摘要: 研究勢(shì)阱參數(shù)對(duì)非線性俘能系統(tǒng)輸出特性的影響有利于設(shè)計(jì)高性能的俘能系統(tǒng);同時(shí),俘能系統(tǒng)對(duì)應(yīng)的機(jī)電耦合動(dòng)力學(xué)模型中的隨機(jī)共振現(xiàn)象可用于增強(qiáng)微弱故障特征,進(jìn)而有效識(shí)別微弱故障。本文提出一種解耦的鞍點(diǎn)退化雙穩(wěn)態(tài)勢(shì)能函數(shù),并基于此勢(shì)能函數(shù)介紹了機(jī)電耦合動(dòng)力學(xué)模型。研究了在不同激勵(lì)幅值下位移響應(yīng)的分岔圖,分析了勢(shì)阱寬度與勢(shì)阱高度對(duì)系統(tǒng)響應(yīng)(包括周期響應(yīng)與混沌響應(yīng))的影響。選取固定的激勵(lì)幅值,利用龐加萊映射(Poincaré Map)、頻譜分析(Frequency Spectrum Analysis)以及李雅普諾夫指數(shù)(Lyapunov Exponent)等方法分別驗(yàn)證系統(tǒng)發(fā)生了周期響應(yīng)與混沌響應(yīng),驗(yàn)證結(jié)果與分岔圖相吻合?;谑茈S機(jī)噪聲擾動(dòng)的非線性俘能系統(tǒng)機(jī)電耦合動(dòng)力學(xué)模型,提出了基于此模型隨機(jī)共振的故障診斷方法,實(shí)現(xiàn)了對(duì)軸承故障特征增強(qiáng)的目的。
關(guān)鍵詞: 非線性系統(tǒng); 能量俘獲; 故障診斷; 李雅普諾夫指數(shù); 龐加萊映射
中圖分類號(hào): O322; TM619; TH165+.3 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-4523(2024)10-1714-09
DOI:10.16385/j.cnki.issn.1004-4523.2024.10.009
引 言
隨著無線傳感技術(shù)的快速發(fā)展,微型低功耗傳感器已廣泛應(yīng)用于人體健康監(jiān)測(cè)[1]、重大機(jī)械設(shè)備的結(jié)構(gòu)健康監(jiān)測(cè)系統(tǒng)[2],以及軌道交通基礎(chǔ)設(shè)施狀態(tài)監(jiān)測(cè)系統(tǒng)等[3?4]。但傳統(tǒng)的微型傳感器大部分需要化學(xué)電池供能,這種供能形式需要定期更換電池,且更換的電池對(duì)環(huán)境有害。利用能量俘獲技術(shù)俘獲環(huán)境中的風(fēng)能[5?6]、海洋能[7?8]以及低頻振動(dòng)能量[9?10]等綠色能源可實(shí)現(xiàn)對(duì)微型低功耗傳感器的長(zhǎng)期供能。針對(duì)不同的激勵(lì)形式,研究學(xué)者分別研究了基礎(chǔ)激勵(lì)、氣動(dòng)激勵(lì)、旋轉(zhuǎn)激勵(lì)以及隨機(jī)激勵(lì)等的振動(dòng)能量俘獲系統(tǒng)(簡(jiǎn)稱“俘能系統(tǒng)”)。Zhou等[11]推導(dǎo)了基礎(chǔ)激勵(lì)下非對(duì)稱三穩(wěn)態(tài)俘能系統(tǒng)的諧波平衡解,揭示了其中的非線性動(dòng)力學(xué)機(jī)制。Huang等[12]利用諧波平衡法獲得了基礎(chǔ)激勵(lì)下非對(duì)稱四穩(wěn)態(tài)俘能系統(tǒng)的理論解,并分析了不同的勢(shì)阱深度對(duì)阱間振動(dòng)的影響。Tai等[13]推導(dǎo)了基礎(chǔ)激勵(lì)下基于最大功率的優(yōu)化條件。Li等[14]利用增量諧波平衡法理論分析了三穩(wěn)態(tài)顫振式俘能系統(tǒng)的周期解和分岔,并通過風(fēng)洞試驗(yàn)進(jìn)行了驗(yàn)證。Huang等[15]利用復(fù)變量平均法理論推導(dǎo)了馳振和基礎(chǔ)激勵(lì)下俘能系統(tǒng)的理論解,并分析了其動(dòng)力學(xué)性能。Hou等[16]研究了在渦激振動(dòng)和基礎(chǔ)激勵(lì)下的壓電?電磁混合俘能系統(tǒng)。相比單一渦激振動(dòng)或單一基礎(chǔ)激勵(lì)下的俘能系統(tǒng),俘獲的能量功率得到了提高。Mei等[17]提出了具有時(shí)變特征的四穩(wěn)態(tài)俘能系統(tǒng),用于俘獲低頻旋轉(zhuǎn)能量。在旋轉(zhuǎn)運(yùn)動(dòng)下,俘能系統(tǒng)的有效工作頻率范圍為1~7 Hz。Wang等[18]研究了旋轉(zhuǎn)環(huán)境下梯形梁俘能系統(tǒng)。與矩形梁相比,在夾具附近,梯形梁可以承受更高的應(yīng)力。Fang等[19]利用膨脹的離心軟化效應(yīng)提出了超低頻旋轉(zhuǎn)運(yùn)動(dòng)下的俘能系統(tǒng),其功率密度為41.23 μW/g。
非線性系統(tǒng)隨機(jī)共振現(xiàn)象已廣泛應(yīng)用于工程領(lǐng)域[20],如圖像增強(qiáng)[21?22]、能量俘獲[23?24]以及故障診斷[25?26]。其原理是:在合適強(qiáng)度噪聲干擾下,非線性系統(tǒng)會(huì)發(fā)生隨機(jī)共振,使系統(tǒng)輸出幅值達(dá)到最大。Kim等[27]利用自調(diào)節(jié)隨機(jī)共振的優(yōu)點(diǎn),提出了一種用于調(diào)制噪聲激勵(lì)下旋轉(zhuǎn)運(yùn)動(dòng)的能量俘獲系統(tǒng)。與其他用于輪胎的俘能系統(tǒng)相比,該系統(tǒng)具有更大的功率輸出和有效帶寬。Gong等[28]研究了多穩(wěn)態(tài)俘能系統(tǒng)的隨機(jī)共振現(xiàn)象,用于增強(qiáng)在隨機(jī)旋轉(zhuǎn)激勵(lì)下的能量俘獲性能。Shi等[29]基于改進(jìn)的非對(duì)稱隨機(jī)共振模型,闡述了如何利用噪聲使系統(tǒng)發(fā)生隨機(jī)共振進(jìn)而改進(jìn)俘能系統(tǒng)能量俘獲效率。同樣地,隨機(jī)共振現(xiàn)象在故障診斷領(lǐng)域也有重要的應(yīng)用。Lai等[30]基于雙穩(wěn)態(tài)Duffing系統(tǒng),提出了一種尺度變換方法,可以將隨機(jī)共振方法應(yīng)用于大參數(shù)信號(hào)。Lei等[31]基于穩(wěn)態(tài)匹配的欠阻尼隨機(jī)共振方法,實(shí)現(xiàn)了滾動(dòng)體軸承的早期故障診斷。此方法能夠通過優(yōu)化尺度因子抑制多尺度噪聲的干擾。張剛等[32]研究了二維雙阱勢(shì)系統(tǒng)隨機(jī)共振機(jī)理,并將其用于實(shí)際工業(yè)軸承故障診斷,提高了故障頻率處峰值的辨識(shí)度。賀利芳等[33]提出了高斯勢(shì)分段雙穩(wěn)隨機(jī)共振系統(tǒng),分別研究了在高斯白噪聲和有色噪聲下衡量指標(biāo)隨系統(tǒng)參數(shù)的變化規(guī)律。
非線性俘能系統(tǒng)具有復(fù)雜的機(jī)電耦合動(dòng)力學(xué)響應(yīng),如果能把其中的隨機(jī)共振現(xiàn)象應(yīng)用于故障診斷領(lǐng)域,既能擴(kuò)大俘能系統(tǒng)的應(yīng)用范圍,又能豐富基于隨機(jī)共振的機(jī)械裝備故障診斷方法。因此,本文也探索了非線性俘能系統(tǒng)機(jī)電耦合動(dòng)力學(xué)模型隨機(jī)共振現(xiàn)象在故障診斷中的潛在應(yīng)用。
1 無量綱動(dòng)力學(xué)模型
Yang等[34]研究發(fā)現(xiàn)非線性退化(鞍點(diǎn)退化與中心點(diǎn)退化)可以使非線性系統(tǒng)在超低頻或低隨機(jī)激勵(lì)強(qiáng)度下實(shí)現(xiàn)大幅值的阱間振蕩,可有效提高低激勵(lì)水平下的能量俘獲性能。因此,本節(jié)首先基于鞍點(diǎn)退化雙穩(wěn)態(tài)勢(shì)能函數(shù)研究退化勢(shì)能函數(shù)的勢(shì)阱寬度與勢(shì)阱高度對(duì)壓電俘能系統(tǒng)響應(yīng)的影響。其對(duì)應(yīng)的無量綱機(jī)電耦合方程[35]可寫為:
(1)
(2)
式中 表示系統(tǒng)位移響應(yīng);表示系統(tǒng)輸出電壓;表示無量綱的等效電容;表示無量綱的等效機(jī)電耦合系數(shù); 表示無量綱的等效電阻;表示無量綱的等效阻尼; 表示無量綱的基礎(chǔ)激勵(lì)幅值;表示無量綱的基礎(chǔ)激勵(lì)的角頻率。若俘能系統(tǒng)為對(duì)稱雙穩(wěn)態(tài)系統(tǒng),則無量綱的非線性力可表示為:
(3)
令式(3)等于零,則其對(duì)應(yīng)有一個(gè)零根,兩個(gè)虛根和兩個(gè)實(shí)根。而若將式(3)中的項(xiàng)去除,則新的將對(duì)應(yīng)有三個(gè)零根,兩個(gè)實(shí)根。在文獻(xiàn)[34]中,這種具有三個(gè)零根,兩個(gè)實(shí)根的對(duì)應(yīng)的勢(shì)能函數(shù)稱為鞍點(diǎn)退化勢(shì)能函數(shù)。此時(shí),可表示為[34]:
(4)
式中 表示非線性力系數(shù);表示退化雙穩(wěn)態(tài)勢(shì)能函數(shù)的穩(wěn)定平衡點(diǎn);表示勢(shì)能函數(shù)對(duì)求導(dǎo)。因此,鞍點(diǎn)退化勢(shì)能函數(shù)的勢(shì)阱寬度,勢(shì)阱高度。
對(duì)鞍點(diǎn)退化勢(shì)能函數(shù)進(jìn)行解耦,可得關(guān)于勢(shì)阱寬度與勢(shì)阱高度的解耦勢(shì)能函數(shù):
(5)
如圖1所示,解耦的鞍點(diǎn)退化勢(shì)能函數(shù)可由勢(shì)阱寬度或勢(shì)阱高度獨(dú)立控制,即當(dāng)勢(shì)阱寬度變化時(shí),可以保證勢(shì)阱高度不變;勢(shì)阱高度變化時(shí),可以保證勢(shì)阱寬度不變。這方便研究勢(shì)阱寬度與勢(shì)阱高度對(duì)非線性俘能系統(tǒng)的影響。
2 數(shù)值分析
本節(jié)利用分岔圖[36?37](分岔圖是計(jì)算不同參數(shù)下穩(wěn)定位移響應(yīng)的幅值而獲得的幅值分布圖)研究了勢(shì)阱寬度與勢(shì)阱高度對(duì)系統(tǒng)響應(yīng)(周期響應(yīng)與混沌響應(yīng))的影響,可進(jìn)一步反向指導(dǎo)特定激勵(lì)強(qiáng)度下具有周期響應(yīng)的俘能系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)。在數(shù)值分析過程中,無量綱激勵(lì)幅值以0.01的步距從0.1變化到1.8,其他的無量綱參數(shù)分別為:,,,,。圖2~8展示了不同勢(shì)阱寬度與勢(shì)阱高度下的分岔圖、龐加萊映射(Poincaré Map)、頻譜圖以及李雅普諾夫指數(shù)(Lyapunov Exponent,本文的機(jī)電耦合系統(tǒng)對(duì)應(yīng)有三個(gè)李雅普諾夫指數(shù),分別表示為:,,)。
2.1 勢(shì)阱寬度對(duì)系統(tǒng)響應(yīng)的影響
圖2~5展示了當(dāng)勢(shì)阱高度時(shí),不同勢(shì)阱寬度下非線性俘能系統(tǒng)響應(yīng)隨激勵(lì)幅值的變化。其中,圖3詳細(xì)展示了圖2中李雅普諾夫指數(shù)隨時(shí)間的變化趨勢(shì)(其他圖中的最終李雅普諾夫指數(shù)值已在圖中標(biāo)明)。從圖2,4和圖5中可以看出,隨著勢(shì)阱寬度的增大,非線性俘能系統(tǒng)發(fā)生混沌響應(yīng)的區(qū)域?qū)?huì)整體朝著激勵(lì)幅值增大的方向移動(dòng)。在低激勵(lì)幅值處的混沌區(qū)域?qū)?huì)變大。在特定的激勵(lì)幅值下,系統(tǒng)發(fā)生周期響應(yīng)時(shí),其龐加萊映射為單個(gè)點(diǎn),頻譜中僅有明顯的單頻及其倍頻成分,最大的李雅普諾夫指數(shù)[38?39]()約為0。當(dāng)系統(tǒng)發(fā)生混沌響應(yīng)時(shí),其龐加萊映射具有明顯的軌跡,頻譜呈現(xiàn)明顯的多頻成分,最大李雅普諾夫指數(shù)大于0[38?39]。
2.2 勢(shì)阱高度對(duì)系統(tǒng)響應(yīng)的影響
圖6~8展示了當(dāng)勢(shì)阱寬度時(shí),不同勢(shì)阱高度下非線性俘能系統(tǒng)響應(yīng)隨激勵(lì)幅值的變化。同樣地,在取固定的激勵(lì)幅值時(shí),其對(duì)應(yīng)的龐加萊映射、頻譜圖以及李雅普諾夫指數(shù)均能夠證明系統(tǒng)是周期響應(yīng)或是混沌響應(yīng),進(jìn)一步說明了分岔圖的準(zhǔn)確性。此外,從圖中可知,在保證勢(shì)阱寬度不變的條件下增大勢(shì)阱高度,在分岔圖中體現(xiàn)的混沌區(qū)域?qū)?huì)整體朝著激勵(lì)幅值減小的方向移動(dòng)。在高激勵(lì)幅值處的混沌區(qū)域?qū)?huì)增大。
3 在故障診斷中的應(yīng)用
非線性系統(tǒng)的隨機(jī)共振現(xiàn)象已成功應(yīng)用于增強(qiáng)俘能系統(tǒng)的輸出性能[27?29],本節(jié)探索機(jī)電耦合動(dòng)力學(xué)模型俘能系統(tǒng)的隨機(jī)共振現(xiàn)象(Stochastic Resonance Phenomenon of the Electromechanical Dynamic Model of the Energy Harvester,EDMEHSR)在故障診斷領(lǐng)域中的應(yīng)用。如圖9所示,EDMEHSR方法的主要流程為:步驟1,獲得采集信號(hào)的包絡(luò)信號(hào);步驟2,對(duì)包絡(luò)信號(hào)進(jìn)行高通濾波(去除低頻成分);步驟3,輸入到機(jī)電耦合方程(1)和(2),利用龍格?庫塔方法獲得輸出信號(hào);步驟4,計(jì)算輸出信噪比;步驟5,重復(fù)步驟1~4,記錄輸出信噪比最大時(shí)的系統(tǒng)參數(shù)以及輸出信號(hào)。
3.1 仿真驗(yàn)證
為了驗(yàn)證提出的EDMEHSR方法的有效性,將其應(yīng)用到仿真的軸承內(nèi)圈和軸承外圈故障信號(hào)中。仿真信號(hào)模型如下式所示[40]:
(6)
式中 第一項(xiàng)表示周期成分,第二項(xiàng)表示隨機(jī)脈沖成分,第三項(xiàng)表示干擾諧波成分,第四項(xiàng)表示加性白噪聲??杀硎緸椋?/p>
(7)
仿真參數(shù)如表1和2所示,仿真的軸承外圈故障頻率(Ball Pass Frequency of Outer Race,)為73Hz,內(nèi)圈故障頻率(Ball Pass Frequency of Inner Race,)為120 Hz。
如圖10與13所示,仿真的信號(hào)成分分別為內(nèi)圈、外圈的周期脈沖信號(hào)、隨機(jī)脈沖、干擾諧波以及高斯白噪聲。仿真內(nèi)圈混合信號(hào)及其歸一化包絡(luò)譜和仿真的外圈混合信號(hào)及其歸一化包絡(luò)譜分別如圖11和14所示。在其對(duì)應(yīng)的歸一化包絡(luò)譜中,故障特征頻率處的幅值受噪聲影響很大。應(yīng)用EDMEHSR方法后(如圖12與15所示),仿真的故障特征頻率處的幅值得到增強(qiáng),遠(yuǎn)遠(yuǎn)大于其他頻率處的幅值。圖11,12,14和15頻譜對(duì)應(yīng)的信噪比如表3所示,基于EDMEHSR方法可獲得最高的信噪比輸出信號(hào)。綜上,這兩個(gè)仿真案例有效證明了EDMEHSR方法的有效性和其增強(qiáng)目標(biāo)信號(hào)的能力。
3.2 實(shí)驗(yàn)驗(yàn)證
本節(jié)利用軸承外圈故障實(shí)驗(yàn)數(shù)據(jù)進(jìn)一步驗(yàn)證本文提出的EDMEHSR方法的有效性。圖16展示了加噪的軸承外圈故障實(shí)驗(yàn)信號(hào)及其歸一化包絡(luò)譜。圖16(b)對(duì)應(yīng)的SNR為-33.9489 dB,且從圖中可觀測(cè)到外圈故障特征頻率的峰值幾乎被噪聲成分淹沒。圖17展示了利用優(yōu)化參數(shù)的EDMEHSR方法獲得的濾波信號(hào)及其歸一化功率譜,優(yōu)化參數(shù)為:,,,,。圖17(b)對(duì)應(yīng)的SNR為-15.3597 dB,且從圖中可明顯觀測(cè)到外圈故障特征頻率,指示軸承的外圈發(fā)生故障。此外,對(duì)比輸出信號(hào)SNR可知,基于EDMEHSR的方法極大提高了故障特征頻率處的信噪比。
本節(jié)還將式(1)對(duì)應(yīng)的解耦雙穩(wěn)態(tài)系統(tǒng)(不包含電壓項(xiàng))的隨機(jī)共振現(xiàn)象(Stochastic Resonance Phenomenon of the Decoupled Bistable System,DBSSR)用于故障診斷,算法流程與圖9展示的相同。以信噪比為優(yōu)化指標(biāo),獲得DBSSR方法的最優(yōu)系統(tǒng)參數(shù)為,,?;贒BSSR方法的濾波結(jié)果如圖18所示,圖18(b)對(duì)應(yīng)的信噪比為-17.6628 dB,小于圖17(b)對(duì)應(yīng)的信噪比-15.3597 dB。圖18(b)對(duì)應(yīng)的最大歸一化干擾幅值為0.476,大于圖17(b)對(duì)應(yīng)的最大歸一化干擾幅值0.362。此外,基于DBSSR方法濾波后的頻譜有低頻干擾成分,如圖18(b)所示。
綜上,在相同優(yōu)化流程的情況下,基于機(jī)電耦合系統(tǒng)的隨機(jī)共振現(xiàn)象的故障診斷方法獲得的濾波信號(hào)具有信噪比高,受干擾小的優(yōu)點(diǎn)。
4 結(jié) 論
本文建立了基于解耦的鞍點(diǎn)退化勢(shì)能函數(shù)的機(jī)電耦合動(dòng)力學(xué)模型,數(shù)值分析了不同激勵(lì)幅值下非線性俘能系統(tǒng)的輸出響應(yīng)(周期響應(yīng)與混沌響應(yīng)),為非線性俘能系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)提供參考。最后實(shí)現(xiàn)了非線性俘能系統(tǒng)機(jī)電耦合動(dòng)力學(xué)模型隨機(jī)共振現(xiàn)象在故障診斷中的應(yīng)用。本文主要結(jié)論如下:
勢(shì)阱高度對(duì)系統(tǒng)的影響與勢(shì)阱寬度產(chǎn)生的影響完全相反。增大勢(shì)阱寬度將使非線性俘能系統(tǒng)發(fā)生混沌響應(yīng)的區(qū)域向著大激勵(lì)幅值方向移動(dòng),且在低激勵(lì)幅值處的混沌區(qū)域?qū)?huì)增大。因此在設(shè)計(jì)具有周期響應(yīng)特征的非線性俘能系統(tǒng)時(shí),可根據(jù)環(huán)境激勵(lì)幅值等級(jí),選取合適的勢(shì)阱高度與勢(shì)阱寬度值。
此外,仿真與實(shí)驗(yàn)軸承故障案例表明,基于機(jī)電耦合動(dòng)力學(xué)模型俘能系統(tǒng)隨機(jī)共振現(xiàn)象的方法可有效增強(qiáng)故障特征,濾除噪聲干擾。這展示了一種非線性能量俘獲系統(tǒng)作為非線性濾波器在故障診斷中的潛在工程應(yīng)用。
參考文獻(xiàn):
[1]楊濤,周生喜,曹慶杰,等. 非線性振動(dòng)能量俘獲技術(shù)的若干進(jìn)展[J]. 力學(xué)學(xué)報(bào),2021,53(11): 2894?2909.
Yang Tao,Zhou Shengxi,Cao Qingjie,et al. Some advances in nonlinear vibration energy harvesting technology[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(11): 2894?2909.
[2]Zhang Y,Wu X,Lei Y G,et al. Self?powered wireless condition monitoring for rotating machinery[J]. IEEE Internet Things Journal,2023,11(2): 3095?3107.
[3]高鳴源,王平. 磁浮式軌道振動(dòng)俘能機(jī)理與試驗(yàn)研究[J]. 鐵道學(xué)報(bào),2018,40(6): 144?153.
Gao Mingyuan,Wang Ping. Harvesting railroad vibration energy by magnetic levitation oscillation[J]. Journal of the China Railway Society,2018,40(6): 144?153.
[4]Cao H,Kong L J,Tang M F,et al. An electromagnetic energy harvester for applications in a high?speed rail pavement system[J]. International Journal of Mechanical Sciences,2023,243: 108018.
[5]李支援,呂文博,馬小青,等. 一種磁力滑動(dòng)式翼型顫振能量俘獲器[J]. 力學(xué)學(xué)報(bào),2023,55(10): 2146?2155.
Li Zhiyuan,Lü Wenbo,Ma Xiaoqing,et al. A magnetic sliding airfoil flutter energy harvester[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(10): 2146?2155.
[6]Wang J L,Zhou S X,Zhang Z E,et al. High-performance piezoelectric wind energy harvester with Y-shaped attachments[J]. Energy Conversion and Management,2019,181: 645?652.
[7]Xie X D,Wang Q. A study on an ocean wave energy harvester made of a composite piezoelectric buoy structure[J]. Composite Structures,2017,178: 447?454.
[8]Liu R W,He L P,Liu X J,et al. A review of collecting ocean wave energy based on piezoelectric energy harvester[J]. Sustainable Energy Technologies and Assessments,2023,59: 103417.
[9]Mitcheson P D,Yeatman E M,Rao G K,et al. Energy harvesting from human and machine motion for wireless electronic devices[J]. Proceedings of the IEEE,2008,96(9): 1457?1486.
[10]Yang Z B,Zhou S X,Zu J,et al. High?performance piezoelectric energy harvesters and their applications[J]. Joule,2018,2(4): 642?697.
[11]Zhou S X,Zuo L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting[J]. Communications in Nonlinear Science and Numerical Simulation,2018,61: 271?284.
[12]Huang D M,Han J L,Zhou S X,et al. Stochastic and deterministic responses of an asymmetric quad?stable energy harvester[J]. Mechanical Systems and Signal Processing,2022,168: 108672.
[13]Tai W C,Zuo L. On optimization of energy harvesting from base?excited vibration[J]. Journal of Sound and Vibration,2017,411: 47?59.
[14]Li Z Y,Zhou S Z,Zhang H,et al. Periodic solutions and bifurcations of a tristable flutter?based energy harvester[J]. Aerospace Science and Technology,2024,144: 108815.
[15]Huang D M,Han J L,Li W,et al. Responses,optimization and prediction of energy harvesters under galloping and base excitations[J]. Communications in Nonlinear Science and Numerical Simulation,2023,119: 107086.
[16]Hou C W,Li C H,Shan X B,et al. A broadband piezo?electromagnetic hybrid energy harvester under combined vortex?induced and base excitations[J]. Mechanical Systems and Signal Processing,2022,171: 108963.
[17]Mei X T,Zhou S X,Yang Z C,et al. Enhancing energy harvesting in low?frequency rotational motion by a quad?stable energy harvester with time?varying potential wells[J]. Mechanical Systems and Signal Processing,2021,148: 107167.
[18]Wang J X,Su W B,Li J C,et al. A rotational piezoelectric energy harvester based on trapezoid beam: simulation and experiment[J]. Renewable Energy,2022,184: 619?626.
[19]Fang S T,Chen K Y,Lai Z H,et al. Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra?low?frequency rotational excitations[J]. Applied Energy,2023,331: 120355.
[20]靳艷飛,許鵬飛,李永歌,等. 多穩(wěn)態(tài)動(dòng)力系統(tǒng)中隨機(jī)共振的研究進(jìn)展[J]. 力學(xué)進(jìn)展,2023,53(2): 357?394.
Jin Yanfei,Xu Pengfei,Li Yongge,et al. Stochastic resonance of multi?stable dynamical systems: a review[J]. Advances in Mechanics,2023,53(2): 357?394.
[21]Kojima N,Lamsal B,Matsumoto N. An adaptive tuning stochastic resonance approach for image enhancement on illumination variant images[J]. Journal of the Institute of Industrial Applications Engineers,2017,5(1): 24?31.
[22]Jiao S B,Shi J Q,Wang Y,et al. A novel image noise reduction method for composite multistable stochastic resonance systems[J]. Heliyon,2023,9(3): e14431.
[23]McInnes C R,Gorman D G,Cartmell M P. Enhanced vibrational energy harvesting using nonlinear stochastic resonance[J]. Journal of Sound and Vibration,2008,318(4?5): 655?662.
[24]Zhang Y S,Zheng R C,Shimono K,et al. Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance[J]. Sensors,2016,16(10): 1727.
[25]Xu H T,Zhou S X. Periodicity?assist double delay-controlled stochastic resonance for the fault detection of bearings[J]. Measurement,2024,225: 114018.
[26]Xu H T,Zhou S X,Yang T. Stochastic resonance of a high?order?degradation bistable system and its application in fault diagnosis with variable speed condition[J]. Mechanical Systems and Signal Processing,2023,186: 109852.
[27]Kim H,Tai W,Parker J,et al. Self?tuning stochastic resonance energy harvesting for rotating systems under modulated noise and its application to smart tires[J]. Mechanical Systems and Signal Processing,2019,122: 769?785.
[28]Gong X L,Xu P F,Liu D,et al. Stochastic resonance of multi?stable energy harvesting system with high?order stiffness from rotational environment[J]. Chaos,Solitons and Fractals,2023,172: 113534.
[29]Shi P M,Liu Z X,Li M D,et al. Nonlinear dynamics analysis of enhancing energy harvesting from intense vibration based on improved asymmetric bistable stochastic resonance model[J]. Chinese Journal of Physics,2023,90:223?236.
[30]Lai Z H,Leng Y G. Weak?signal detection based on the stochastic resonance of bistable Duffing oscillator and its application in incipient fault diagnosis[J]. Mechanical Systems and Signal Processing,2016,81: 60?74.
[31]Lei Y G,Qiao Z J,Xu X F,et al. An underdamped stochastic resonance method with stable?state matching for incipient fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing,2017,94: 148?164.
[32]張剛,徐浩,張?zhí)祢U. 二維雙阱勢(shì)系統(tǒng)隨機(jī)共振機(jī)理研究及應(yīng)用[J]. 振動(dòng)與沖擊,2021,40(12): 15?22.
Zhang Gang,Xu Hao,Zhang Tianqi. A study and application of stochastic resonance mechanism in a two-dimensional bistable potential system[J]. Journal of Vibration and Shock,2021,40(12): 15?22.
[33]賀利芳,劉秋玲,張剛. 高斯勢(shì)分段雙穩(wěn)隨機(jī)共振在不同噪聲下的軸承故障診斷[J]. 振動(dòng)與沖擊,2023,42(3): 30?42.
He Lifang,Liu Qiuling,Zhang Gang. Bearing fault diagnosis under different noises with GPPBSR system[J]. Journal of Vibration and Shock,2023,42(3): 30?42.
[34]Yang T,Xu H T,Tang J,et al. Exploring nonlinear degradation benefit of bio?inspired oscillator for engineering applications[J]. Applied Mathematical Modelling,2023,119: 736?762.
[35]Zhou S X,Cao J Y,Lin J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters[J]. Nonlinear Dynamics,2016,86(3): 1599?1611.
[36]Moysis L,Lawnik M,Volos C. Density?colored bifurcation diagrams?a complementary tool for chaotic map analysis[J]. International Journal of Bifurcation and Chaos,2023,33(15): 2330036.
[37]Moysis L,Giakoumis A,Gupta M K,et al. Observers for rectangular descriptor systems with output nonlinearities: application to secure communications and microcontroller implementation[J]. International Journal of Dynamics and Control,2021,9(2): 530?540.
[38]李海濤,丁虎,陳立群. 帶有非對(duì)稱勢(shì)能阱特性的雙穩(wěn)態(tài)能量采集系統(tǒng)混沌動(dòng)力學(xué)分析[J]. 振動(dòng)與沖擊,2020,39(18): 54?59.
Li Haitao,Ding Hu,Chen Liqun. Chaotic dynamics of a bi?stable energy harvesting system with asymmetric potential well characteristics[J]. Journal of Vibration and Shock,2020,39(18): 54?59.
[39]Li H,Shen Y J,Han Y J,et al. Determining Lyapunov exponents of fractional?order systems: a general method based on memory principle[J]. Chaos,Solitons and Fractals,2023,168: 113167.
[40]Miao Y H,Zhao M,Lin J,et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing,2017,92: 173?195.
Analysis and fault diagnosis application of the electromechanical dynamic model of the nonlinear energy harvester
XU Hai?tao,ZHOU Sheng?xi
(School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China)
Abstract: The study of the influence of potential well parameters on the output of a nonlinear energy harvester system is conducive to the design of the high-performance energy harvester system. Meanwhile,the stochastic resonance phenomenon in the corresponding electromechanical coupling dynamics model of the energy harvester system can be used to enhance the characteristics of weak faults,so as to effectively identify weak faults. This paper proposes a decoupled saddle-point-degradation bistable potential function,and the electromechanical dynamic model is introduced. The bifurcation diagram under different excitation amplitudes is obtained to discuss the effect of the barrier width and the barrier height on the responses (periodic response and chaotic response). According to the methods of the Poincaré map,the frequency spectrum analysis,and the Lyapunov exponent,the periodic response and the chaotic response are examined at a fixed excitation amplitude,which is consistent with that obtained from the bifurcation diagram. Based on the electromechanical dynamic model perturbed by the random noise,the stochastic-resonance-based method is proposed for fault diagnosis,which achieves the enhancement of the simulated and experimental bearing fault characteristics.
Key words: nonlinear system;energy harvesting;fault diagnosis;Lyapunov exponent;Poincaré map
作者簡(jiǎn)介: 徐海濤(1993―),男,博士研究生。E?mail: xuhaitao@mail.nwpu.edu.cn。
通訊作者: 周生喜(1987―),男,博士,教授。E?mail: zhoushengxi@nwpu.edu.cn。
振動(dòng)工程學(xué)報(bào)2024年10期