摘要:宮頸癌嚴重威脅女性健康,尋找早期診斷敏感指標非常重要。環(huán)狀RNAs(circRNAs)通過充當microRNA海綿與蛋白質相互作用參與惡性腫瘤的發(fā)生發(fā)展。circMTO1在許多惡性腫瘤中異常表達,在宮頸癌中,circMTO1通過miR-6893/S100A1通路可能以調節(jié)細胞周期、促進抗凋亡途徑、促進血管形成的方式,以及通過miR-6893/自噬信號以促進DNA及染色體的損傷、誘發(fā)細胞氧化損傷的方式參與宮頸癌發(fā)生發(fā)展。本文對上述發(fā)生機制進行總結,以期為宮頸癌的診斷提供新思路。
關鍵詞:宮頸癌;circMTO1;miR-6893;S100A1;自噬
中圖分類號:R737.33 文獻標識碼:A DOI:10.3969/j.issn.1006-1959.2024.20.040
文章編號:1006-1959(2024)20-0183-05
Study on the Role of circMTO1 in the Development of Cervical Cancer
WEN Ting1,LU Huixia1,2
(1.Clinical Medical College,Dali University,Dali 671000,Yunnan,China;
2.Department of Gynecology,the First Affiliated Hospital of Dali University,Dali 671000,Yunnan,China)
Abstract:Cervical cancer is a serious threat to women's health. It is very important to find sensitive indicators for early diagnosis. circular RNAs (circRNAs) are involved in the occurrence and development of malignant tumors by acting as microRNA sponges to interact with proteins. circMTO1 is abnormally expressed in many malignant tumors. In cervical cancer, circMTO1 may participate in the development of cervical cancer by regulating cell cycle, promoting anti-apoptotic pathway, promoting angiogenesis through miR-6893/S100A1 pathway, and promoting DNA and chromosome damage and inducing cell oxidative damage through miR-6893/autophagy signal. This article summarizes the above-mentioned mechanisms, in order to provide new ideas for the diagnosis of cervical cancer.
Key words:Cervical cancer;circMTO1;miR-6893;S100A1;Autophagy
宮頸癌(cervical cancer)是發(fā)病率與死亡率均第一位的女性生殖道惡性腫瘤,全球每年約53萬新發(fā)病例,27萬死亡病例,其中近90%發(fā)生在發(fā)展中國家[1]。嚴重威脅女性的生命與健康。盡管宮頸癌治療取得了很大進展,但死亡率仍然很高,且年輕病例越來越多。探索宮頸癌的發(fā)病機制,尋找針對早期癌癥治療方法,將其扼殺在搖籃里。線粒體翻譯優(yōu)化1同源物(mitochondrial translation optimization 1 homolog,MTO1)通過多種信號通路影響宮頸癌的發(fā)生發(fā)展,并參與調控宮頸癌對化療的敏感性。環(huán)狀(circ)RNA-MTO1(circRNA ID:hsa_circRNA _0007874)異常表達與多種癌癥(包括肝細胞癌[2]、結直腸癌[3]、膀胱癌[4]等)的發(fā)生密切相關。miRNA本身不能翻譯為蛋白質[5]。circRNA作為競爭性內源RNA(ceRNAs),以類似海綿的方式吸附靶微小(micro)RNA,抑制其與胞質中靶基因mRNA結合,實現(xiàn)調節(jié)靶基因表達的目的[6,7]。S100A1屬于鈣離子結合蛋白S100家族,通常在惡性腫瘤中過度表達[8,9]。miR-6893作為circMTO1的下游靶點首次在宮頸癌中被發(fā)現(xiàn),miR-6893-5P被證實與前列腺癌的增殖和遷徙有關,兩者均通過靶向調節(jié)S100A家族影響細胞生理和病理過程[10,11]。而circMTO1通過海綿化miR-6893,保護目標S100A1 mRNA不受降解從而導致宮頸癌發(fā)生,以及circMTO1通過增強Beclin1的表達,進而降低p62,導致宮頸癌發(fā)生的機制尚不清楚,因此本文對上述發(fā)生機制作一綜述,以期對宮頸癌的發(fā)生發(fā)展有更清楚的認知,從而為宮頸癌的診斷提供新的思路。
1 circMTO1的生物學功能
circMTO1來源于MTO1基因的外顯子2和3,剪接長度為318bp,由Han D等[2]首次在肝細胞癌中發(fā)現(xiàn)。circMTO1主要存在于細胞質中,在人體組織大量穩(wěn)定表達[12],它是由MTO1前體mRNA非線性剪接形成的單鏈環(huán)狀RNA,封閉的結構使得circMTO1更能抵抗RNA降解,可以作為miRNA海綿體介導不同的靶基因,調控相關的信號通路。circMTO1在大多數(shù)情況下是一種抑癌因子,抑制腫瘤細胞的增殖、遷移和侵襲,并誘導細胞凋亡,在少部分癌癥中也可作為致癌因子[13]。
2 MTO1直接與miR-6893作用促進宮頸癌發(fā)生發(fā)展作用機制
circMTO1可直接與miRNA結合通過調節(jié)不同信號通路影響腫瘤的發(fā)生發(fā)展。Ge Z等[3]發(fā)現(xiàn)circMTO1可通過調控Wnt/β-連環(huán)蛋白(Wnt/β-catenin)信號通路影響結直腸癌細胞的生長和侵襲。過表達circMTO1可以通過下調miR-19b-3p,抑制Janus激酶1/信號轉導及轉錄活化因子3(Janus kinase 1/Signal transducer and activator of transcription 3, JAK1/STAT3)和腺苷酸活化蛋白激酶(AMPK)信號通路,抑制直腸癌細胞增殖、遷移和侵襲,誘導細胞凋亡。Li Y等[4]研究表明circMTO1在膀胱癌細胞中的過表達可負調控上皮標記物E-鈣黏蛋白/間質標記物N-鈣黏蛋白(E-cadherin/N-cadherin)通路,競爭性結合miR-221,抑制細胞的上皮-間充質轉化(epithelial-mesenchymal transition, EMT)和轉移。
宮頸癌細胞中circMTO1水平較正常組織增加了3~4倍,可能是宮頸癌進展的致癌基因。在異種腫瘤移植試驗中circMTO1敲低顯著損害宮頸癌細胞的生長能力[11]。miR-6893抑制劑能夠部分恢復shcircMTO1 HeLa細胞的腫瘤形成能力。因此miR-6893通過拮抗宮頸癌細胞的circMTO1抑制腫瘤發(fā)生。雙熒光素酶報告基因分析顯示[11],在有野生型circMTO1融合的pGL3構建體的細胞中,miR-6893模擬物明顯減弱熒光素酶活性,而miR-6893抑制劑極大地促進了熒光素酶活性。同樣,miR-6893水平在circMTO1敲除的HeLa細胞中升高,在circMTO1過表達的細胞中降低[11],表明circMTO1直接與miR-6893存在相互作用,可能可以作為治療的切入點。
3 MTO1通過miR-6893/S100A1通路促進宮頸癌發(fā)生發(fā)展的作用機制
circMTO1可通過海綿化miRNA結合調節(jié)下游靶基因影響腫瘤的發(fā)生發(fā)展。circMTO1通過miR-541-5p/ZIC1軸調節(jié)Wnt/β-catenin信號通路和EMT,抑制肝細胞癌進展[14]。circMTO1作為miR-17的海綿,促進RNA結合蛋白震顫同系物-5(quaking-5, QKI-5)的表達,導致Notch信號通路失活,從而抑制肺癌的生長[15]。同樣地,circMTO1作為miR-6893的海綿,保護目標S100A1mRNA不受miR-6893的依賴性降解,從而促進宮頸癌的發(fā)生發(fā)展。
S100A1是S100蛋白家族中的一員,主要在心肌中表達[16]。病理條件下異常表達與腫瘤發(fā)生發(fā)展有關[17]。S100A1通過糖基化終末產(chǎn)物受體(receptor for advanced glycation endproducts, RAGE)激活JAK/STAT、磷脂酰肌醇3激酶/蛋白激酶B(PI3K/PKB)和細胞外信號調節(jié)激酶/核因子κB(ERK/NF-κB)通路,最終激活促炎因子轉錄,包括腫瘤壞死因子-α(TNF-α)、白介素1β(IL-1β)以及其他導致活性氧(ROS)形成和凋亡的機制[18]。王蕾等[10]發(fā)現(xiàn)前列腺癌LNCaP細胞中miR-6893-5p使S100A16表達下調后,細胞周期依賴性激酶4(CDK4)、細胞遷移蛋白(N-cadherin)表達均降低,提示LNCaP細胞的增殖和遷移能力均被抑制。
circRNA通過海綿化miRNA,抑制其與靶基因mRNA結合,從而實現(xiàn)靶基因的調節(jié)。Mao Y等[19]發(fā)現(xiàn)真核翻譯起始因子4G2(eukaryotic translation initiation factor 4G2, eIF4G2)可能通過海綿作用增加miR-218同源異形盒基因A1(HOXA1)的表達從而促進宮頸癌細胞的增值。circAMOTL1作為ceRNA,通過海綿化miR-485-5p增強AMOTL1表達,促進宮頸癌細胞的生長[20]。circRNA可以海綿化miRNA抑制其與鈣離子結合蛋白mRNA結合[21]。因此,circMTO1可能通過吸附miR-6893,抑制其與S100A1mRNA結合從而控制S100A1的表達影響宮頸癌發(fā)生發(fā)展。shcircMTO1-或miR-6893 Mimi轉染的宮頸癌細胞中,S100A1表達下調60%~70%。在敲除circMTO1引入S100A1或轉染miR-6893模擬物引入S100A1的HeLa細胞中,S100A1水平比空白對照組細胞高5~7倍且HeLa細胞遷移和侵襲能力顯著受損。S100A1顯著挽救了shcircMTO1或轉染miR-6893模擬物的HeLa細胞遷移和侵襲表型[11]。circMTO1通過吸附miR-6893,控制S100A1的表達影響宮頸癌發(fā)生發(fā)展的可能機制。
3.1改變細胞周期 細胞周期改變引起的增殖失調是腫瘤發(fā)生的重要環(huán)節(jié),S100A1蛋白參與腫瘤細胞周期的調控[22]。S100A1過表達的子宮內膜癌細胞G2/M期細胞比例比對照組顯著增加[23]。G2/M期細胞快速增長并合成大量有絲分裂所需蛋白質。其中,細胞分裂周期蛋白25同源蛋白C(CDC25C)起到重要作用。當處于M期起始階段時,CDC25C轉移至細胞核內,去磷酸化細胞周期蛋白依賴性激酶1(cyclin-de-pendent protein kinase 1, CDK1)中對應的抑制性位點,活化細胞周期蛋白B1(cyclin B1)-CDKl復合物,啟動細胞的有絲分裂程序。CDC25C也控制著G2期檢查點開關的閉合[24]。抑制CDC25C活性,G2/M期總開關尚未開啟,細胞周期受阻[25],高表達的CDC25C導致多類CDKs的異?;罨毎唤?jīng)過周期檢查點便啟動,該過程可能和腫瘤的出現(xiàn)相關[26]。因此S100A1促進宮頸癌細胞增殖可能與調節(jié)細胞周期有關,具體作用機制尚不明確。
3.2促進抗凋亡途徑 外源性S100A1可以通過結合RAGE受體,導致NF-κB信號通路激活,增強B淋巴細胞癌-2基因(B-cell lymphoma, Bcl-2)蛋白的抗凋亡活性。S100A1可以激活細胞外信號調節(jié)激酶(extracellular signal-regulated kinases, ERK)1/2信號級聯(lián)反應,增強腫瘤細胞對凋亡的抵抗力[27]。Bcl-2半胱氨酸能與ERK 1/2形成Bcl-2-ERK復合物而抑制細胞凋亡[28]??焖僭鲋车膼盒阅[瘤組織中存在中心壞死區(qū)域,該區(qū)域環(huán)境中伴有相對的低氧血癥,壞死的腫瘤細胞釋放S100A1給周圍腫瘤細胞,增加其生存優(yōu)勢、抑制細胞凋亡[29]。同樣地,宮頸癌細胞能在相對缺氧的環(huán)境中存活,也可能是通過類似的機制。
3.3促進血管生成 血管生成是促進腫瘤生長及腫瘤轉移的重要途徑,其中血管內皮生長因子(VEGF)發(fā)揮了重要作用[30]。研究發(fā)現(xiàn)[31],S100A1的過表達顯著上調了內源性VEGF-A的表達,VEGF-A可以誘導VEGFR2內化,S100A1被確定為VEGF-A/VEGFR2血管生成信號通路的有效啟動子。VEGF-A可能激活磷脂酰肌醇3激酶/絲氨酸-蘇氨酸激酶(PI3K/AKT),進而激活其下游的雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信號通路,促進宮頸癌細胞的生長和侵襲。此外,VEGF/mTOR信號通路的激活可能通過激活cyclin 1和CDK4促進癌細胞的生長,并通過基質金屬蛋白酶2(matrix metalloproteinase,MMP2)和MMP3促進癌細胞的侵襲[32]。也有報道稱[33],VEGFR2通過蛋白激酶B/糖原合成酶激酶(AKT/GSK3)、β/β-catenin和鋅指轉錄因子(zinc finger transcription factor, Snail)途徑調控腫瘤誘導的血管生成和與EMT相關的干細胞特性。S100A1可能通過調控VEGF刺激腫瘤血管生成,從而促進宮頸癌的生長和增殖,在宮頸癌的發(fā)生發(fā)展中發(fā)揮一定作用。
4 circMTO1通過miR-6893/自噬信號傳導通路促進宮頸癌發(fā)生發(fā)展的作用機制
Western blot顯示,轉染shcircMTO1的HeLa細胞中B細胞淋巴瘤-2蛋白相互作用中心卷曲螺旋蛋白1(B-cell lymphoma-2-interacting myosin-like coiled-coil protein 1, Beclin1)為低表達,同時泛素結合蛋白62(sequestosome 1, p62)為高表達水平,而circMTO1正常表達的HeLa細胞中Beclin1為高表達,同時p62為低表達水平;在HeLa細胞中加入miR-6893模擬物降低了Beclin1的表達,進而增加下游p62水平,反之,加入miR-6893抑制劑后Beclin1表達增加,從而降低p62表達水平[11]。因此,circMTO1可能通過miR-6893和自噬信號通路影響宮頸癌的發(fā)生、發(fā)展。自噬是一種溶酶體依賴性分解代謝途徑,通過該途徑可去除受損或衰老的細胞器,其在癌癥治療中發(fā)揮積極或消極作用,取決于細胞類型、微環(huán)境和腫瘤發(fā)展階段,一方面自噬可增加腫瘤細胞對壓力源的耐受性,有利于癌細胞在不利環(huán)境中的存活,另一方面其還可抑制腫瘤發(fā)生和轉移,通過凋亡途徑促進腫瘤細胞死亡[34]。Beclin-1是一種可將其他自噬蛋白定位在前自噬體位點的關鍵基因,作用與LC3類似,被認為是自噬標志物[35]。當自噬被觸發(fā)時,微管相關蛋白1的輕鏈3(microtubule associated protein light chain3, LC3)從其可溶性形式LC3-Ⅰ轉變?yōu)橹庑孕问絃C3-Ⅱ,并與自噬囊泡結合形成自噬體[36];自噬體與溶酶體融合后,溶酶體降解,底物結合的p62被蛋白水解酶降解,自噬下游過程的阻斷可導致p62的積累,因此通常認為升高的p62表達是下游自噬抑制的標志[37]。Beclin-1也可能通過類似途徑影響p62水平。作為自噬適配器,p62具有多個結構域,在細胞自噬過程中充當?shù)孜铮⑼ㄟ^自噬途徑降解。circMTO1通過miR-6893/自噬信號傳導通路可能的作用機制。
4.1造成DNA及染色體的損傷 Tao M等[38]通過研究表明,自噬發(fā)生時,p62通過泛素相關結構域(ubiquitin associated domain, UBA)識別泛素化的細胞,并通過LC3相互作用區(qū)域將它們募集到自噬體膜上,導致細胞內p62水平降低,自噬減弱時,細胞內大量累積p62,導致染色體不穩(wěn)定或DNA產(chǎn)生缺陷,增加宮頸癌的發(fā)生風險[39]。
4.2誘發(fā)細胞氧化損傷 p62的殺傷細胞免疫球蛋白樣受體(killer cell immunoglobulin-like receptor, KIR)結構域能夠與核因子E2相關因子2(Nrf2)競爭性結合Kelch樣環(huán)氧氯丙烷相關蛋白-1(Epoxy Chloropropane Kelch Sample Related Protein-1, Keapl),其UBA結構與能夠招募泛素連接蛋白并通過泛素-蛋白酶體系統(tǒng)(Ubiquitin-proteasome system, UPS)介導keapl的降解,這使得p62在keapl-Nrf2介導的ROS調節(jié)中發(fā)揮了重要作用[40]。作為抗氧化應激最主要的核轉錄因子,Nrf2表達不足是ROS清除減弱的重要原因。生理情況下,細胞合成Nrf2的同時亦降解Nrf2。未降解的Nrf2與Keap1結合為復合物,以非活性狀態(tài)存在于胞質中。而氧化應激情況下,Keap1構象變化和(或)Nrf2磷酸化,活化的Nrf2與Keap1解偶聯(lián)、易位至細胞核,先后與Maf蛋白、抗氧化反應原件結合,誘導下游抗氧化,解毒基因轉錄、表達,提高細胞抗氧化應激能力[41-43]。Nrf2作為機體抗氧化應激的重要因子,主要受Keap1調控,二者組成Keap1-Nrf2通路。腫瘤細胞高度活躍的增殖、分裂狀態(tài)致使細胞內ROS升高,進而誘發(fā)細胞氧化損傷[44,45]。宮頸癌的發(fā)生發(fā)展也可能與此種機制發(fā)生的細胞氧化應激改變有關。
5總結
circRNA可以調節(jié)基因表達,并在腫瘤細胞的生物過程中發(fā)揮重要作用。circMTO1通過對circMTO1及S100A1的抑制或對miR-6893的促進抑制宮頸癌發(fā)生發(fā)展,也可通過miR-6893/自噬信號影響宮頸癌發(fā)生發(fā)展。這或許可為宮頸癌的預防和治療提供新的方向。但是,目前對此通路的研究仍存在局限性。首先,circMTO1通過上述兩條通路影響宮頸癌發(fā)生發(fā)展的機制仍未進行系統(tǒng)研究。第二,circMTO1可以同時結合大量的miRNAs,其中一些miRNAs還可以影響宮頸癌的發(fā)展。因此,以此作為診斷和治療標志物應用于臨床前仍需進一步證實。
參考文獻:
[1]Small W Jr,Bacon MA,Bajaj A,et al.Cervical cancer: A global health crisis[J].Cancer,2017,123(13):2404-2412.
[2]Han D,Li J,Wang H,et al.Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression[J].Hepatology,2017,66(4):1151-1164.
[3]Ge Z,Li LF,Wang CY,et al.CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway in colorectal cancer[J].Eur Rev Med Pharmacol Sci,2018,22(23):8203-8209.
[4]Li Y,Wan B,Liu L,et al.Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition[J].Biochem Biophys Res Commun,2019,508(4):991-996.
[5]李藝佳,弓浩勝,單志鳴.miRNA在EV71型手足口病患兒中的表達及其診斷價值研究[J].國際醫(yī)藥衛(wèi)生導報,2020,26(2):149-152.
[6]Thomson DW,Dinger ME.Endogenous microRNA sponges: evidence and controversy[J].Nat Rev Genet,2016,17(5):272-283.
[7]Hansen TB,Jensen TI,Clausen BH,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388.
[8]DeRycke MS,Andersen JD,Harrington KM,et al.S100A1 expression in ovarian and endometrial endometrioid carcinomas is a prognostic indicator of relapse-free survival[J].Am J Clin Pathol,2009,132(6):846-856.
[9]Wright NT,Cannon BR,Zimmer DB,et al.S100A1: Structure, Function, and Therapeutic Potential[J].Curr Chem Biol,2009,3(2):138-145.
[10]王蕾,黃耿,葉志華,等.miR-6893-5p對前列腺癌LNCaP細胞增殖和遷移的抑制作用及機制研究[J].國際醫(yī)藥衛(wèi)生導報,2021,27(15):2248-2251.
[11]Chen M,Ai G,Zhou J,et al.circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893[J].Biomed Pharmacother,2019,117:109064.
[12]Hu K,Qin X,Shao Y,et al.Circular RNA MTO1 suppresses tumorigenesis of gastric carcinoma by sponging miR-3200-5p and targeting PEBP1[J].Mol Cell Probes,2020,52:101562.
[13]Wang P,Zhou C,Li D,et al.circMTO1 sponges microRNA-219a-5p to enhance gallbladder cancer progression via the TGF-β/Smad and EGFR pathways[J].Oncol Lett,2021,22(1):563.
[14]Li D,Zhang J,Yang J,et al.CircMTO1 suppresses hepatocellular carcinoma progression via the miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling pathway and epithelial-to-mesenchymal transition[J].Cell Death Dis,2021,13(1):12.
[15]Zhang B,Chen M,Jiang N,et al.A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma[J].Cancer Biol Ther,2019,20(8):1127-1135.
[16]Fargnoli AS,Katz MG,Williams RD,et al.Liquid jet delivery method featuring S100A1 gene therapy in the rodent model following acute myocardial infarction[J].Gene Ther,2016,23(2):151-157.
[17]Guo Q,Wang J,Cao Z,et al.Interaction of S100A1 with LATS1 promotes cell growth through regulation of the Hippo pathway in hepatocellular carcinoma[J].Int J Oncol,2018,53(2):592-602.
[18]Gonzalez LL,Garrie K,Turner MD.Role of S100 proteins in health and disease[J].Biochim Biophys Acta Mol Cell Res,2020,1867(6):118677.
[19]Mao Y,Zhang L,Li Y.circEIF4G2 modulates the malignant features of cervical cancer via the miR-218/HOXA1 pathway[J].Mol Med Rep,2019,19(5):3714-3722.
[20]Ou R,Lv J,Zhang Q,et al.circAMOTL1 Motivates AMOTL1 Expression to Facilitate Cervical Cancer Growth[J].Mol Ther Nucleic Acids,2020,19:50-60.
[21]Zhuang Y,Wang S,F(xiàn)ei H,et al.miR-107 inhibition upregulates CAB39 and activates AMPK-Nrf2 signaling to protect osteoblasts from dexamethasone-induced oxidative injury and cytotoxicity[J].Aging (Albany NY),2020,12(12):11754-11767.
[22]Hibbs K,Skubitz KM,Pambuccian SE,et al.Differential gene expression in ovarian carcinoma: identification of potential biomarkers[J].Am J Pathol,2004,165(2):397-414.
[23]田甜,宋秀紅,孔琰,等.S100A1在子宮內膜癌中的表達及其對子宮內膜癌細胞增殖的影響[J].現(xiàn)代婦產(chǎn)科進展,2022,31(6):417-421.
[24]Tummala R,Diegelman P,F(xiàn)iuza SM,et al.Characterization of Pt-, Pd-spermine complexes for their effect on polyamine pathway and cisplatin resistance in A2780 ovarian carcinoma cells[J].Oncol Rep,2010,24(1):15-24.
[25]Lindqvist A,van Zon W,Karlsson Rosenthal C,et al.Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression[J].PLoS Biol,2007,5(5):e123.
[26]Boutros R,Lobjois V,Ducommun B.CDC25 phosphatases in cancer cells: key players? Good targets?[J].Nat Rev Cancer,2007,7(7):495-507.
[27]Huttunen HJ,Kuja-Panula J,Sorci G,et al.Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation[J].J Biol Chem,2000,275(51):40096-40105.
[28]Luanpitpong S,Chanvorachote P,Stehlik C,et al.Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells[J].Mol Biol Cell,2013,24(6):858-869.
[29]Harris AL.Hypoxia--a key regulatory factor in tumour growth[J].Nat Rev Cancer,2002,2(1):38-47.
[30]Hanahan D,Weinberg RA.Hallmarks of cancer: the next generation[J].Cell,2011,144(5):646-674.
[31]Yu Z,Zhang Y,Tang Z,et al.Intracavernosal Adeno-Associated Virus-Mediated S100A1 Gene Transfer Enhances Erectile Function in Diabetic Rats by Promoting Cavernous Angiogenesis via VEGF-A/VEGFR2 Signaling[J].J Sex Med,2019,16(9):1344-1354.
[32]Chen B,Zhang C,Dong P,et al.Molecular regulation of cervical cancer growth and invasion by VEGFa[J].Tumour Biol,2014,35(11):11587-11593.
[33]Prasad CB,Singh D,Pandey LK,et al.VEGFa/VEGFR2 autocrine and paracrine signaling promotes cervical carcinogenesis via β-catenin and snail[J].Int J Biochem Cell Biol,2022,142:106122.
[34]Fan H,He Y,Xiang J,et al.ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy[J].Redox Biol,2022,53:102339.
[35]Schmitz KJ,Ademi C,Bertram S,et al.Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status[J].World J Surg Oncol,2016,14(1):189.
[36]Levy JMM,Towers CG,Thorburn A.Targeting autophagy in cancer[J].Nat Rev Cance,2017,17(9):528-542.
[37]Yue Z,Guan X,Chao R,et al.Diallyl Disulfide Induces Apoptosis and Autophagy in Human Osteosarcoma MG-63 Cells through the PI3K/Akt/mTOR Pathway[J].Molecules,2019,24(14):2665.
[38]Tao M,Liu T,You Q,et al.p62 as a therapeutic target for tumor[J].Eur J Med Chem,2020,193:112231.
[39]Sánchez-Martín P,Saito T,Komatsu M.p62/SQSTM1: 'Jack of all trades' in health and cancer[J].FEBS J,2019,286(1):8-23.
[40]Xie C,Zhou X,Liang C,et al.Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer[J].J Exp Clin Cancer Res,2021,40(1):266.
[41]Baird L,Yamamoto M.The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway[J].Mol Cell Biol,2020,40(13):e00099-20.
[42]朱妍妍,王桐生,戴寧,等.金絲桃苷通過激活Keap1/Nrf2/HO-1通路保護小鼠GC-2細胞的氧化損傷[J].南方醫(yī)科大學學報,2022,42(5):673-680.
[43]Sykiotis GP.Keap1/Nrf2 Signaling Pathway[J].Antioxidants (Basel),2021,10(6):828.
[44]Taguchi K,Yamamoto M.The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment[J].Cancers (Basel),2020,13(1):46.
[45]Mukhopadhyay S,Goswami D,Adiseshaiah PP,et al.Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers[J].Cancer Res,2020,80(8):1630-1643.
編輯/王萌
基金項目:1.云南省昆蟲生物醫(yī)藥研發(fā)重點實驗室開放課題(編號:AG2022008);2.大理大學第一附屬醫(yī)院院級課題(編號:DFYGG2022-04);3.大理市科技計劃項目課題(編號:2022KBG015)
作者簡介:文婷(1997.10-),女,云南楚雄人,碩士研究生,主要從事婦科腫瘤的研究
通訊作者:路會俠(1973.5-),女,云南大理人,博士,教授,碩士生導師,主要從事婦科腫瘤的研究