ability, anxiety, and depression-like behavior in male CD1 mice.
MethodsMale CD1 mice aged 8 weeks were randomly divided into control group, 0.5 h ARS group, 1.0 h ARS group, 2.0 h ARS group, and 4.0 h ARS group, with 10 mice in each group, and the sucrose preference test, the open field test, and the elevated plus maze test were performed after modeling. ResultsThe sucrose preference test showed that there was no significant difference in the percentage of sucrose preference between the ARS groups and the control group. The open field test showed that there were no significant differences in total movement distance and movement speed between the ARS groups and the control group. The elevated plus maze testshowed that compared with the control group, the 0.5 h ARS group, the 1.0 h ARS group, and the 2.0 h ARS group had significant reductions in the number of times of entering the open arm (q=4.483-6.150,P<0.01) and the time spent in the open arm (q=3.607-4.665,P<0.05), while there were no significant differences in these two indicators between the 4.0 h ARS group and the control group.
ConclusionDifferent durations of ARS do not affect the depression-like behavior and motor ability of CD1 mice, but ARS for 0.5, 1.0, and 2.0 h can induce anxiety-like behavior in CD1 mice.
[Key words]acute restraint stress; psychological distress; anxiety; locomotion; depression; mice, inbred ICR
當(dāng)應(yīng)激發(fā)生時,機(jī)體通常會做出許多不同的應(yīng)激反應(yīng)使個體從生理和心理上來應(yīng)對應(yīng)激事件[1],如情緒、認(rèn)知和行為的改變[2-4]。束縛應(yīng)激作為一種廣泛應(yīng)用的動物應(yīng)激模型,能夠精準(zhǔn)地反映人類生活中的“發(fā)展限制”狀態(tài),因此被視為一種良好的低刺激性應(yīng)激模型[5-6]。根據(jù)束縛時間長短和次數(shù),束縛應(yīng)激分為急性束縛應(yīng)激(ARS)和慢性束縛應(yīng)激(CRS)。目前的研究結(jié)果表明,ARS對實(shí)驗(yàn)鼠的影響隨其時間不同以及實(shí)驗(yàn)鼠的品種和性別的不同而不同[7-10]。而不同時間ARS對雄性CD1小鼠的情緒和運(yùn)動功能的影響尚不清楚。因此,本研究利用糖水偏好實(shí)驗(yàn)、曠場實(shí)驗(yàn)和高架十字迷宮實(shí)驗(yàn),探討了不同時間ARS對雄性CD1小鼠相關(guān)行為學(xué)指標(biāo)影響,以期為ARS誘導(dǎo)的CD1雄鼠模型提供有效的干預(yù)手段,進(jìn)而為深入研究應(yīng)激的生物學(xué)機(jī)制奠定堅(jiān)實(shí)基礎(chǔ)。
1材料和方法
1.1實(shí)驗(yàn)材料
1.1.1動物來源及其飼養(yǎng)實(shí)驗(yàn)動物選擇8周齡
SPF級雄性CD1(ICR)小鼠,購于北京維通利華實(shí)驗(yàn)動物有限公司。按照文獻(xiàn)方法[11]飼養(yǎng)小鼠。
1.1.2主要試劑和儀器蔗糖購于國藥集團(tuán)化學(xué)試劑有限公司。45 cm×45 cm×45 cm大小不透明測試盒、高出水平面50 cm的十字形迷宮裝置(內(nèi)部結(jié)構(gòu)包括兩個開放臂(大小30 cm×9 cm)和兩個閉合臂(大小30 cm×9 cm×15 cm))購于北京吉安得爾科技有限公司。攝像機(jī)購于深圳市林柏視科技有限公司。
1.2實(shí)驗(yàn)方法
1.2.1動物分組及ARS將小鼠隨機(jī)分為對照組(A組)和ARS模型 0.5 h組(B組)、1.0 h組(C組)、2.0 h組(D組)及 4.0 h組(E組),每組10只小鼠(實(shí)驗(yàn)中死亡者剔除)。對照組小鼠不做處理。B~E組:將小鼠分別置于小鼠固定器中0.5、1.0、2.0和4.0 h,完成對小鼠的ARS。
1.2.2糖水偏好實(shí)驗(yàn)每組小鼠先進(jìn)行蔗糖飲水訓(xùn)練。第1天和第2天兩側(cè)水瓶中為飲用水;第3天和第4天將兩側(cè)水瓶中的飲用水換成10 g/L的蔗糖溶液;第5天一側(cè)水瓶中為飲用水,另一側(cè)為10 g/L蔗糖溶液;第6天更換飲用水和10 g/L蔗糖溶液水瓶的位置;第7天斷水1 d;第8天進(jìn)行ARS造模。ARS后根據(jù)文獻(xiàn)方法[12]檢測小鼠1 h內(nèi)的蔗糖偏好百分比,并以其評估小鼠抑郁核心癥狀快感缺失的程度。
1.2.3曠場實(shí)驗(yàn)糖水偏好測試后30 min,按文獻(xiàn)方法[11]對小鼠進(jìn)行曠場實(shí)驗(yàn),對小鼠總移動距離和運(yùn)動速度進(jìn)行分析,全面評估其運(yùn)動能力。
1.2.4高架十字迷宮實(shí)驗(yàn)按照文獻(xiàn)方法[8]對小鼠進(jìn)行高架十字迷宮實(shí)驗(yàn),通過分析小鼠進(jìn)出開放臂的頻率以及在開放臂停留的時間百分比來評估其焦慮程度。
1.3統(tǒng)計(jì)學(xué)分析
應(yīng)用Graph Pad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。實(shí)驗(yàn)結(jié)果計(jì)量資料數(shù)據(jù)以±s表示,多組間均數(shù)比較采用單因素方差分析(One way ANOVA)檢驗(yàn),并繼以Newman-keuls法進(jìn)行組間兩兩比較。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
糖水偏好實(shí)驗(yàn)結(jié)果顯示,與A組小鼠相比,B、C、D和E組小鼠蔗糖偏好百分比差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。曠場實(shí)驗(yàn)結(jié)果顯示,與A組小鼠相比較,B、C、D和E組小鼠總移動距離和運(yùn)動速度差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。高架十字迷宮實(shí)驗(yàn)結(jié)果顯示,與A組相比較,B、C和D組小鼠進(jìn)入開放臂的次數(shù)明顯降低,差異具有統(tǒng)計(jì)學(xué)意義(q=4.483~6.150,P<0.01),在開放臂停留時間明顯縮短,差異具有統(tǒng)計(jì)學(xué)意義(q=3.607~4.665,P<0.05);而E組小鼠與A組相比較,無論是進(jìn)入開放臂次數(shù)還是開放臂停留時間,差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表1。
3討論
內(nèi)穩(wěn)態(tài)是指生物控制自身的體內(nèi)環(huán)境使其保持相對穩(wěn)定,內(nèi)穩(wěn)態(tài)會隨時被內(nèi)部或外界刺激所擾亂,這種刺激稱為應(yīng)激源[13-16]。個體面對應(yīng)激源時能夠激活交感神經(jīng)系統(tǒng),進(jìn)而做出適當(dāng)?shù)男袨檩敵鯷17]。應(yīng)激源引發(fā)的機(jī)體適應(yīng)性反應(yīng)被稱為應(yīng)激反應(yīng),應(yīng)激反應(yīng)的影響因素有很多,比如遺傳因素和環(huán)境因素[18]。當(dāng)應(yīng)激發(fā)生時,機(jī)體通常會做出許多不同的應(yīng)激反應(yīng)使個體從生理和心理上來應(yīng)對這些應(yīng)激事件[1],其中包括自主神經(jīng)系統(tǒng)[19]和內(nèi)分泌系統(tǒng)以及免疫系統(tǒng)的激活[20-21]、情緒以及認(rèn)知和行為的改變等[2-4]。在應(yīng)激強(qiáng)度和方式超出機(jī)體平衡范疇時就會出現(xiàn)創(chuàng)傷后遺癥、精神失常、焦慮障礙、抑郁癥等精神類疾病[22]。動物急性應(yīng)激模型有很多種,包括電擊、空瓶刺激、強(qiáng)迫游泳、束縛應(yīng)激、寒冷、次聲和社交挫敗等[23-28],其中束縛應(yīng)激作為一種非損傷性刺激,能夠很好地模擬人類身心疾病的過程,是一種很常用的應(yīng)激模型[5-6]。
目前的研究已表明,ARS對實(shí)驗(yàn)鼠的行為影響隨其時間、實(shí)驗(yàn)鼠品種和性別的不同而不同,如同為2 h的ARS在C57BL/6J雄鼠中能使其產(chǎn)生明顯的焦慮樣行為,但不能影響其運(yùn)動能力[8];能使雌性棕色田鼠焦慮,不能使其抑郁;能使雄性棕色田鼠抑郁,而不能使其焦慮[9]。在雌性ICR小鼠中,12 h的ARS能提高其運(yùn)動水平,使其產(chǎn)生煩躁情緒[10]。在雄性ICR小鼠中,ARS 1 h能顯著損害小鼠在新穎物體識別測試中的記憶提取而不能影響其運(yùn)動能力[29]。在雄性Swiss小鼠中,4 h的ARS能使其產(chǎn)生抑郁樣行為[7]。ARS對不同種類小鼠的不同影響反映了不同種類小鼠在適應(yīng)環(huán)境、抵御應(yīng)激以及應(yīng)對挑戰(zhàn)方面的差異性,通過比較不同品種小鼠在ARS下行為學(xué)功能變化,可以發(fā)現(xiàn)哪些因素在應(yīng)激反應(yīng)中起關(guān)鍵作用,從而為揭示應(yīng)激的生物學(xué)機(jī)制提供線索。CD1雄性小鼠與其他小鼠相比,最突出的特征在于其具有高度奮發(fā)性以及對環(huán)境適應(yīng)強(qiáng)的特點(diǎn)。然而,ARS不同時間對雄性CD1小鼠的運(yùn)動和情緒的影響,以及影響是否隨時間的變化而變化,目前研究較少。因此,探究不同時間ARS對雄性CD1小鼠的影響可以為急性應(yīng)激誘導(dǎo)小鼠模型提供新的策略。
蔗糖偏好實(shí)驗(yàn)用于評估小鼠的動機(jī)、快感不足以及相關(guān)的情緒狀態(tài),而快感缺失可作為抑郁樣行為的一個評估指標(biāo)[30];曠場實(shí)驗(yàn)是評估動物運(yùn)動行為的有效方法[31];高架十字迷宮實(shí)驗(yàn)?zāi)軌蛟u估小鼠的焦慮樣行為[32]。本研究設(shè)計(jì)雄性CD1小鼠建立時間梯度(0.5、1.0、2.0和4.0 h)的ARS模型,探究不同時間ARS對小鼠相關(guān)行為學(xué)指標(biāo)的影響。結(jié)果顯示,與對照組小鼠相比,ARS各組小鼠的蔗糖偏好百分比無明顯差異,提示不同時間ARS不會使小鼠產(chǎn)生抑郁樣行為。在曠場實(shí)驗(yàn)中,與對照組小鼠相比,ARS各組小鼠的總移動距離和運(yùn)動速度均無明顯差異,提示不同時間ARS不能影響小鼠的運(yùn)動能力。在高架十字迷宮實(shí)驗(yàn)中,與對照組小鼠相比,B、C和D組小鼠進(jìn)入開放臂次數(shù)及停留時間明顯減少,而E組小鼠進(jìn)入開放臂次數(shù)及停留時間無明顯差異,提示0.5、1.0、和2.0 h的ARS能使小鼠產(chǎn)生明顯的焦慮樣行為。產(chǎn)生這種結(jié)果的原因可能是CD1雄鼠對應(yīng)激反應(yīng)有一定的適應(yīng)性,在短期ARS(0.5、1.0和2.0 h)時,CD1雄鼠沒有足夠的時間去適應(yīng)這種突如其來的應(yīng)激情景從而表現(xiàn)出明顯的焦慮樣行為;當(dāng)ARS延長至4.0 h,CD1雄鼠可能通過一系列的生理和心理調(diào)整,逐漸適應(yīng)了這種應(yīng)激狀態(tài),因此不會產(chǎn)生焦慮樣行為。至于不同時間ARS不影響CD1雄鼠抑郁行為及運(yùn)動能力,一方面可能是基于CD1雄鼠本身與其他種類小鼠的差異性;另一方面可能是ARS作為一種急性應(yīng)激,其持續(xù)時間尚不足以引發(fā)抑郁樣行為或顯著影響運(yùn)動能力。雖然抑郁和焦慮都屬于情緒障礙,但它們的生理機(jī)制和病理生理過程有所不同,需要不同類型或更長時間的應(yīng)激才能誘發(fā)抑郁樣行為[33]。
綜上所述,不同時間的ARS不能影響CD1雄鼠的運(yùn)動能力及抑郁樣行為,而0.5、1.0、和2.0 h的ARS能使CD1雄鼠產(chǎn)生明顯的焦慮樣行為。本研究的不足之處在于僅探討了ARS對雄性CD1小鼠行為學(xué)表現(xiàn)的影響,而未深入探討其生理機(jī)制。未來的研究可以進(jìn)一步探討ARS對CD1雄鼠神經(jīng)遞質(zhì)、內(nèi)分泌、免疫系統(tǒng)等的影響,以更加全面地了解ARS的作用機(jī)制??傊?,本實(shí)驗(yàn)結(jié)果為后續(xù)深入研究ARS誘導(dǎo)的焦慮所涉及神經(jīng)環(huán)路及作用機(jī)制提供了重要的實(shí)驗(yàn)依據(jù),并為雄性CD1小鼠急性應(yīng)激誘導(dǎo)焦慮模型提供了有效的實(shí)驗(yàn)方案。
[參考文獻(xiàn)]
[1]GOLD P W, CHROUSOS G P. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states[J]. Molecular Psychiatry, 2002,7(3):254-275.
[2]SANDI C. Stress and cognition[J]. Wiley Interdisciplinary Reviews Cognitive Science, 2013,4(3):245-261.
[3]SCHOLEY A, GIBBS A, NEALE C, et al. Anti-stress effects of lemon balm-containing foods[J]. Nutrients, 2014,6(11):4805-4821.
[4]JOCA S R L, FERREIRA F R, GUIMARES F S. Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems[J]. Stress, 2007,10(3):227-249.
[5]SEEWOO B J, CHUA E G, ARENA-FOSTER Y, et al. Changes in the rodent gut microbiome following chronic restraint stress and low-intensity rTMS[J]. Neurobiology of Stress, 2022,17:100430.
[6]HOWLAND J G, CAZAKOFF B N. Effects of acute stress and GluN2B-containing NMDA receptor antagonism on object and object-place recognition memory[J]. Neurobiology of Learning and Memory, 2010,93(2):261-267.
[7]DE OLIVEIRA R L, VOSS G T, DA C RODRIGUES K, et al. Prospecting for a quinoline containing selenium for comorbidities depression and memory impairment induced by restric- tion stress in mice[J]. Psychopharmacology, 2022,239(1):59-81.
[8]LIU W Z, HUANG S H, WANG Y, et al. Medial prefrontal cortex input to basolateral amygdala controls acute stress-induced short-term anxiety-like behavior in mice[J]. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 2023,48(5):734-744.
[9]史曉洋. 淺析同胞陪伴對焦慮抑郁的緩沖作用[J]. 智慧健康, 2021,7(18):100-102.
[10]周科成,佳娜提,吳黃輝,等. 急、慢性束縛應(yīng)激對小鼠情緒和學(xué)習(xí)記憶能力的不同影響[J]. 神經(jīng)解剖學(xué)雜志, 2013,29(2):145-148.
[11]張騰元,商曉鈺,謝俊霞,等. CB1R拮抗劑對MPTP誘導(dǎo)PD小鼠運(yùn)動行為影響[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2023,59(3):357-360.
[12]MARKOV D D. Sucrose preference test as a measure of anhedonic behavior in a chronic unpredictable mild stress model of depression: outstanding issues[J]. Brain Sciences, 2022,12(10):1287.
[13]BILLMAN G E. Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology[J]. Frontiers in Physiology, 2020,11:200.
[14]EL-SAMAD H. Biological feedback control-Respect the loops[J]. Cell Systems, 2021,12(6):477-487.
[15]AGORASTOS A, CHROUSOS G P. The neuroendocrinology of stress: the stress-related continuum of chronic disease development[J]. Molecular Psychiatry, 2022,27:502-513.
[16]MUKHOPADHYAY K. Adaptation of exercise induced stress through scientific recovery techniques: a narrative review[J/OL]. Journal of Innovation and Technology in Human Kine-
tics, 2023,1(1):16-27. https://www.turkishkinesiology.com/index.php/jithk/article/view/88.
[17]LE M M. Historical approach and evolution of the stress concept: a personal account[J]. Psychoneuroendocrinology, 2007,32(Suppl 1):S3-S9.
[18]VASSILATIS D K, HOHMANN J G, ZENG H K, et al. The G protein-coupled receptor repertoires of human and mouse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(8):4903-4908.
[19]MUELLER B, FIGUEROA A, ROBINSON-PAPP J. Structural and functional connections between the autonomic ner-
vous system, hypothalamic-pituitary-adrenal axis, and the immune system: a context and time dependent stress response network[J]. Neurological Sciences: Official Journal of the Ita-
lian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2022,43(2):951-960.
[20]CARRASCO G A, VAN DE KAR L D. Neuroendocrine pharmacology of stress[J]. European Journal of Pharmacology, 2003,463(1-3):235-272.
[21]ZEFFERINO R, DI GIOIA S, CONESE M. Molecular links between endocrine, nervous and immune system during chro-
nic stress[J]. Brain and Behavior, 2021,11(2):e01960.
[22]HOLSBOER F, ISING M. Stress hormone regulation: biolo-
gical role and translation into therapy[J]. Annual Review of Psychology, 2010,61:81-109, C1-11.
[23]NUMA C, NAGAI H, TANIGUCHI M, et al. Social defeat stress-specific increase in c-Fos expression in the extended amygdala in mice: involvement of dopamine D1 receptor in the medial prefrontal cortex[J]. Scientific Reports, 2019,9(1):16670.
[24]JOFFE M E, MAKSYMETZ J, LUSCHINGER J R, et al. Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons[J]. Neuron, 2022,110(6):1068-1083.e5.
[25]LIN S S, LI Q Q, JIANG S S, et al. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota[J]. Journal of Ethnopharmacology, 2021,268:113608.
[26]ZHANG J, ZHANG X, WANG C Y, et al. Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation[J]. Advanced Healthcare Materials, 2021,10(3):e2000604.
[27]姚敏,金玉祥,郭紅,等. 慢性應(yīng)激對大鼠腦內(nèi)FOS的表達(dá)與NO含量的影響[J]. 白求恩軍醫(yī)學(xué)院學(xué)報(bào), 2003,1(3):136-139,128.
[28]邵楓,林文娟,王瑋雯,等. 情緒應(yīng)激對不同腦區(qū)c-fos表達(dá)的影響[J]. 心理學(xué)報(bào), 2003,35(5):685-689.
[29]梁凱,于旭東,封芬. 不同應(yīng)激形式對新穎物體識別記憶提取的影響[J]. 生理學(xué)研究, 2019(4):25-29.
[30]QU Y G, ZHANG K, PU Y Y, et al. Betaine supplementation is associated with the resilience in mice after chronic social defeat stress: a role of brain-gut-microbiota axis[J]. Journal of Affective Disorders, 2020,272:66-76.
[31]王維剛,劉震澤,吳文婷,等. 小鼠動物實(shí)驗(yàn)方法系列專題(七)曠場實(shí)驗(yàn)在小鼠行為分析中的應(yīng)用[J]. 中國細(xì)胞生物學(xué)學(xué)報(bào), 2011,33(11):1191-1196.
[32]LAPIZ-BLUHM M D, BONDI C O, DOYEN J, et al. Beha-
vioural assays to model cognitive and affective dimensions of depression and anxiety in rats[J]. Journal of Neuroendocrino-
logy, 2008,20(10):1115-1137.
[33]WESTFALL S, CARACCI F, ESTILL M, et al. Chronic stress-induced depression and anxiety priming modulated by gut-brain-axis immunity[J]. Frontiers in Immunology, 2021,12:670500.
(本文編輯于國藝)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2024年4期