摘要 目前大氣污染是全球范圍內(nèi)影響公共衛(wèi)生的熱點(diǎn)話題。暴露于細(xì)顆粒物(城市空氣污染的主要組成部分)與心血管風(fēng)險(xiǎn)和相關(guān)死亡率的增加有關(guān)。微粒對(duì)心血管系統(tǒng)的影響包括氧化應(yīng)激與炎癥、脂蛋白異常、內(nèi)皮細(xì)胞功能障礙、凝血纖溶系統(tǒng)的異常激活、自主神經(jīng)系統(tǒng)紊亂、細(xì)胞自噬與凋亡、鐵死亡。遺傳和表觀遺傳因素也可能增加對(duì)空氣污染的敏感性。因此,流行病學(xué)研究已確定空氣顆粒物濃度與心血管疾病(CVD)之間的相關(guān)性。細(xì)顆粒物(PM2.5)作為影響心血管事件中可控的危險(xiǎn)因素之一,通過防治來降低PM2.5濃度,可有效減輕CVD負(fù)擔(dān)。
關(guān)鍵詞 心血管疾?。患?xì)顆粒物;大氣污染;中醫(yī)藥防治;綜述
doi:10.12102/j.issn.1672-1349.2024.20.011
作者單位 1.山西醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院 (太原 030001);2 山西醫(yī)科大學(xué)第二醫(yī)院(太原 030001)
通訊作者 李虹,E-mail:lihong7621@outlook.com
引用信息 董子豪,李艷,于永麗,等.PM2.5 致心血管疾病及其防治的研究進(jìn)展[J].中西醫(yī)結(jié)合心腦血管病雜志,2024,22(20):3718-3723.
暴露于細(xì)顆粒物(PM2.5)中是誘發(fā)心血管疾?。–VD)的主要因素,而我國大氣細(xì)顆粒物的污染情況仍較嚴(yán)重。PM2.5對(duì)人體各個(gè)系統(tǒng)功能的損傷機(jī)制以及積極防治PM2.5的方法是當(dāng)前的研究熱點(diǎn)。綜述PM2.5對(duì)CVD影響的研究進(jìn)展以及防治,為PM2.5與CVD相關(guān)工作提供參考。
1 顆粒物(PM)概念、來源及PM2.5組成
顆粒物是氣溶膠體系中均勻分散的各種固體或液體微粒。污染源可將顆粒物直接排放到環(huán)境中,或排放二氧化硫、二氧化氮和揮發(fā)性有機(jī)化合物等前體,這些前體通過大氣化學(xué)作用轉(zhuǎn)化為顆粒物。顆粒一般按大小分為PM50、PM10、PM2.5、PM0.1。顆粒物污染是一種全球性的污染負(fù)擔(dān),較小的顆粒具有更大的健康影響[1]。PM2.5的定義是直徑小于2.5 μm的有害空氣細(xì)顆粒物[2],PM2.5直徑小,活性強(qiáng),易附帶重金屬、微生物等,且在大氣中的停留時(shí)間長(zhǎng)、輸送距離遠(yuǎn)[3],其在空氣中濃度與空氣污染呈正相關(guān),濃度越高表明污染越嚴(yán)重,對(duì)人類健康危害也越大。
2 PM2.5與CVD發(fā)生的流行病學(xué)研究
世界衛(wèi)生組織(WHO)報(bào)告稱,2016年空氣污染導(dǎo)致420萬人死亡。顆粒物作為室外空氣污染的主要成分,被國際癌癥研究機(jī)構(gòu)歸類為人類1類致癌物。PM2.5可對(duì)多個(gè)系統(tǒng)產(chǎn)生重要影響,PM2.5的暴露增加與CVD的發(fā)病及死亡呈正相關(guān)[4]。據(jù)2020年柳葉刀污染與健康委員會(huì)報(bào)道,暴露于環(huán)境顆粒物污染在全球歸因殘疾調(diào)整生命年(DALY)中是主要的危險(xiǎn)因素,同時(shí)大氣細(xì)顆粒物污染作為當(dāng)今污染(如化學(xué)污染、土地污染、水源污染等)的重要組成部分已經(jīng)變成致人死亡最重要的因素之一。全球可歸因死亡重要風(fēng)險(xiǎn)之一為空氣污染,2019年導(dǎo)致女性死亡人數(shù)為292萬人,或者所有女性死亡數(shù)的11.3%,導(dǎo)致2019年男性死亡人數(shù)為375萬人,占男性死亡總數(shù)的12.2%[5]。一項(xiàng)大型多國前瞻性隊(duì)列研究PURE,包括來自土耳其的參與者,發(fā)現(xiàn)長(zhǎng)期戶外PM2.5水平與35~70歲成人CVD疾病風(fēng)險(xiǎn)增加相關(guān)[6],劑量增加10 μg,CVD死亡風(fēng)險(xiǎn)增加3%,CVD事件增加5%,心肌梗死增加3%,腦卒中增加8%[7]。同樣,國內(nèi)一些研究也WXTtB3xWoMAr1Ge3b5tp7ZrQUKVzXfsTYRmmnaehJB0=得出類似的結(jié)論。在我國長(zhǎng)期暴露于PM2.5會(huì)導(dǎo)致CVD風(fēng)險(xiǎn)增加。PM2.5水平越高,這種影響就越明顯[8]。進(jìn)一步分析可得出PM2.5濃度與壽命密切相關(guān),研究發(fā)現(xiàn),PM2.5濃度每下降10 μg/m3 ,平均壽命延長(zhǎng)(0.61±0.20)年 ;此外,PM2.5濃度每增加10 μg/m3,CVD住院率會(huì)隨之增高[9]。表明PM2.5的暴露是心血管事件發(fā)生的重要因素之一。
3 PM2.5對(duì)心血管系統(tǒng)的影響
微粒暴露的有害健康影響不僅局限于呼吸系統(tǒng)疾病,還包括其他全身性疾病,最顯著的是CVD,包括動(dòng)脈粥樣硬化、高血壓、心律失常、心力衰竭、心肌梗死等。
3.1 動(dòng)脈粥樣硬化
長(zhǎng)期暴露于PM2.5與動(dòng)脈粥樣硬化之間存在明確的關(guān)聯(lián)。顆粒物通過啟動(dòng)和促進(jìn)動(dòng)脈粥樣硬化進(jìn)展而導(dǎo)致心臟風(fēng)險(xiǎn)增加,這是大多數(shù)CVD的根本原因[10]。主動(dòng)脈和血管內(nèi)皮是動(dòng)脈粥樣硬化病變的主要部位,顆粒物暴露使動(dòng)脈粥樣硬化病變?cè)鰪?qiáng)[11]。長(zhǎng)期顆粒物濃度與頸動(dòng)脈內(nèi)膜中層厚度進(jìn)展增加相關(guān)[12-14]。動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn),長(zhǎng)期暴露于較高濃度PM2.5會(huì)增加氧化應(yīng)激反應(yīng),也會(huì)促進(jìn)巨噬細(xì)胞浸潤(rùn)血管壁以及金屬基質(zhì)蛋白酶的表達(dá),使動(dòng)脈粥樣硬化加重,并使其處于不穩(wěn)定的狀態(tài)[15]。PM2.5還可能引起炎癥反應(yīng)和肺血管床釋放細(xì)胞因子,改變血管舒縮張力和脂質(zhì)過氧化物。大多數(shù)實(shí)驗(yàn)同時(shí)給予高脂肪飲食以加速動(dòng)脈粥樣硬化形成,所以不排除飲食因素為PM2.5影響的重要調(diào)節(jié)劑[16-18]。
3.2 高血壓
有研究發(fā)現(xiàn),血壓升高是CVD的強(qiáng)危險(xiǎn)因素,包括左心室質(zhì)量增加,這與長(zhǎng)期空氣污染暴露有關(guān)[19]。有研究顯示,長(zhǎng)期暴露于PM2.5與高血壓顯著相關(guān),空氣污染與血壓升高、高血壓之間存在正相關(guān)[20]。暴露于PM2.5可導(dǎo)致高血壓發(fā)生的風(fēng)險(xiǎn)增加,Liang等[21]通過Meta分析顯示,PM2.5濃度每升高10 μg/m3,收縮壓升高1.393 mmHg,舒張壓升高0.895 mmHg,在短期暴露后第5天血壓達(dá)到最高。Zhang等[22]研究表明,年平均PM2.5濃度每升高10 μg/m3,收縮壓升高 0.45mmHg,舒張壓升高0.07mmHg,脈壓升高0.38 mmHg。
3.3 心律失常
PM2.5對(duì)室性心律失常的影響仍存在諸多爭(zhēng)議??諝馕廴九c室性心律失常相關(guān)性不明顯[23-24]。但O′Neal等[25]研究發(fā)現(xiàn),PM2.5的短期暴露和長(zhǎng)期暴露均與室性期前收縮密切相關(guān)。在一項(xiàng)基于韓國國家樣本隊(duì)列數(shù)據(jù)的研究中,年平均暴露于PM2.5與心房顫動(dòng)風(fēng)險(xiǎn)增加相關(guān)[26]。Rich等[27]發(fā)現(xiàn)PM2.5 24 h移動(dòng)平均顆粒物濃度每升高1個(gè)四分位數(shù),室性心律失常發(fā)生風(fēng)險(xiǎn)增加19%。PM2.5與室上性心律失常的關(guān)系研究同樣如此。Milojevic等[28]研究顯示,PM2.5濃度每增加16 μg/m3,心律失常死亡風(fēng)險(xiǎn)增加21%,心房顫動(dòng)死亡風(fēng)險(xiǎn)增加21%。由此可見,PM2.5可能促進(jìn)室上性心律失常。但有研究對(duì)72名男性使用廣義線性混合效應(yīng)模型,結(jié)果表明,暴露于PM2.5的心室異位略有顯著增加,但與室上異位沒有關(guān)聯(lián)。與吸煙者相比,非吸煙者與PM2.5相關(guān)的心室異位的概率增加[29]。
3.4 心力衰竭
顆粒物的增加與心力衰竭住院或死亡率有關(guān)[30]。加拿大一項(xiàng)分析研究發(fā)現(xiàn),PM2.5濃度每升高10 μg/m3 ,慢性心力衰竭發(fā)生率也隨之升高[31]。另有證據(jù)顯示,暴露于PM2.5較長(zhǎng)時(shí)間后,會(huì)導(dǎo)致心臟后負(fù)荷加重,進(jìn)而增加急性心力衰竭的風(fēng)險(xiǎn)[32]。Yue等[33]通過動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)短期暴露于PM2.5可引起嚴(yán)重的肺部炎癥、血管重構(gòu),并加劇左心室衰竭向右心室肥厚的轉(zhuǎn)變。但其具體的機(jī)制仍需進(jìn)一步探討。
3.5 心肌梗死
短期暴露于細(xì)顆粒空氣污染CVD及相關(guān)死亡率主要與急性局部缺血事件的發(fā)生有關(guān),這表明一些吸入的污染物在暴露后數(shù)小時(shí)內(nèi)起到了觸發(fā)作用。一項(xiàng)對(duì)34項(xiàng)研究的薈萃分析顯示,所有空氣污染物(臭氧除外)均被確定為心肌梗死的潛在促成因素,PM10和PM2.5每增加10 mg/m3,每日相對(duì)風(fēng)險(xiǎn)分別增加0.7%(P<0.001)和1.7%(P=0.03)[34]。因此,空氣污染可能導(dǎo)致全球5%的急性心肌梗死[35]。在一項(xiàng)為期10年的回顧性CT隊(duì)列研究(6 795名參與者)中,冠狀動(dòng)脈鈣化加速與PM2.5濃度升高相關(guān)[36]。這表明局部缺血事件的發(fā)生與細(xì)顆??諝馕廴居兄匾穆?lián)系。
4 PM2.5作用的病理生理機(jī)制
PM2.5可能通過氧化應(yīng)激和炎癥、脂蛋白異常、內(nèi)皮細(xì)胞功能損傷、凝血纖溶系統(tǒng)的異常、自主神經(jīng)系統(tǒng)紊亂、細(xì)胞自噬與凋亡、鐵死亡等病理生理機(jī)制導(dǎo)致CVD的發(fā)生。
4.1 氧化應(yīng)激和炎癥
氧化應(yīng)激是指活性氧(ROS)的產(chǎn)生與抗氧化作用的不平衡。早期動(dòng)脈粥樣硬化呈現(xiàn)為氧化應(yīng)激、炎癥,氧化應(yīng)激的修復(fù)會(huì)加重氧化應(yīng)激的誘導(dǎo),從而使內(nèi)皮功能出現(xiàn)障礙[37]。 PM2.5暴露會(huì)增加ROS水平。同時(shí),ROS的積累會(huì)進(jìn)一步增強(qiáng)氧化應(yīng)激反應(yīng),導(dǎo)致DNA、蛋白質(zhì)、脂質(zhì)等細(xì)胞和分子損傷[38]。PM2.5通過抑制轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)和Smad3信號(hào)轉(zhuǎn)導(dǎo),ROS抑制劑NAC逆轉(zhuǎn)PM2.5調(diào)節(jié)的小鼠肺上皮細(xì)胞ROS和鐵細(xì)胞凋亡誘導(dǎo)鐵蛋白過多而致肺損傷和纖維化[39]。同時(shí)短期 PM2.5 暴露會(huì)導(dǎo)致肺氧化應(yīng)激標(biāo)志物3′-硝基酪氨酸(3′-NT)和4-羥基壬烯醛(4-HNE)顯著增加,從而引起嚴(yán)重的肺部炎癥、血管重塑,并加劇從左心室衰竭到右心室肥厚的過渡[33]。PM2.5也會(huì)促進(jìn)小膠質(zhì)細(xì)胞活化過表達(dá)煙酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶(NOX)和誘導(dǎo)型一氧化氮合酶(iNOS),催化ROS和一氧化氮(NO)的生成,并通過主要組織相容性復(fù)合物-Ⅱ、整合素、共刺激分子、Fc受體和細(xì)胞內(nèi)蛋白質(zhì)(離子鈣結(jié)合銜接分子-1、Iba-1)導(dǎo)致神經(jīng)損傷[40]。
炎癥是動(dòng)脈粥樣硬化發(fā)生和發(fā)展的關(guān)鍵因素,在氧化應(yīng)激之后,以增加的炎癥為特征是內(nèi)皮功能障礙的早期事件。人支氣管上皮細(xì)胞(16HBE)暴露于PM2.5后,細(xì)胞活力受到抑制,細(xì)胞凋亡增加。此外,在PM2.5誘導(dǎo)的炎癥小鼠模型和16HBE細(xì)胞中炎性細(xì)胞因子腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)和白細(xì)胞介素-6(IL-6)等水平升高,NOD樣受體蛋白3(NLRP3)/Caspase-1通路激活,然后進(jìn)一步介導(dǎo)全身炎癥反應(yīng)[41]。另一項(xiàng)研究還報(bào)道了由PM2.5觸發(fā)的氧化應(yīng)激通過激活細(xì)胞外信號(hào)調(diào)節(jié)激酶/蛋白激酶B/核因子κB(ERK/AKT/NF-κB)信號(hào)傳導(dǎo)途徑誘導(dǎo)細(xì)胞表面上的細(xì)胞間黏附分子-1(ICAM-1)和血管細(xì)胞黏附分子-1(VCAM-1)表達(dá),從而促進(jìn)單核細(xì)胞黏附至內(nèi)皮細(xì)胞[42]。Hu等[43]進(jìn)一步發(fā)現(xiàn)PM2.5刺激人臍靜脈內(nèi)皮細(xì)胞(HUVEC)的細(xì)胞毒性不僅增加了細(xì)胞黏附分子的細(xì)胞內(nèi)水平(ICAM-1和VCAM-1),也加速促炎性細(xì)胞因子分泌C-反應(yīng)蛋白(CRP)、TNF-α、IL-1β、IL-6、白細(xì)胞介素-8(IL-8)和促凝血因子,其通過上調(diào)Janus酪氨酸激酶1(JAK1)/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)信號(hào)傳導(dǎo)途徑導(dǎo)致內(nèi)皮活化。同時(shí)PM2.5增加Toll樣受體(TLR)2和TLR4的表達(dá),并促進(jìn)小鼠主動(dòng)脈以及HUVEC中炎性因子IL-1β和IL-6的分泌;另一方面,TLR2或TLR4的抑制減少了白細(xì)胞介素-1(IL-1)和IL-6的分泌,表明TLR2和TLR4均參與PM2.5誘導(dǎo)的血管炎癥反應(yīng)[44]。有研究證實(shí)TLR也與炎癥反應(yīng)密切相關(guān)[45]。這些發(fā)現(xiàn)為明確PM2.5暴露與動(dòng)脈粥樣硬化的關(guān)系提供了參考。
4.2 脂蛋白異常
PM2.5可通過影響脂蛋白和脂質(zhì)代謝,導(dǎo)致粥樣硬化斑塊中脂質(zhì)的累積。血清低密度脂蛋白(LDL)水平與心血管風(fēng)險(xiǎn)呈正相關(guān),而血清高密度脂蛋白(HDL)水平具有抗動(dòng)脈粥樣硬化作用[46]。
有研究證實(shí)了PM2.5提取物導(dǎo)致HDL和LDL的降解和聚集[47],同時(shí)HDL聚集中的載脂蛋白(Apo)A-I和LDL中的Apo-B消失。PM2.5也誘導(dǎo)細(xì)胞將氧化修飾的低密度脂蛋白(ox-LDL)攝取到巨噬細(xì)胞中。PM2.5溶液以劑量依賴性方式加速了ox-LDL的攝取和ROS的產(chǎn)生。最終得到了PM2.5水提物通過血清脂蛋白的聚集和蛋白水解降解誘導(dǎo)氧化應(yīng)激的結(jié)論。PM2.5暴露后使得粥樣硬化斑塊中巨噬細(xì)胞的含量增多,而巨噬細(xì)胞通過攝取和活化ox-LDL和抗ox-LDL 組成的免疫復(fù)合物,加重氧化應(yīng)激,進(jìn)而加速動(dòng)脈粥樣硬化[48]。
4.3 凝血纖溶系統(tǒng)的異常
PM2.5促進(jìn)止血和血栓形成[49]。有觀點(diǎn)認(rèn)為,顆粒物污染物(尤其是PM2.5)引起的止血變化可能導(dǎo)致血栓形成事件和其他不良心血管結(jié)局。Xu等[50]觀察到急性暴露于高水平空氣污染與動(dòng)脈粥樣硬化斑塊脆弱性增加和血栓形成增加相關(guān),還證明了空氣污染相關(guān)血栓形成可能涉及的各種潛在機(jī)制,包括斑塊易損性標(biāo)志物升高、血小板活化增加、凝血酶原時(shí)間縮短、纖維蛋白溶解過程改變和全身性炎癥的循環(huán)生物標(biāo)志物(IL-1β、CRP、巨噬細(xì)胞炎性蛋白-1a/b、晚期糖基化終產(chǎn)物的可溶性受體和胰島素樣生長(zhǎng)因子結(jié)合蛋白)。這些發(fā)現(xiàn)表明,空氣污染相關(guān)的血栓前狀態(tài)可能顯著增加CVD發(fā)病率和死亡率。
4.4 內(nèi)皮細(xì)胞功能的損傷
血管內(nèi)皮功能改變可能是導(dǎo)致空氣污染介導(dǎo)的CVD的最早病理生理學(xué)機(jī)制。PM2.5誘導(dǎo)內(nèi)皮功能損傷,是因?yàn)镻M2.5中的某些有機(jī)化學(xué)物質(zhì),如多環(huán)芳烴,黏附在顆粒的碳核上,可觸發(fā)Ca2+信號(hào)傳導(dǎo),增加內(nèi)皮細(xì)胞的炎癥[51]。Wei等[52]對(duì)北京的PM2.5進(jìn)行了采樣,推測(cè)PM2.5中的金屬成分是導(dǎo)致內(nèi)皮細(xì)胞氧化損傷的主要因素,關(guān)鍵機(jī)制是ROS生成,導(dǎo)致氧化應(yīng)激的產(chǎn)生。PM2.5引發(fā)血管內(nèi)皮損傷的機(jī)制主要涉及血管內(nèi)皮通透性、血管舒縮功能和血管修復(fù)能力3個(gè)方面[53]。PM2.5可通過氧化應(yīng)激、炎癥、內(nèi)質(zhì)網(wǎng)應(yīng)激、線粒體功能障礙、鐵細(xì)胞凋亡、自噬和細(xì)胞凋亡等對(duì)血管內(nèi)皮發(fā)揮毒性作用。此外,PM2.5影響內(nèi)皮細(xì)胞的生理功能,如凝血和纖溶平衡、血管張力、滲透性、胰島素敏感性和血管生成。PM2.5還可調(diào)節(jié)一系列內(nèi)皮相關(guān)生物標(biāo)志物,包括ICAM-1、VCAM2oLbqJdeVXeeGJvkDN3JwA==-1以及E選擇素和P選擇素,從而引起血管內(nèi)皮的一系列病理生理改變[54]。
4.5 鐵死亡
Wang等[55]發(fā)現(xiàn) PM2.5被內(nèi)化到內(nèi)皮細(xì)胞中,隨后導(dǎo)致鐵中毒樣細(xì)胞死亡。在PM2.5處理的細(xì)胞中,溶質(zhì)載體家族7成員11(SLC7A11)、NADPH氧化酶1(NOX1)和氧化應(yīng)激相關(guān)基因(NQO1)上調(diào),從而導(dǎo)致ROS產(chǎn)生增加。PM2.5內(nèi)化后,內(nèi)皮細(xì)胞出現(xiàn)胞漿腫脹、空泡化、質(zhì)膜破裂等明顯形態(tài)學(xué)變化。與此同時(shí),內(nèi)皮細(xì)胞的存活率下降,脂質(zhì)過氧化抑制劑和鐵螯合劑甲磺酸去鐵胺可減輕其活性。這些結(jié)果表明,PM2.5內(nèi)化入內(nèi)皮細(xì)胞后,導(dǎo)致細(xì)胞內(nèi)鐵和氧化還原平衡被破壞,從而導(dǎo)致細(xì)胞內(nèi)鐵細(xì)胞凋亡。轉(zhuǎn)鐵蛋白受體(TFRC)表達(dá)明顯降低,而鐵蛋白輕鏈(FTL)表達(dá)增加,提示鐵攝取和儲(chǔ)存功能障礙是PM2.5誘導(dǎo)內(nèi)皮細(xì)胞鐵超負(fù)荷的主要環(huán)節(jié)。SLC7A11是質(zhì)膜反向轉(zhuǎn)運(yùn)蛋白的關(guān)鍵成分,該蛋白負(fù)責(zé)細(xì)胞內(nèi)谷胱甘肽(GSH)的產(chǎn)生,從而有助于維持細(xì)胞的抗氧化能力。SLC7A11的抑制導(dǎo)致GSH耗竭和細(xì)胞鐵中毒樣死亡[56]。過量的ROS導(dǎo)致GSH耗竭和脂質(zhì)過氧化,最終導(dǎo)致鐵蛋白過多。表明PM2.5促進(jìn)了鐵過載、脂質(zhì)過氧化和內(nèi)皮細(xì)胞中氧化還原失衡的敏感性。
4.6 自噬與凋亡
PM2.5通過上調(diào)FHL2表達(dá)激活NF-κB相關(guān)炎癥,表明自噬可能是激活炎癥反應(yīng)的FHL2/NF-κB信號(hào)途徑的調(diào)節(jié)因子[57]。但是,Zhou等[58]報(bào)道PM2.5誘導(dǎo)的細(xì)胞自噬對(duì)HUVEC中由PM2.5介導(dǎo)的損傷起保護(hù)作用。這種矛盾的現(xiàn)象歸因于細(xì)胞自噬的程度。另一項(xiàng)研究結(jié)果表明,屬于PM2.5成分的一種柴油機(jī)廢氣顆粒(DEP)通過內(nèi)化到HUVEC的細(xì)胞質(zhì)中增加細(xì)胞內(nèi)ROS的產(chǎn)生,并且通過HUVEC中的ROS以正反饋方式增強(qiáng)[59]。然而,細(xì)胞自噬通過上調(diào)小鼠雙微體2(Mdm2)表達(dá)誘導(dǎo)自噬并抑制細(xì)胞衰老不能清除吞噬的DEP,從而導(dǎo)致細(xì)胞內(nèi)ROS持續(xù)增加,最終觸發(fā)細(xì)胞凋亡并導(dǎo)致內(nèi)皮功能障礙。此外,Beclin1和微管相關(guān)蛋白輕鏈3(LC3)-Ⅱ/LC3-Ⅰ比值也明顯升高,提示自噬體形成。其可能機(jī)制是PM2.5降低了磷脂酰肌醇3-激酶(PI3K)/AKT的磷酸化,抑制了雷帕霉素靶蛋白(mTOR)的激活,而ROS抑制劑n-乙酰-l-半胱氨酸(NAC)有效地挽救了這一作用[60]。這些研究表明ROS-AKT-mTOR軸在PM2.5誘導(dǎo)的HUVEC自噬中發(fā)揮關(guān)鍵作用??傮w而言,對(duì)PM2.5暴露下內(nèi)皮細(xì)胞的研究表明,PM2.5可誘導(dǎo)內(nèi)皮細(xì)胞自噬和凋亡,F(xiàn)HL2/NF-κB信號(hào)通路和ROS-AKT-mTOR軸參與了這一過程。PM2.5誘導(dǎo)的自噬激活了血管內(nèi)皮細(xì)胞的炎癥反應(yīng),并持續(xù)增強(qiáng)細(xì)胞內(nèi)ROS的增加。在PM2.5誘導(dǎo)的細(xì)胞自噬和凋亡過程中有更多的信號(hào)通路參與,仍有待進(jìn)一步闡明。
4.7 自主神經(jīng)功能失調(diào)
Perez等[61]綜述了空氣污染干擾自主神經(jīng)系統(tǒng)(ANS)的現(xiàn)有證據(jù),吸入的空氣污染物作為肺受體的刺激物,觸發(fā)肺反射弧,進(jìn)而與心率、血壓、心律失常和ST段壓低的變化相關(guān)。同時(shí)暴露于空氣污染會(huì)導(dǎo)致壓力感受器敏感性降低。壓力反射的脫敏導(dǎo)致ANS對(duì)血管張力控制的失調(diào)。也有研究證實(shí)了暴露在鋼鐵廠附近的空氣污染中與心率變異性的降低有關(guān)。空氣污染相關(guān)的ANS失調(diào)可能涉及3種作用機(jī)制,包括對(duì)神經(jīng)系統(tǒng)、血管和心肌的直接毒性作用及相關(guān)的氧化應(yīng)激損傷和炎癥對(duì)血管功能和自主神經(jīng)調(diào)節(jié)血管緊張度的影響,以及呼吸感覺神經(jīng)的沉積和激活,可轉(zhuǎn)化為ANS毒性和失調(diào)。同時(shí)研究也提示,隨著PM2.5暴露水平的增加,校正QT間期(QTc)間隔增加,T 波振幅降低[62]。
5 中醫(yī)藥防治
多種中藥單體、中藥復(fù)方及中成藥可調(diào)節(jié)內(nèi)皮細(xì)胞功能,延緩心血管系統(tǒng)疾病的發(fā)展。黃芪甲苷Ⅳ(AS-Ⅳ)是從黃芪中提取到的皂苷類物質(zhì),AS-Ⅳ可預(yù)防PM2.5誘導(dǎo)的組織病理學(xué)損傷、炎癥、自噬功能障礙、細(xì)胞凋亡和腺苷酸活化蛋白激酶(AMPK)水平變化。AS-Ⅳ通過激活雷帕霉素的AMPK/mTOR途徑增加自噬通量并抑制細(xì)胞凋亡和炎癥[63]。香菇多糖通過抑制炎性因子、上皮- 間充質(zhì)轉(zhuǎn)化的產(chǎn)生和肺癌細(xì)胞的遷移來發(fā)揮抗腫瘤作用。香菇多糖通過抑制PM2.5暴露誘導(dǎo)的漿細(xì)胞瘤轉(zhuǎn)化遷移基因(PVT2)表達(dá)升高來抑制損傷進(jìn)展[64]。黃芩苷是一種草本衍生的有效類黃酮化合物,具有多種健康益處。黃芩苷可以潛在地預(yù)防和改善PM2.5暴露引起的小鼠肺部炎癥損傷。黃芩苷可能通過平衡口咽微生物群和影響高遷移率族蛋白B1(HMGB1)/半胱天冬酶1的表達(dá)來提供保護(hù)作用[65]。
6 小 結(jié)
PM2.5已被廣泛認(rèn)為是主要的空氣污染物之一,大量研究結(jié)果表明,PM2.5可對(duì)人體產(chǎn)生嚴(yán)重影響,許多更深層次的機(jī)制仍值得我們探究,以減少PM2.5的不利影響并為防止未來相關(guān)疾病的潛在發(fā)生和死亡做出科學(xué)指導(dǎo)及理論支撐。
參考文獻(xiàn):
[1] MUKHERJEE A,AGRAWAL M.A global perspective of fine particulate matter pollution and its health effects[J].Reviews of Environmental Contamination and Toxicology,2018,244:5-51.
[2] DU P R,DU R,REN W S,et al.Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city,China[J].Science of the Total Environment,2018,610:308-315.
[3] KIM YSEO J,KIM J Y.Characterization of PM2.5 and identification of transported secondary and biomass burning contribution in Seoul,Korea[J].Environmental Science and Pollution Research International,2018,25(5):4330-4343.
[4] SIMKHOVICH B Z,KLEINMAN M T,KLONER R A.Air pollution and cardiovascular injury epidemiology,toxicology,and mechanisms[J].Journal of the American College of Cardiology,2008,52(9):719-726.
[5] MURRAY C J L,ARAVKIN A Y,ZHENG P,et al.Global burden of 87 risk factors in 204 countries and territories,1990-2019:a systematic analysis for the global burden of disease study 2019[J].The Lancet,2020,396(10258):1223-1249.
[6] HYSTAD P,LARKIN A,RANGARAJAN S,et al.Associations of outdoor fine particulate air pollution and cardiovascular disease in 157 436 individuals from 21 high-income, middle-income, and low-income countries(PURE):a prospective cohort study[J].The Lancet Planetary Health,2020,4(6):e235-e245.
[7] YUSUF S,JOSEPH P,RANGARAJAN S,et al.Modifiable risk factors,cardiovascular disease,and mortality in 155 722 individuals from 21 high-income,middle-income,and low-income countries(PURE):a prospective cohort study[J].Lancet,2020,395(10226):795-808.
[8] LIANG F C,LIU F C,HUANG K Y,et al.Long-term exposure to fine particulate matter and cardiovascular disease in China[J].Journal of the American College of Cardiology,2020,75(7):707-717.
[9] 萬征,邊波.顆粒物大氣污染:獨(dú)立的心血管病危險(xiǎn)因素[J].中國循證心血管醫(yī)學(xué)雜志,2011,3(5):332-335.
[10] SUN Q H,HONG X R,WOLD L E.Cardiovascular effects of ambient particulate air pollution exposure[J].Circulation,2010,121(25):2755-2765.
[11] WANG F F,JIA X F,WANG X L,et al.Particulate matter and atherosclerosis:a bibliometric analysis of original research articles published in 1973-2014[J].BMC Public Health,2016,16:348.
[12] SUN M,KAUFMAN J D,KIM S Y,et al.Particulate matter components and subclinical atherosclerosis:common approaches to estimating exposure in a multi-ethnic study of atherosclerosis cross-sectional study[J].Environmental Health,2013,12:39.
[13] ADAR S D,SHEPPARD L,VEDAL S,et al.Fine particulate air pollution and the progression of carotid intima-medial thickness:a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution[J].PLoS Medicine,2013,10(4): e1001430.
[14] BAUER M,MOEBUS S,MHLENKAMP S,et al.Urban particulate matter air pollution is associated with subclinical atherosclerosis results from the HNR(heinz nixdorf recall) study[J].Journal of the American College of Cardiology,2010,56(22):1803-1808.
[15] NURKIEWICZ T R,PORTER D W,BARGER M,et al.Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure[J].Environmental Health Perspectives,2006,114(3):412-419.
[16] LI R S,NAVAB M,PAKBIN P,et al.Ambient ultrafine particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice[J].Journal of Lipid Research,2013,54(6):1608-1615.
[17] SOARES S R C,CARVALHO-OLIVEIRA R,RAMOS-SANCHEZ E,et al.Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice[J].Atherosclerosis,2009,207(2):368-373.
[18] WAN Q,CUI X B,SHAO J M,et al.Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice by upregulating visfatin expression[J].Cell Stress & Chaperones,2014,19(5):715-724.
[19] VAN HEE V C,ADAR S D,SZPIRO A A,et al.Exposure to traffic and left ventricular mass and function: the multi-ethnic study of atherosclerosis[J].American Journal of Respiratory and Critical Care Medicine,2009,179(9):827-834.
[20] YANG B Y,QIAN Z M,HOWARD S W,et al.Global association between ambient air pollution and blood pressure:a systematic review and meta-analysis[J].Environmental Pollution,2018,235:576-588.
[21] LIANG R J,ZHANG B,ZHAO X Y,et al.Effect of exposure to PM2.5 on blood pressure:a systematic review and meta-analysis[J].Journal of Hypertension,2014,32(11):2130-2140.
[22] ZHANG Z L,GUO C,LAU A K H,et al.Long-term exposure to fine particulate matter,blood pressure,and incident hypertension in Chinese Taiwan adults[J].Environmental Health Perspectives,2018,126(1):017008.
[23] RAJAGOPALAN S,AL-KINDI S G,BROOK R D.Air pollution and cardiovascular disease JACC state-of-the-art review[J].Journal of the American College of Cardiology,2018,72(17):2054-2070.
[24] NEWBY D E,MANNUCCI P M,TELL G S,et al.Expert position paper on air pollution and cardiovascular disease[J].European Heart Journal,2015,36(2):83-93.
[25] O′NEAL W T,SOLIMAN E Z,EFIRD J T,et al.Fine particulate air pollution and premature ventricular contractions:the reasons for geographic and racial differences in stroke(REGARDS) study[J].Environmental Research,2017,154:115-119.
[26] KIM I S,YANG P S,LEE J,et al.Long-term exposure of fine particulate matter air pollution and incident atrial fibrillation in the general population:a nationwide cohort study[J].International Journal of Cardiology,2019,283:178-183.
[27] RICH D Q,SCHWARTZ J,MITTLEMAN M A,et al.Association of short-term ambient air pollution concentrations and ventricular arrhythmias[J].American Journal of Epidemiology,2005,161(12):1123-1132.
[28] MILOJEVIC A,WILKINSON P,ARMSTRONG B,et al.Short-term effects of air pollution on a range of cardiovascular events in England and Wales:case-crossover analysis of the MINAP database,hospital admissions and mortality[J].Heart,2014,100(14):1093-1098.
[29] CAVALLARI J M,F(xiàn)ANG S C,EISEN E A,et al.Environmental and occupational particulate matter exposures and ectopic heart beats in welders[J].Occupational and Environmental Medicine,2016,73(7):435-441.
[30] SHAH A S V,LANGRISH J P,NAIR H,et al.Global association of air pollution and heart failure:a systematic review and meta-analysis[J].Lancet,2013,382(9897):1039-1048.
[31] TO T,ZHU J Q,VILLENEUVE P J,et al.Chronic disease prevalence in women and air pollution--a 30-year longitudinal cohort study[J].Environment International,2015,80:26-32.
[32] MEO S A,SURAYA F.Effect of environmental air pollution on cardiovascular diseases[J].European Review for Medical and Pharmacological Sciences,2015,19(24):4890-4897.
[33] YUE W H,TONG L,LIU X H,et al.Short term PM2.5 exposure caused a robust lung inflammation,vascular remodeling,and exacerbated transition from left ventricular failure to right ventricular hypertrophy[J].Redox Biology,2019,22:101161.
[34] MUSTAFIC H,JABRE P,CAUSSIN C,et al.Main air pollutants and myocardial infarction:a systematic review and meta-analysis[J].JAMA,2012,307(7):713-721.
[35] NAWROT T S,PEREZ L,KNZLI N,et al.Public health importance of triggers of myocardial infarction:a comparative risk assessment[J].Lancet,2011,377(9767):732-740.
[36] KAUFMAN J D,ADAR S D,BARR R G,et al.Association between air pollution and coronary artery calcification within six metropolitan areas in the USA(the multi-ethnic study of atherosclerosis and air pollution):a longitudinal cohort study[J].The Lance1LTxIVDoBcoOrms01PWCXg==t,2016,388(10045):696-704.
[37] MARCHIO P,GUERRA-OJEDA S,VILA J M,et al. Targeting early atherosclerosis:a focus on oxidative stress and inflammation[J].Oxidative Medicine and Cellular Longevity,2019,2019:8563845.
[38] LIU K M,HUA S C,SONG L.PM2.5 exposure and asthma development:the key role of oxidative stress[J].Oxidative Medicine and Cellular Longevity,2022,2022:3618806.
[39] GUO L,BAI S P,DING S H,et al.PM2.5 exposure induces lung injury and fibrosis by regulating ferroptosis via TGF-β signaling[J].Disease Markers,2022,2022:7098463.
[40] GARZA-LOMB C,POSADAS Y,QUINTANAR L,et al.Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure:redox signaling and oxidative stress[J].Antioxidants & Redox Signaling,2018,28(18):1669-1703.
[41] JIA H,LIU Y,GUO D,et al.PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway[J].Environmental Toxicology,2020,36(3):298-307.
[42] RUI W,GUAN L F,ZHANG F,et al.PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway[J].Journal of Applied Toxicology,2016,36(1):48-59.
[43] HU H J,WU J,LI Q L,et al.Fine particulate matter induces vascular endothelial activation via IL-6 dependent JAK1/STAT3 signaling pathway[J].Toxicology Research,2016,5(3):946-953.
[44] LE Y F,HU X,ZHU J,et al.Ambient fine particulate matter induces inflammatory responses of vascular endothelial cells through activating TLR-mediated pathway[J].Toxicology and Industrial Health,2019,35(10):670-678.
[45] VAN IERSSEL S H,JORENS P G,VAN CRAENENBROECK E M,et al.The endothelium, a protagonist in the pathophysiology of critical illness:focus on cellular markers[J].BioMed Research International,2014,2014:985813.
[46] MANNUCCI P M,HARARI S,MARTINELLI I,et al.Effects on health of air pollution:a narrative review[J].Internal and Emergency Medicine,2015,10(6):657-662.
[47] KIM J Y,LEE E Y,CHOI I,et al.Effects of the particulate matter 2.5 (PM2.5) on lipoprotein metabolism, uptake and degradation, and embryo toxicity[J].Molecules and Cells,2015,38(12):1096-1104.
[48] KATTOOR A J,KANURI S H,MEHTA J L.Role of ox-LDL and LOX-1 in atherogenesis[J].Current Medicinal Chemistry,2019,26(9):1693-1700.
[49] ROBERTSON S,MILLER M R.Ambient air pollution and thrombosis[J].Particle and Fibre Toxicology,2018,15(1):1.
[50] XU H B,WANG T,LIU S C,et al.Extreme levels of air pollution associated with changes in biomarkers of atherosclerotic plaque vulnerability and thrombogenicity in healthy adults[J].Circulation Research,2019,124(5):e30-e43.
[51] BRINCHMANN B C,LE FERREC E,PODECHARD N,et al.Organic chemicals from diesel exhaust particles affects intracellular calcium,inflammation and β-adrenoceptors in endothelial cells[J].Toxicology Letters,2019,302:18-27.
[52] WEI H,WEI D,YI S,et al.Oxidative stress induced by urban fine particles in cultured EA.hy926 cells[J].Human & Experimental Toxicology,2011,30(7):579-590.
[53] LIANG S,ZHANG J Y,NING R H,et al.The critical role of endothelial function in fine particulate matter-induced atherosclerosis[J].Particle and Fibre Toxicology,2020,17(1):61.
[54] XIE W,YOU J,ZHI C X,et al.The toxicity of ambient fine particulate matter(PM2.5) to vascular endothelial cells[J].Journal of Applied Toxicology,2021,41(5):713-723.
[55] WANG Y,TANG M.PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance[J].Environmental Pollution,2019,254(Pt A):112937.
[56] JIANG L,KON N,LI T Y,et al.Ferroptosis as a p53-mediated activity during tumour suppression[J].Nature,2015,520(7545):57-62.
[57] XIA W R,F(xiàn)U W L,WANG Q,et al.Autophagy induced FHL2 upregulation promotes IL-6 production by activating the NF-κB pathway in mouse aortic endothelial cells after exposure to PM2.5[J].International Journal of Molecular Sciences,2017,18(7):1484.
[58] ZHOU Z X,SHAO T,QIN M N,et al.The effects of autophagy on vascular endothelial cells induced by airborne PM2.5[J].Journal of Environmental Sciences(China),2018,66:182-187.
[59] WANG J S,TSENG C Y,CHAO M W.Diesel exhaust particles contribute to endothelia apoptosis via autophagy pathway[J].Toxicological Sciences,2017,156(1):72-83.
[60] DING R,ZHANG C,ZHU X X,et al.ROS-AKT-mTOR axis mediates autophagy of human umbilical vein endothelial cells induced by cooking oil fumes-derived fine particulate matters in vitro[J].Free Radical Biology and Medicine,2017,113:452-460.
[61] PEREZ C M,HAZARI M S,F(xiàn)ARRAJ A K.Role of autonomic reflex arcs in cardiovascular responses to air pollution exposure[J].Cardiovascular Toxicology,2015,15(1):69-78.
[62] BURGAN O,SMARGIASSI A,PERRON S,et al.Cardiovascular effects of sub-daily levels of ambient fine particles:a systematic review[J].Environmental Health,2010,9:26.
[63] WANG Z X,WU Y C,PEI C X,et al.Astragaloside Ⅳ pre-treatment attenuates PM2.5-induced lung injury in rats:impact on autophagy,apoptosis and inflammation[J].Phytomedicine,2022,96:153912.
[64] QI H,LIU Y,WANG N,et al.Lentinan attenuated the PM2.5 exposure-induced inflammatory response,epithelial-mesenchymal transition and migration by inhibiting the PVT1/miR-199a-5p/caveolin1 pathway in lung cancer[J]. DNA and Cell Biology,2021,40(5):683-693.
[65] DENG L L,MA M Y,LI S Y,et al.Protective effect and mechanism of baicalin on lung inflammatory injury in BALB/cJ mice induced by PM2.5[J]. Ecotoxicology and Environmental Safety,2022,248:114329.
(收稿日期:2023-04-27)
(本文編輯 王麗)