国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

D-AP5對(duì)PD小鼠黑質(zhì)多巴胺能神經(jīng)元簇狀放電影響

2024-10-17 00:00:00趙繼虎劉恒孫鵬
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版) 2024年4期

[摘要]目的探究側(cè)腦室注射D(-)-2-氨基-5-磷戊酸(D-AP5)對(duì)1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)帕金森?。≒D)模型小鼠黑質(zhì)區(qū)多巴胺能神經(jīng)元簇狀放電的影響。

方法將小鼠隨機(jī)分為對(duì)照組、D-AP5組、MPTP組和D-AP5+MPTP組。采用電生理實(shí)驗(yàn)記錄小鼠黑質(zhì)區(qū)多巴胺能神經(jīng)元的簇狀放電百分比。結(jié)果析因設(shè)計(jì)方差分析顯示,D-AP5和MPTP兩者存在交互作用(FMPTP=4.601,P<0.05;FD-AP5=2.399,P>0.05;FMPTP×D-AP5=12.020,P<0.01)。單獨(dú)效應(yīng)分析顯示,在未注射MPTP的兩組小鼠中,D-AP5組小鼠黑質(zhì)區(qū)多巴胺能神經(jīng)元簇狀放電百分比與對(duì)照組小鼠相比差異無(wú)顯著性(F=1.916,P>0.05);在注射MPTP的兩組小鼠中,D-AP5+MPTP組小鼠黑質(zhì)區(qū)多巴胺能神經(jīng)元簇狀放電百分比較MPTP組明顯降低(F=12.094,P<0.01)。結(jié)論側(cè)腦室注射D-AP5可降低MPTP模型小鼠黑質(zhì)區(qū)多巴胺能神經(jīng)元簇狀放電百分比。

[關(guān)鍵詞]帕金森?。皇荏w,N-甲基-D-天冬氨酸;興奮性氨基酸拮抗劑;黑質(zhì);多巴胺能神經(jīng)元;電生理學(xué);小鼠,近交C57BL

[中圖分類號(hào)]R742.5;R392.11

[文獻(xiàn)標(biāo)志碼]A

[文章編號(hào)]2096-5532(2024)04-0487-04doi:10.11712/jms.2096-5532.2024.60.046

[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240424.0942.002;2024-04-2417:07:27

Effect of intracerebroventricular injection of D-AP5 on burst firing of dopaminergic neurons in the substantia nigra in a mouse model of Parkinson’s disease

ZHAO Jihu, LIU Heng, SUN Peng(Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266555, China); [Abstract]ObjectiveTo investigate the effect of intracerebroventricular injection of D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) on the burst firing of dopaminergic neurons in the substantia nigra ina mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

MethodsMice were randomly divided into control group, D-AP5 group, MPTP group, and D-AP5+MPTP group. The bursting rate of substantia nigra dopaminergic neurons was recorded through the electrophysiological test.

ResultsThe factorial analysis of variance indicated an interaction between D-AP5 and MPTP (FMPTP=4.601,P<0.05; FD-AP5=2.399,P>0.05;FMPTP×D-AP5=12.020,P<0.01). The individual effect analysis showed that there was no significant difference in the bursting rate of substantia nigradopaminergic neurons between the D-AP5 group and the control mice (F=1.916,P>0.05); and the D-AP5+MPTP group showed a significantly lower bursting rate compared with the MPTP group (F=12.094,P<0.01).

ConclusionIntracerebroventricular injection of D-AP5 can reduce the bursting rate of dopaminergic neurons in the substantia nigra of MPTP model mice.

[Key words]Parkinson disease; receptors, N-methyl-D-aspartate; excitatory amino acid antagonists; substantia nigra; dopaminergic neurons; electrophysiology; mice, inbred C57BL

帕金森病(PD)已成為威脅老年人生命健康的世界第二大類神經(jīng)退行性疾病,其典型的臨床表現(xiàn)為震顫、肌強(qiáng)直、運(yùn)動(dòng)遲緩等運(yùn)動(dòng)癥狀和焦慮、抑郁、睡眠障礙等非運(yùn)動(dòng)癥狀[1-3]。既往研究顯示,PD病人中腦部位黑質(zhì)(SN)區(qū)多巴胺能神經(jīng)元的選擇性死亡以及α-突觸核蛋白(α-syn)的異常聚集成為其獨(dú)有的病理特征[4-5]。而PD中晚期的病人中,黑質(zhì)多巴胺能神經(jīng)元簇狀放電比例顯著升高[6-7]。N-甲基-D-天冬氨酸(NMDA)受體是一種存在于神經(jīng)細(xì)胞突觸后膜上的離子型谷氨酸受體[8]。而NMDA受體作為谷氨酸門控離子通道,介導(dǎo)了腦和脊髓中大多數(shù)的興奮性神經(jīng)遞質(zhì)的傳遞,在中樞神經(jīng)系統(tǒng)中發(fā)揮著重要作用。同時(shí),NMDA受體的激活可以誘導(dǎo)正常小鼠中腦SN區(qū)多巴胺能神經(jīng)元簇狀放電增加[9]。但是,NMDA受體是否可以調(diào)控PD小鼠中腦黑質(zhì)多巴胺能神經(jīng)元的簇狀放電活動(dòng)仍不明確。因此,本研究利用電生理實(shí)驗(yàn)觀察NMDA受體阻斷劑D(-)2-氨基-5-磷戊酸(D-AP5)對(duì)1-甲

基-4-苯基-1,2,3,6-四氫吡啶(MPTP)處理的PD模型小鼠SN區(qū)多巴胺能神經(jīng)元簇狀放電的影響。現(xiàn)將結(jié)果報(bào)告如下。

1材料與方法

1.1實(shí)驗(yàn)材料

1.1.1實(shí)驗(yàn)動(dòng)物選擇及管理選取8~10周齡的C57BL/6雄性小鼠,購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司。小鼠按照SPF級(jí)別要求飼養(yǎng),室溫(22±2)℃、濕度(50±10)%、12 h晝夜循環(huán)光照,小鼠自由活動(dòng)及飲食,及時(shí)添置水糧、更換墊料。本研究已通過(guò)青島大學(xué)實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)。

1.1.2實(shí)驗(yàn)試劑及來(lái)源異氟烷購(gòu)于瑞沃德生物科技有限公司,烏拉坦購(gòu)于麥克林生化科技有限公司,MPTP和D-AP5均購(gòu)于美國(guó)Sigma公司。

1.2實(shí)驗(yàn)方法

1.2.1小鼠側(cè)腦室埋管小鼠通過(guò)麻醉機(jī)持續(xù)吸入異氟烷,并將小鼠固定于腦立體定位儀上。將導(dǎo)管帽和導(dǎo)管(型號(hào)為62102和62003,瑞沃德生物科技有限公司)置于右側(cè)腦室(前囟后0.3 mm,右側(cè)旁開1.0 mm,顱骨表面下2.2 mm),并利用牙托膠固定。小鼠置入腦室導(dǎo)管后恢復(fù)7 d。

1.2.2實(shí)驗(yàn)分組及處理側(cè)腦室埋管7 d后將小鼠隨機(jī)分為對(duì)照組、D-AP5組、MPTP組和D-AP5+MPTP組,每組10只。對(duì)照組小鼠分別在側(cè)腦室和腹腔注射生理鹽水;D-AP5組給予D-AP5側(cè)腦室注射和生理鹽水腹腔注射;MPTP組給予生理鹽水側(cè)腦室注射和MPTP腹腔注射;D-AP5+MPTP組小鼠給予D-AP5側(cè)腦室注射和MPTP腹腔注射。根據(jù)預(yù)實(shí)驗(yàn)結(jié)果,D-AP5給藥劑量400 ng/d,MPTP給藥劑量為30 mg/(kg·d)。側(cè)腦室注射體積為1 μL,注射時(shí)間為1 min,留針2 min;腹腔注射體積為5 μL/g體質(zhì)量。各組首先側(cè)腦室注射相應(yīng)的藥物3 d進(jìn)行預(yù)處理,再行腹腔注射相應(yīng)的藥物5 d。完成藥物注射后的1~3 d進(jìn)行行為學(xué)檢測(cè),第4天開始進(jìn)行電生理實(shí)驗(yàn)。

1.2.3在體細(xì)胞外電生理實(shí)驗(yàn)用200 g/L烏拉坦溶液麻醉小鼠,實(shí)驗(yàn)過(guò)程中采用恒溫墊維持小鼠體溫(37.0±0.5)℃。利用小鼠適配器固定頭部,沿頭部正中線剪開小鼠頭皮,暴露并分離肌層組織,用蘸濕過(guò)氧化氫溶液的消毒棉棒擦拭骨膜表面,以生理鹽水沖洗后充分暴露前囟至后囟區(qū)域。以前囟為坐標(biāo)原點(diǎn),參考腦圖譜確定小鼠SN區(qū)(前囟后3.0~3.2 mm,左右旁開1.0~1.2 mm),標(biāo)記后進(jìn)行直徑約2.0 mm的顱骨鉆孔;清理骨碎片及包含血管的硬腦膜,消毒棉球壓迫止血,生理鹽水保持腦表面濕潤(rùn)。調(diào)整立體定位儀旋鈕移動(dòng)玻璃電極至SN區(qū)表面上方,接觸生理鹽水后改用顯微操作器控制玻璃電極下降(深度4.0~4.5 mm)。根據(jù)放電頻率及波形特點(diǎn)記錄多巴胺能神經(jīng)元自發(fā)性放電活動(dòng),經(jīng)生物信號(hào)放大器和數(shù)模轉(zhuǎn)換器傳輸至計(jì)算機(jī)顯示器。每個(gè)多巴胺能神經(jīng)元的記錄時(shí)間不盡相同,時(shí)間范圍一般為1 000~3 000 s。神經(jīng)元放電活動(dòng)記錄完成后,利用Spike 2軟件進(jìn)行記錄和分析。選取穩(wěn)定時(shí)間內(nèi)的簇狀放電神經(jīng)元計(jì)算百分比:簇狀放電的尖峰個(gè)數(shù)/所有尖峰個(gè)數(shù)×100%。

1.2.4實(shí)驗(yàn)驗(yàn)證方法完成在體細(xì)胞外電生理實(shí)驗(yàn)后,小鼠斷頭取腦。一半鼠腦提取SN組織,采用Western Blotting檢測(cè)酪氨酸羥化酶(TH)的表達(dá),TH表達(dá)水平顯著降低提示造模成功。另一半鼠腦進(jìn)行切片觀察,對(duì)照小鼠腦圖譜確定埋管位置和下針位置。

1.3統(tǒng)計(jì)學(xué)處理

應(yīng)用SPSS 19.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料數(shù)據(jù)采用±s表示,采用2×2因素析因設(shè)計(jì)的方差分析比較MPTP和D-AP5對(duì)PD模型小鼠SN區(qū)多巴胺能神經(jīng)元放電影響的差異。以P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。

2結(jié)果

電生理實(shí)驗(yàn)顯示,在對(duì)照組、D-AP5組、MPTP組和D-AP5+MPTP組小鼠SN區(qū)中分別記錄到了7、7、7和6個(gè)神經(jīng)元的放電活動(dòng)。Spike 2軟件分析結(jié)果表明,對(duì)照組多巴胺能神經(jīng)元簇狀放電百分比為(1.851±0.733)%,D-AP5組為(5.181±1.766)%,MPTP組為(11.590±2.481)%,D-AP5+MPTP組為(2.887±1.338)%。析因設(shè)計(jì)的方差分析顯示,兩因素間存在交互作用(FMPTP=4.601,P<0.05;FD-AP5=2.399,P>0.05;FMPTP×D-AP5=12.020,P<0.01)。單獨(dú)效應(yīng)分析顯示,當(dāng)腹腔未注射MPTP時(shí),D-AP5組小鼠SN區(qū)多巴胺能神經(jīng)元簇狀放電百分比與對(duì)照組小鼠相比,差異無(wú)顯著意義(F=1.916,P>0.05);當(dāng)腹腔注射MPTP時(shí),D-AP5+MPTP組小鼠SN區(qū)多巴胺能神經(jīng)元簇狀放電百分比較MPTP組明顯降低(F=12.094,P<0.01)。實(shí)驗(yàn)結(jié)果表明,MPTP能夠促進(jìn)小鼠SN區(qū)多巴胺能神經(jīng)元簇狀放電的發(fā)生,而D-AP5則可以

拮抗MPTP對(duì)小鼠SN區(qū)多巴胺能神經(jīng)元簇狀放電的影響。

3討論

谷氨酸等神經(jīng)遞質(zhì)可以激活NMDA受體,且導(dǎo)致受體的蛋白構(gòu)象發(fā)生改變,進(jìn)而使得離子通道開放,Na+、K+和Ca2+可通過(guò)NMDA受體進(jìn)入細(xì)胞膜內(nèi),完成細(xì)胞膜的去極化過(guò)程[10-11]。NMDA受體還可以調(diào)節(jié)神經(jīng)元活性和神經(jīng)元回路形成,從而影響哺乳類動(dòng)物的學(xué)習(xí)和記憶過(guò)程[12]。NMDA受體在中腦廣泛分布,能夠直接誘導(dǎo)皮質(zhì)、海馬體、杏仁核和外側(cè)韁核等部位的神經(jīng)元興奮[13-14]。在正常靜息膜電位下,細(xì)胞外Mg2+與離子通道孔內(nèi)的位點(diǎn)結(jié)合而被阻斷。谷氨酸和甘氨酸等激動(dòng)劑對(duì)NMDA受體的過(guò)度刺激會(huì)導(dǎo)致神經(jīng)元去極化和Mg2+排出,從而打開離子通道使Ca2+流入[15-16]。隨后,細(xì)胞內(nèi)過(guò)量的Ca2+積累會(huì)引起一連串Ca2+依賴性酶和細(xì)胞內(nèi)病理生理變化,從而導(dǎo)致神經(jīng)元損傷和死亡[17-19]。有研究結(jié)果表明,PD誘導(dǎo)的多巴胺耗竭會(huì)導(dǎo)致NMDA受體亞基重新分布[20-21]。在利用左旋多巴治療的PD動(dòng)物模型中,NMDA受體的亞基(GluN2A)和亞基之間的比例(GluN2A/GluN2B)都會(huì)增加[22-23]。盡管各NMDA受體亞基對(duì)多巴胺耗竭的敏感性不同,但在PD大鼠的不同神經(jīng)核團(tuán)中,GluN1和GluN2B亞基表達(dá)水平均有所升高[24],紋狀體中的GluN2D亞基也會(huì)增加[25]。近年來(lái)的研究顯示,在PD病人和PD動(dòng)物實(shí)驗(yàn)?zāi)P偷募y狀體和伏隔核中,NMDA受體結(jié)合水平顯著增加,并加速多巴胺能神經(jīng)元選擇性凋亡過(guò)程[26]。上述結(jié)果表明,NMDA受體的激活在PD中的負(fù)面作用是顯而易見的。

多巴胺能神經(jīng)元具有特殊的電生理學(xué)特點(diǎn),主要表現(xiàn)為規(guī)則放電、不規(guī)則放電和簇狀放電3種放電模式[27]。其中,簇狀放電尖峰可以發(fā)生在所有放電模式中。有研究報(bào)道,簇狀放電在突觸可塑性和信息處理中發(fā)揮重要作用[28]。當(dāng)SN區(qū)多巴胺能神經(jīng)元發(fā)生簇狀放電時(shí),紋狀體多巴胺會(huì)瞬時(shí)釋放,引起獎(jiǎng)賞等相關(guān)行為[29]。也有研究發(fā)現(xiàn),簇狀放電和精神癥狀息息相關(guān),當(dāng)抑制腹內(nèi)側(cè)下丘腦核神經(jīng)元的簇狀放電時(shí),可以緩解慢性壓力應(yīng)激小鼠模型的焦慮行為[30]。另外,簇狀放電活動(dòng)增多會(huì)引起多巴胺能神經(jīng)元的生理功能發(fā)生改變,同時(shí)引起神經(jīng)元相互間作用的神經(jīng)環(huán)路發(fā)生改變[31]。在PD中,

由于SN投射到紋狀體的多巴胺能神經(jīng)元減少,導(dǎo)致間接通路中的丘腦底核(STN)發(fā)生去抑制[32]。而STN中的谷氨酸能神經(jīng)元還能投射至SN的致密部,從而增加了興奮性谷氨酸的數(shù)量[33-34]。這可能是引起多巴胺能神經(jīng)元簇狀放電增多的主要原因之一。在本次研究中,我們證明了抑制NMDA受體可以減少PD模型小鼠SN區(qū)多巴胺能神經(jīng)元簇狀放電的發(fā)生。但是,PD是基于何種機(jī)制導(dǎo)致SN區(qū)多巴胺能神經(jīng)元發(fā)生簇狀放電的改變,以及抑制NMDA受體影響了何種神經(jīng)環(huán)路使得多巴胺能神經(jīng)元簇狀放電的發(fā)生減少,需要我們?cè)诮窈蟮难芯恐羞M(jìn)一步探索。

[參考文獻(xiàn)]

[1]SAMII A, NUTT J G, RANSOM B R. Parkinson’s disease[J]. The Lancet, 2004,363(9423):1783-1793.

[2]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson’s disease[J]. The Lancet Neuro-

logy, 2021,20(5):385-397.

[3]DE LAU L M, BRETELER M M. Epidemiology of Parkinson’s disease[J]. The Lancet Neurology, 2006,5(6):525-535.

[4]ATIK A, STEWART T, ZHANG J. Alpha-synuclein as a bio-

marker for Parkinson’s disease[J]. Brain Pathology, 2016,26(3):410-418.

[5]YUAN X, YANG Y X, LIU C Y, et al. Fine particulate matter triggers α-synuclein fibrillization and parkinson-like neurodegeneration[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2022,37(9):1817-1830.

[6]SCHIEMANN J, SCHLAUDRAFF F, KLOSE V, et al. K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration[J]. Nature Neuroscience, 2012,15(9):1272-1280.

[7]SCHERER M, STEINER L A, KALIA S K, et al. Single-neuron bursts encode pathological oscillations in subcortical nuclei of patients with Parkinson’s disease and essential tre-

mor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022,119(35):e2205881119.

[8]ZHOU H X, WOLLMUTH L P. Advancing NMDA receptor physiology by integrating multiple approaches[J]. Trends in Neurosciences, 2017,40(3):129-137.

[9]ZAKHAROV D, LAPISH C, GUTKIN B, et al. Synergy of AMPA and NMDA receptor currents in dopaminergic neurons: a modeling study[J]. Frontiers in Computational Neuroscience, 2016,10:48.

[10]CARROLL R C, ZUKIN R S. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity[J]. Trends in Neurosciences, 2002,25(11):571-577.

[11]MODY I, MACDONALD J F. NMDA receptor-dependent ex-

citotoxicity: the role of intracellular Ca2+ release[J]. Trends in Pharmacological Sciences, 1995,16(10):356-359.

[12]CULL-CANDY S, BRICKLEY S, FARRANT M. NMDA receptor subunits: diversity, development and disease[J]. Current Opinion in Neurobiology, 2001,11(3):327-335.

[13]KIM J J, SAPIO M R, VAZQUEZ F A, et al. Transcriptional activation, deactivation and rebound patterns in cortex, hippocampus and amygdala in response to ketamine infusion in rats[J]. Frontiers in Molecular Neuroscience, 2022,15:892345.

[14]MA S S, CHEN M, JIANG Y H, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb[J]. Nature, 2023,622(7984):802-809.

[15]LU Y M, YIN H Z, CHIANG J, et al. Ca(2+)-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury[J]. The Journal of Neuroscience, 1996,16(17):5457-5465.

[16]EHINGER R, KURET A, MATT L, et al. Slack K+ channels attenuate NMDA-induced excitotoxic brain damage and neuronal cell death[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021,35(5):e218c74375e67888ebc997105a1ab21dfe96d900d504d472bee716e31101142a504568.

[17]SIBAROV D A, BOLSHAKOV A E, ABUSHIK P A, et al. Na+, K+-ATPase functionally interacts with the plasma membrane Na+, Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress[J]. The Journal of Pharmacology and Experimental Therapeutics, 2012,343(3):596-607.

[18]DONG Y L, KALUEFF A V, SONG C. N-methyl-d-aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus[J]. Journal of Neuroimmunology, 2017,307:7-13.

[19]PHILIPPART F, DESTREEL G, MERINO-SEPLVEDA P, et al. Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons[J]. The Journal of Neuroscience, 2016,36(27):7234-7245.

[20]ARFANI A E, BENTEA E, AOURZ N, et al. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats[J]. Neuropharmacology, 2014,85:198-205.

[21]KHOBOKO T, RUSSELL V A. Effects of development and dopamine depletion on striatal NMDA receptor-mediated cal-

cium uptake[J]. Metabolic Brain Disease, 2008,23(1):9-30.

[22]OH J D, RUSSELL D S, VAUGHAN C L, et al. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration[J]. Brain Research, 1998,813(1):150-159.

[23]QUINTANA A, SGAMBATO-FAURE V, SAVASTA M. Effects of L-DOPA and STN-HFS dyskinesiogenic treatments on NR2B regulation in basal Ganglia in the rat model of Parkinson’s disease[J]. Neurobiology of Disease, 2012,48(3):379-390.

[24]ZHU S J, STEIN R A, YOSHIOKA C, et al. Mechanism of NMDA receptor inhibition and activation[J]. Cell, 2016,165(3):704-714.

[25]MELLONE M, ZIANNI E, STANIC J, et al. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology[J]. Neurobiology of Disease, 2019,121:338-349.

[26]UAS J, WEIHMULLER F B, BRUNNER L C, et al. Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson’s disease, Alzheimer’s disease, and mixed Parkinson’s disease/Alzheimer’s disease patients: an autoradiographic study[J]. The Journal of Neuroscience, 1994,14(11 Pt 1):6317-6324.

[27]PALADINI C A, ROEPER J. Generating bursts (and pauses) in the dopamine midbrain neurons[J]. Neuroscience, 2014,282:109-121.

[28]ZHAO N, SONG J, LIU S Q. Multi-timescale analysis of midbrain dopamine neuronal firing activities[J]. Journal of Theoretical Biology, 2023,556:111310.

[29]FERRIS M J, MILENKOVIC M, LIU S, et al. Sustained N-methyl-d-aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling[J]. The European Journal of Neuroscience, 2014,40(1):2255-2263.

[30]SHAO J, GAO D S, LIU Y H, et al. Cav3.1-driven bursting firing in ventromedial hypothalamic neurons exerts dual control of anxiety-like behavior and energy expenditure[J]. Molecular Psychiatry, 2022,27(6):2901-2913.

[31]GANTZ S C, FORD C P, MORIKAWA H, et al. The evolving understanding of dopamine neurons in the substantia nigra and ventral tegmental area[J]. Annual Review of Physiology, 2018,80:219-241.

[32]ADAM E M, BROWN E N, KOPELL N, et al. Deep brain stimulation in the subthalamic nucleus for Parkinson’s disease can restore dynamics of striatal networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022,119(19):e2120808119.

[33]VILLALBA R M, MATHAI A, SMITH Y. Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease[J]. Frontiers in Neuroanatomy, 2015,9:117.

[34]LEE L N, HUANG C S, CHUANG H H, et al. An electrophysiological perspective on Parkinson’s disease: symptomatic pathogenesis and therapeutic approaches[J]. Journal of Biomedical Science, 2021,28(1):85.

(本文編輯于國(guó)藝)

弥渡县| 丰宁| 卢氏县| 德昌县| 宜春市| 金山区| 赤水市| 夏河县| 轮台县| 隆尧县| 山东省| 府谷县| 玉门市| 布尔津县| 渑池县| 团风县| 南部县| 叙永县| 盐亭县| 潮州市| 闻喜县| 汉沽区| 桐梓县| 金山区| 泸定县| 安义县| 永昌县| 当涂县| 射阳县| 嘉黎县| 塔河县| 宁南县| 新竹市| 宁安市| 湖南省| 会理县| 汉源县| 安福县| 康乐县| 简阳市| 冕宁县|