摘 要:【目的】探討母樹年齡及基部促萌復(fù)幼對錐栗Castanea henryi半木質(zhì)化嫩枝扦插生根的影響,從生理水平和解剖結(jié)構(gòu)特征解析其可能原因,為錐栗扦插繁殖提供理論和實(shí)踐指導(dǎo)依據(jù)?!痉椒ā繉?年生和8年生錐栗母樹分別進(jìn)行基部截干促萌復(fù)幼處理,以當(dāng)年生半木質(zhì)化的新枝為試材,以不截干枝條為對照,分別于扦插后0、7、14 d取插穗基部,通過制作石蠟切片對插穗生根部位進(jìn)行解剖觀察,測定可溶性糖含量、可溶性蛋白含量、木質(zhì)素含量、氧化酶活性、激素水平的動態(tài)變化,并于扦插后60 d統(tǒng)計(jì)各處理的扦插生根率和生根數(shù)量?!窘Y(jié)果】1)扦插14 d后,可見2年生錐栗插穗有不定根長出,8年生錐栗插穗基部有白色突起。2)母樹年齡越大,扦插生根率越低,且基部促萌復(fù)幼對錐栗插穗不定根的影響不顯著(P>0.05)。2 a對照、2 a復(fù)幼的生根率(68.0%、70.0%)和每插穗不定根數(shù)量(11.3、10.6)顯著高于8 a對照和8 a復(fù)幼的生根率(3.2%、4.4%)和每插穗不定根數(shù)量(3.2、2.9)(P<0.05)。3)8 a插穗木質(zhì)素含量在不定根發(fā)生過程中顯著高于2 a插穗(P<0.05),且復(fù)幼不能降低插穗木質(zhì)素含量。扦插7 d后8 a插穗的可溶性蛋白含量在對照和復(fù)幼處理中均顯著低于2 a插穗(P<0.05)。4)在不定根發(fā)生過程中,IAAO酶活性在不同年齡和復(fù)幼插穗間差異均不顯著(P>0.05);8 a插穗的IAA水平顯著高于2 a插穗(P<0.05)。扦插7 d后,2 a錐栗插穗的SOD顯著高于8 a錐栗插穗(P<0.05),8 a插穗的GA3含量顯著高于2 a插穗(P<0.05)。【結(jié)論】母樹年齡是影響錐栗插穗不定根發(fā)生的主要要素,單純基部平茬促萌復(fù)幼措施可能不適宜被用來提高錐栗成年插穗的不定根發(fā)生率。調(diào)控木質(zhì)素的合成和代謝途徑可能是提高錐栗成年插穗不定根發(fā)生的關(guān)鍵。
關(guān)鍵詞:母樹年齡;復(fù)幼;不定根發(fā)生;錐栗
中圖分類號:S723.1+32.5 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-923X(2024)09-0038-12
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(32001309);中央財(cái)政林業(yè)科技推廣項(xiàng)目([2021]XT01);湖南省教育廳優(yōu)秀青年項(xiàng)目(21B0266)。
Influence of mother tree age and rejuvenation on the physiology and adventitious root occurrence of Castanea henryi scions
PU Yao, LI Ying, WANG Tao, YU Siyuan, ZOU Feng, YUAN Deyi, XIONG Huan
(a. College of Forestry; b. Forestry Cultivation Laboratory, Central South University of Forestry & Technology, Changsha 410004, Hunan, China)
Abstract:【Objective】This study aims to investigate the effects of mother tree age and basal rejuvenation on the semi-lignified softwood cutting rooting of Castanea henryi, and analyze the possible reasons from physiological and anatomical characteristics aspects, providing theoretical and practical guidance for C. henryi propagation by cutting.【Method】Basal rejuvenation treatments were carried out on 2-year-old and 8-year-old C. henryi mother trees, with the new semi-lignified branches as the experimental material, and branches from non-rejuvenated trees as the control. The basal portions of the cuttings were taken at 0 d, 7 d, and 14 d after cutting, and the anatomical observed by making paraffin sections. The dynamic changes of soluble sugar content, soluble protein content, lignin content, enzyme activity, and hormone levels were measured, and the rooting rate and number of roots were calculated after cutting 60 days.【Result】1) After cutting 14 days, adventitious roots were observed on the cuttings of 2-year-old C. henryi, while white protrusions appeared at the base of the cuttings of 8-year-old C. henryi. 2) The older the mother tree, the lower the rooting rate, and basal rejuvenation had no significant effect on the adventitious root formation of C. henryi cuttings (P > 0.05). The rooting rates (68.0%, 70.0%) and the number of adventitious roots per cutting (11.3, 10.6) from 2-year-old control and its rejuvenated cuttings were significantly higher than those of 8-year-old control and its rejuvenated cuttings (3.2%, 4.4%) and the number of adventitious roots per cutting (3.2, 2.9) (P <0.05). 3) The lignin content of 8-year-old cuttings was significantly higher than that of 2-year-old cuttings during the adventitious root formation (P < 0.05), and rejuvenation did not reduce the lignin content of the cuttings. At 7 days, the soluble protein content of 8-year-old cuttings was significantly lower than that of 2-year-old cuttings in both control and rejuvenation treatments(P < 0.05). 4) During the adventitious root formation process, the IAAO enzyme activity did not differ significantly among different ages and rejuvenated cuttings (P >0.05); the IAA level of 8-year-old cuttings was significantly higher than that of 2-year-old cuttings(P < 0.05). At 7 days, the SOD of 2-year-old C. henryi cuttings was significantly higher than that of 8-year-old cuttings (P < 0.05), and the GA3 content of 8-year-old cuttings was significantly higher than that of 2-year-old cuttings (P < 0.05).【Conclusion】Mother tree age is the main factor affecting the adventitious root formation of C. henryi cuttings, and simply basal rejuvenation treatments may not be suitable for increasing the adventitious rooting rate of adult C. henryi cuttings. Regulating the synthesis and metabolism pathways of lignin may be the key to improving the adventitious root formation of adult C. henryi cuttings.
Keywords: tree age; rejuvenation; adventitious root occurrence; Castanea henryi
錐栗Castanea henryi屬于殼斗科Fagaceae栗屬Castanea植物,是我國南方重要的木本堅(jiān)果植物和重要的珍貴用材樹種[1]。錐栗廣泛分布于我國長江以南地區(qū)。其中,福建省、浙江省和湖南省為錐栗的主產(chǎn)區(qū)。2020年國家林業(yè)和草原局公布的數(shù)據(jù)顯示,僅福建省就有錐栗人工栽培面積約80 000 hm2,年產(chǎn)量7.5萬t,年產(chǎn)值數(shù)十億元。大力發(fā)展錐栗產(chǎn)業(yè)對鄉(xiāng)村振興和生態(tài)文明建設(shè)均起到重要作用。目前,我國錐栗苗木繁殖方式主要為播種繁殖和嫁接繁殖[2-3]。播種繁殖使得錐栗進(jìn)入結(jié)果期晚,且產(chǎn)量和品質(zhì)參差不齊[4];而嫁接繁殖雖能提早結(jié)實(shí)和保持母樹的優(yōu)良性狀,但其操作技術(shù)復(fù)雜,人工成本較高,且嫁接后期存在不親和、易感病等問題,嚴(yán)重限制了錐栗產(chǎn)業(yè)的健康發(fā)展[5]。扦插繁殖既可保持母樹的優(yōu)良性狀,又具有育苗周期短、操作過程簡單、繁育費(fèi)用低等優(yōu)勢[6],是加快錐栗產(chǎn)業(yè)發(fā)展的有效途徑。
扦插繁殖的核心是誘導(dǎo)外植體產(chǎn)生不定根,從而發(fā)育成完整的植株。然而,不定根發(fā)生受遺傳特性和外部環(huán)境等諸多因素影響[7-9],其中年齡(尤其是木本植物)是最主要的限制因素[10-13]。一般來說,幼年期是無性繁殖采條的最佳時期[14],而幼年林木表型性狀不穩(wěn)定,難以準(zhǔn)確預(yù)測林木生長和結(jié)實(shí)特性。因而,一般在樹木成齡后再去選擇和繁殖更符合選種和測定的要求[15]。但成熟的扦插材料容易繼承母株的年齡,從而導(dǎo)致插條成活率低等問題[16]。研究表明,復(fù)幼能有效克服成熟效應(yīng),提高成年插穗不定根的發(fā)生率[17]。復(fù)幼的方法有兩類,一類是利用成年植株的幼年區(qū);另一類則對成熟植株枝條進(jìn)行強(qiáng)度修剪截干樹冠以獲得萌生枝[18]。姜英等[19]在成年黑荊樹Acacia mearnsii上證實(shí),通過截干后刺激萌發(fā)枝條,取萌發(fā)枝條進(jìn)行扦插,發(fā)現(xiàn)5年生復(fù)幼后的半木質(zhì)化萌芽枝的扦插成活率達(dá)到了41.3%;而采用5年生未經(jīng)復(fù)幼處理的黑荊母樹半木質(zhì)化枝條進(jìn)行扦插,其成活率為0。那么,這種復(fù)幼措施能否促進(jìn)錐栗成年插穗不定根發(fā)生尚不清楚。
研究表明,可溶性糖、可溶性蛋白含量和抗氧化酶活性在插穗不定根發(fā)生過程中起著重要作用[20-25]。在其他木本植物(如白皮松Pinus bungeana、麻楝Chukrasia tabularis和菲油果Acca sellowiana)插穗不定根發(fā)生上的研究也表明生長素、赤霉素和脫落酸等植物激素在誘導(dǎo)根原基形成和不定根伸長方面具有重要調(diào)控作用[26-29]。然而,錐栗不同年齡及復(fù)幼后其插穗在不定根發(fā)生過程中的生理變化特征仍有待研究。
目前,關(guān)于母樹年齡及其復(fù)幼措施對錐栗插穗生理及不定根發(fā)生的研究尚未見報(bào)道。因此,本研究以2年生、8年生錐栗實(shí)生母樹為試材,經(jīng)基部截干促萌復(fù)幼,對插穗基部進(jìn)行生根解剖結(jié)構(gòu)和形態(tài)觀察,統(tǒng)計(jì)不同年齡和復(fù)幼插穗的生根率、生根數(shù)量,測定不定根發(fā)生過程中插穗的碳水化合物含量、木質(zhì)素含量、內(nèi)源激素水平和氧化酶活性變化,從解剖和生理學(xué)揭示錐栗成年母樹限制其不定根發(fā)生的機(jī)制,探索錐栗成年母樹復(fù)幼的關(guān)鍵技術(shù)措施,為錐栗良種繁殖提供理論和實(shí)踐指導(dǎo)。
1 材料與方法
1.1 試驗(yàn)材料及方法
1.1.1 試驗(yàn)材料
以2年生幼年和8年生成熟的錐栗且生長健壯、無病蟲害的實(shí)生母樹為試材(2 a對照、8 a對照),2年生苗木選擇250株,8年生母樹選擇15株。于2023年1月,分別對2年生和8年生錐栗進(jìn)行基部截干促萌復(fù)幼處理。具體如下:對2年生錐栗進(jìn)行截干修剪(離地面20 cm處進(jìn)行截干),共處理100株(2 a復(fù)幼);對8年生錐栗進(jìn)行截干修剪(離地面20 cm處進(jìn)行截干),共處理12株(8 a復(fù)幼)。樹干基部萌發(fā)出的幼嫩枝條即復(fù)幼材料,于2023年5月中旬進(jìn)行扦插試驗(yàn)。試驗(yàn)材料分別來源于中南林業(yè)科技大學(xué)樹木樓B座樓頂溫室大棚和中南林業(yè)科技大學(xué)西園苗圃。
1.1.2 試驗(yàn)方法
穗條處理:于2023年5月15日,采集2年生和8年生錐栗萌發(fā)生長的半木質(zhì)化穗條,修剪穗條長度為12 cm,插條剪口為“上平剪、下斜切”,靠近插條基部的葉子被移除,插入土壤的穗條頂部保留1~3片葉子,每片葉子保留1/2葉面積[30]。將插條置于20%多菌靈稀釋10倍溶液中浸泡5~10 min,以防止病原真菌的感染。處理好的插條基部統(tǒng)一放在含有2 g/L吲哚-3-丁酸(IBA)(Sigma)的溶液中浸泡3~5 min后進(jìn)行扦插。2 a復(fù)幼插穗和2 a對照插穗(不截干)各200個;8 a復(fù)幼插穗和8 a對照插穗(不截干)各350個。
扦插前基質(zhì)的準(zhǔn)備:供試基質(zhì)為紅壤[31]。扦插前一周,用50%多菌靈稀釋10倍后均勻噴灑供試基質(zhì)進(jìn)行消毒,并用塑料薄膜覆蓋,3 d后掀開薄膜,翻勻基質(zhì)置于空地曝曬7 d。將制備好的基質(zhì)裝入培養(yǎng)穴盤(規(guī)格為50孔,長540 mm,寬280 mm,高105 mm)備用。
1.2 扦插管理
將處理好的穗條插入準(zhǔn)備好的穴盤,插入深度為4~5 cm,扦插完成后,用噴壺進(jìn)行霧狀噴水,保持葉面濕潤,蓋上育苗箱。將扦插好的穴盤及時放入人工氣候室培養(yǎng)(溫度,25 ℃;濕度,80%;光照強(qiáng)度,22 000 lx;光照周期,14 h/d)。后續(xù)不定期噴水,保持濕度。
1.3 指標(biāo)測定方法
1.3.1 生根指標(biāo)的測定
扦插后60 d,隨機(jī)取出10個插穗,每一株插穗為一個重復(fù)。將插穗的根部用清水沖洗干凈,記錄生根插穗數(shù)量,統(tǒng)計(jì)生根率、愈傷形成率、死亡率、平均不定根數(shù),用直尺測量平均不定根長。
1.3.2 組織結(jié)構(gòu)的觀察
參照周乃富等[32]的方法,對插穗基部2~3 cm的莖段進(jìn)行切片,并用OLYMPUS顯微鏡觀察(Olympus SZX16,日本)并拍照。
1.3.3 生理指標(biāo)的測定
在扦插后0、7、14 d,每個處理隨機(jī)選取15個插穗作為樣本。將插穗用蒸餾水沖洗干凈后用濾紙擦干,迅速剪取插穗基部2~3 cm,剪碎混勻,經(jīng)液氮冷凍后存于-80 ℃冰箱。將采集的樣品進(jìn)行液氮研磨。可溶性糖、可溶性蛋白、木質(zhì)素含量和酶活性的測定稱取0.1 g研磨后的樣品,重復(fù)3次;內(nèi)源激素的測定稱取0.2 g樣品,重復(fù)3次。
可溶性糖含量采用蒽酮比色法進(jìn)行測定[33]??扇苄缘鞍撞捎每捡R斯亮藍(lán)比色法測定[34]。木質(zhì)素含量的測定參考文獻(xiàn)[35]。多酚氧化酶(PPO)、超氧化物歧化酶(SOD)、過氧化物酶(POD)和吲哚乙酸氧化酶(IAAO)活性的測定參照《植物生理學(xué)實(shí)驗(yàn)技術(shù)》[36]。采購上海酶聯(lián)生物科技有限公司的酶聯(lián)免疫分析(ELISA)試劑盒檢測IAA、GA3、ABA、ZR、IBA。
1.4 數(shù)據(jù)處理
使用Microsoft Excel 2016軟件對原始數(shù)據(jù)進(jìn)行處理,采用IBM SPSS statistics 26.0軟件對數(shù)據(jù)進(jìn)行顯著性分析。不同處理之間試驗(yàn)參數(shù)顯著差異性分析采用單因素方差分析(one-way ANOVA)中的鄧肯檢驗(yàn)(Duncan’test,P<0.05和P<0.01)。使用Origin 2019軟件進(jìn)行繪圖。
2 結(jié)果與分析
2.1 不同樹齡及復(fù)幼錐栗插穗生根表型、解剖結(jié)構(gòu)觀察及不定根發(fā)生率
扦插0 d各處理的解剖結(jié)構(gòu)及其表皮、皮層、韌皮纖維、韌皮部、木質(zhì)部和髓半徑的厚度見圖1。2 a和8 a插條的莖解剖結(jié)構(gòu)在細(xì)胞類型和組織結(jié)構(gòu)方面相似,8 a復(fù)幼錐栗插穗莖段髓半徑和木質(zhì)部細(xì)胞厚度分別為287.41、287.08 μm,8 a對照錐栗插穗莖段髓半徑和木質(zhì)部細(xì)胞厚度分別為347.41、341.65 μm,明顯厚于2 a復(fù)幼錐栗插穗莖段髓半徑和木質(zhì)部細(xì)胞厚度(251.65、255.54 μm)和2 a對照錐栗插穗莖段髓半徑和木質(zhì)部細(xì)胞厚度(256.93、264.63 μm),錐栗不同年齡及對照、復(fù)幼的韌皮部、皮層和表皮的厚度之間無顯著差異。
由圖2可知,2 a錐栗嫩枝插穗在扦插14 d后,插穗葉子長勢生長良好,插穗頂部有愈傷組織形成,插穗基部皮層有大量白色突起及不定根長出(圖2A—B);而8 a插穗葉子逐漸干枯,部分皮層有白色突起,部分插穗變黑,少部分插穗凋亡(圖2C—D)。扦插60 d后2 a插穗出現(xiàn)大量不定根,白色突起更加明顯(圖2E—F);8 a插穗有大量白色突起,少量不定根長出,大量插穗凋亡(圖2G—H)。
扦插60 d后,對插穗進(jìn)行生根率、愈傷形成率、死亡率、平均根長和平均根數(shù)進(jìn)行統(tǒng)計(jì),結(jié)果如表1所示。由表1可知,2 a對照錐栗插穗不定根發(fā)生率(68.0%)和每插穗不定根數(shù)量(11.3條)顯著高于8 a對照插穗(3.2%,3.2條)(P<0.05); 2 a插穗死亡率顯著低于8 a插穗(P<0.05);而2 a和8 a錐栗扦插復(fù)幼和對照在生根率、死亡率、每插穗不定根數(shù)量上均差異不顯著。愈傷形成率和平均根長在各處理之間沒有顯著差異。
2.2 錐栗不同樹齡及復(fù)幼插穗不定根發(fā)生過程中非結(jié)構(gòu)性碳水化合物和可溶性蛋白含量變化
營養(yǎng)物質(zhì)在生根過程中為插穗提供能量。對不同母樹年齡插穗的研究結(jié)果表明,0~14 d錐栗插穗可溶性糖含量呈下降趨勢,2 a插穗和8 a插穗之間無顯著差異(圖3A);可溶性蛋白含量在扦插0 d時各處理之間無顯著差異,扦插過程中2 a插穗呈先上升后下降的趨勢,相反8 a插穗則是呈先下降后上升的趨勢,扦插7 d后2 a插穗可溶性蛋白含量顯著高于8 a插穗(P<0.05),扦插14 d后8 a插穗則顯著高于2 a插穗(P<0.05)(圖3B);不同年齡錐栗插穗木質(zhì)素含量在扦插過程中無顯著變化,8 a插穗木質(zhì)素含量顯著高于2 a插穗(P<0.05)(圖3C)。
對不同母樹年齡進(jìn)行復(fù)幼,結(jié)果表明,扦插0 d不同母樹年齡的對照和復(fù)幼插穗之間可溶性糖含量差異不顯著,扦插后7 d不同母樹年齡對照插穗顯著高于復(fù)幼插穗(P<0.05)(圖3A);扦插后0~7 d可溶性蛋白含量在不同母樹年齡的對照和復(fù)幼之間無顯著差異,扦插14 d 后8 a對照和復(fù)幼之間無顯著差異,而2 a對照顯著高于2 a復(fù)幼(P<0.05)(圖3B);扦插后0~14 d木質(zhì)素含量表現(xiàn)為8 a復(fù)幼顯著高于對照(P<0.05),而2 a插穗之間差異不顯著(圖3C)。
2.3 錐栗不同樹齡及基部復(fù)幼插穗扦插過程中抗氧化酶活性變化
對不同年齡母樹插穗的研究結(jié)果表明,扦插后0~14 d IAAO活性在各處理組之間無顯著差異(圖4A);扦插后7~14 d不同年齡插穗之間POD、PPO活性無顯著差異(圖4B—C);2 a插穗SOD活性整體呈現(xiàn)下降趨勢,8 a插穗則呈先下降后上升的趨勢,扦插7 d后2 a插穗SOD活性顯著高于8 a插穗(P<0.05)(圖4D)。
對不同母樹年齡的復(fù)幼研究結(jié)果表明,扦插0~14 d IAAO活性在不同母樹年齡的對照和復(fù)幼之間無顯著差異(圖4A);不同母樹年齡復(fù)幼的POD活性呈先上升后下降的趨勢,而不同母樹年齡對照則呈相反趨勢,且扦插7 d不同年齡復(fù)幼與對照之間差異顯著(P<0.05)(圖4B);在扦插0 d 2 a對照插穗PPO活性顯著高于其復(fù)幼插穗(P<0.05),8 a復(fù)幼插穗PPO活性顯著高于其對照插穗(P<0.05),而扦插7~14 d相同年齡不同處理插穗之間無顯著差異(圖4C);扦插0 d不同母樹年齡的復(fù)幼和對照之間SOD活性無顯著差異,而7 d時8 a復(fù)幼插穗SOD活性顯著低于其對照(P<0.05)(圖4D)。
2.4 錐栗不同樹齡及復(fù)幼插穗不定根發(fā)生過程中內(nèi)源激素含量變化
對不同母樹年齡插穗的研究結(jié)果表明,ABA含量在7 d時2 a插穗與8 a插穗之間有顯著差異(P<0.05)(圖5A);0~14 d時8 a插穗IAA 含量顯著高于2 a插穗(P<0.05),且7 d時2 a插穗IAA 含量最低(圖5 B)。ZR含量在0~14 d時2 a插穗與8 a插穗之間無顯著差異(圖5C)。在扦插過程中2 a插穗的GA3含量整體呈現(xiàn)上升趨勢,而8 a插穗則是“上升—下降”的趨勢,7 d時8 a插穗達(dá)到峰值,且顯著大于2 a插穗(P<0.05)(圖5D);0~14 d時2 a插穗IBA含量整體呈上升趨勢,而8 a插穗呈現(xiàn)“上升—下降”的趨勢,7 d時達(dá)到峰值(圖5E)。
對不同母樹年齡的復(fù)幼研究結(jié)果表明,ABA含量在扦插生根過程中不同母樹年齡復(fù)幼插穗整體呈現(xiàn)下降趨勢,7 d時2 a插穗之間無顯著差異,而8 a復(fù)幼插穗顯著高于其對照插穗(P<0.05),14 d時不同母樹年齡對照顯著高于復(fù)幼(P<0.05)(圖5A);0 d時2 a復(fù)幼插穗IAA含量顯著高于2 a對照插穗(P<0.05),而7 d時8 a對照插穗IAA 含量顯著高于其復(fù)幼插穗(P<0.05),相反2 a對照插穗顯著低于其復(fù)幼插穗(P<0.05),14 d時不同母樹年齡復(fù)幼插穗IAA含量分別顯著大于其對照插穗(P<0.05)(圖5B);0 d時2 a對照插穗ZR含量顯著高于其復(fù)幼插穗,而8 a復(fù)幼插穗顯著大于其對照插穗(P<0.05)(圖5C);0 d時8 a對照插穗GA3含量顯著高于其復(fù)幼插穗(P<0.05),而2 a插穗之間無顯著差異,7 d時不同母樹年齡復(fù)幼插穗顯著高于其對照插穗(P<0.05)(圖5D);0 d時IBA含量在不同母樹年齡對照和復(fù)幼插穗之間無顯著差異,7~14 d時8 a復(fù)幼插穗IBA含量顯著高于其對照插穗(P<0.05),相反7 d時2 a對照插穗顯著高于其復(fù)幼插穗(P<0.05)(圖5E),而14 d時兩者之間無顯著差異。
3 討 論
3.1 母樹年齡對不定根發(fā)生的影響
扦插14 d后2 a插穗開始有不定根出現(xiàn),且2 a對照錐栗插穗不定根發(fā)生率(68.0%)和每插穗不定根數(shù)量(11.3條)顯著高于8 a對照插穗(3.2%;3.2條),插穗不定根發(fā)生率隨母樹年齡增大而降低。這與前人在板栗C. mollissima和日本落葉松Larix kaempferi等木本植物上的研究結(jié)果一致[37-40]。相較于幼年插穗,成年插穗不定根發(fā)生困難的生理原因一直備受關(guān)注,其中生根抑制物的存在和以生長素為主的內(nèi)源激素的合成和代謝被認(rèn)為起主要作用[41-43]。本研究發(fā)現(xiàn),在扦插 7 d時2 a插穗內(nèi)可溶性蛋白含量增加,且顯著高于8 a插穗。對杜仲Eucommia ulmoides嫩枝扦插的研究也證明了插穗自身的應(yīng)急機(jī)制會產(chǎn)生大量的蛋白酶類物質(zhì),參與大分子營養(yǎng)物質(zhì)的水解代謝,可溶性蛋白含量增加[44]。8 a插穗木質(zhì)素含量和木質(zhì)部厚度顯著高于2 a插穗,且復(fù)幼不能降低插穗木質(zhì)素含量和木質(zhì)部厚度。對古側(cè)柏成年插穗不定根發(fā)生的研究也證明了愈傷組織的木質(zhì)化是導(dǎo)致其不定根發(fā)生困難的原因之一[45]。因此,通過抑制成年插穗木質(zhì)素合成可能是提高其不定根發(fā)生的途徑。此外,本研究中8 a插穗的IAA水平顯著高于2 a插穗,且復(fù)幼并未改變這一規(guī)律;同時,8 a復(fù)幼插穗的IBA含量顯著高于其他處理,IAAO酶活性在不同母樹年齡和復(fù)幼處理間均無顯著差異,這與在歐洲栗C. sativa上的研究結(jié)果類似,說明生長素缺乏并不是導(dǎo)致木本植物成年插穗不定根發(fā)生的主要限制因子[46]。但對蘋果Malus pumila砧木的不定根發(fā)生的研究表明,年齡途徑和生長素信號的相互作用共同調(diào)控了多年生木本植物的不定根發(fā)生[47],而錐栗成年插穗的不定根發(fā)生機(jī)理是否與蘋果相同有待進(jìn)一步研究。
3.2 復(fù)幼措施對插穗不定根發(fā)生的影響
基部修剪促萌復(fù)幼措施在提高云杉Picea asperata和松樹的成年插穗不定根發(fā)生能力上效果顯著,且廣泛應(yīng)用于生產(chǎn)[48-49]。但本研究結(jié)果表明,基部修剪促萌復(fù)幼措施并不能顯著提高錐栗嫩枝扦插不定根發(fā)生率,8 a錐栗插穗復(fù)幼前后措施生根率分別為3.2%和4.4%,均顯著低于2 a錐栗插穗生根率,且2 a錐栗復(fù)幼前后也無顯著差異。造成這一現(xiàn)象的原因可能有:一是錐栗成年母樹的養(yǎng)分不足,特別是P水平低,這與其生長在典型的酸性紅壤環(huán)境有關(guān)。有研究表明,施P肥可增加橄欖樹Olea european母樹插穗的不定根發(fā)生能力[50]。因此,增加錐栗母樹P水平可能是提高其插穗不定根發(fā)生能力的一個有效途徑。二是錐栗成年母樹的光照強(qiáng)度弱。本試驗(yàn)錐栗母樹萌條生長時期(3—5月)正值湖南長沙降水量較多的季節(jié)(雨天占50%,且降水量達(dá)400 mm,數(shù)據(jù)來源:https://en.tutiempo.net/climate/03-2023/ws-576870. html),光照強(qiáng)度低,導(dǎo)致穗條光合產(chǎn)物積累少,抑制了插穗不定根發(fā)生[51-53]。三是復(fù)幼方法不適宜。以油松Pinus tabulaeformis為試驗(yàn)材料的研究結(jié)果表明,DAL1和MADS11這兩個年齡標(biāo)志基因在根莖處表達(dá)量最低,離地面越高其表達(dá)量越高[54],因此,多數(shù)用材樹種(楊樹、松樹和桉樹等)采用基部截干促萌復(fù)幼的方式,效果較好。但以殼斗科為主的難生根樹種的年齡與不定根發(fā)生能力之間的互作機(jī)制可能與此不同。
4 結(jié) 論
綜上,本研究以2年生和8年生錐栗母樹為材料,分別進(jìn)行基部截干促萌復(fù)幼處理,以當(dāng)年生半木質(zhì)化的新枝為試材,以不截干枝條為對照,進(jìn)行扦插試驗(yàn)。對生根過程中插穗基部的營養(yǎng)物質(zhì)、內(nèi)源激素、木質(zhì)素和解剖機(jī)構(gòu)觀察等生理生化指標(biāo)的動態(tài)變化進(jìn)行分析,從生理變化和解剖結(jié)構(gòu)方面對錐栗扦插進(jìn)行初步探討。結(jié)果表明,母樹年齡是影響錐栗插穗不定根發(fā)生的主要要素,單純的基部平茬促萌復(fù)幼措施可能不適宜被用來提高錐栗成年插穗的不定根發(fā)生率,針對栗屬難生根樹種的復(fù)幼措施仍有待探究。調(diào)控木質(zhì)素的合成和代謝可能是提高錐栗成年插穗不定根發(fā)生的關(guān)鍵。
參考文獻(xiàn):
[1] 葉樹濤,顧光仕,李煜,等.錐栗農(nóng)家品種栗疫病抗性及果實(shí)表型性狀的變異分析與聯(lián)合選擇[J].經(jīng)濟(jì)林研究,2022,40(1): 82-94. YE S T, GU G S, LI Y, et al. Variation analysis and joint selection of chestnut blight resistance and nut phenotype traits in Castanea henryi cultivars[J]. Non-wood Forest Reserach,2022,40(1):82-94.
[2] 譚露曼,袁德義,張黨權(quán),等.錐栗芽苗砧嫁接技術(shù)[J].經(jīng)濟(jì)林研究,2016,34(3):153-157. TAN L M, YUAN D Y, ZHANG D Q, et al. Grafting techniques in Castanea henryi using bud seedings as rootstocks[J]. Nonwood Forest Research,2016,34(3):153-157.
[3] 李吉濤,陳宗游,唐輝,等.不同環(huán)境因子及破殼處理對錐栗種子萌發(fā)特性的影響[J].廣西植物,2020,40(2):143-150. LI J T, CHEN Z Y, TANG H, et al. Effects of environmental factors and shell-breaking treatment on germination characteristics of Castanea henryi seeds[J]. Guihaia,2020,40(2):143-150.
[4] 馮金玲,楊志堅(jiān),陳輝.錐栗的研究進(jìn)展[J].亞熱帶農(nóng)業(yè)研究, 2009,5(4):237-241. FENG J L, YANG Z J, CHEN H. Advances in Castanea henryi[J]. Subtropical Agricultural Research,2009,5(4): 237-241.
[5] 張麗.不同砧木對錐栗嫁接苗生長及光合的影響[D].長沙:中南林業(yè)科技大學(xué),2019. ZHANG L. Effects of different rootstocks on growth and photosynthesis of grafted Castanea henryi seedlings[D]. Changsha: Central South University of Forestry & Technology, 2019.
[6] 劉希華,邢建宏,梁一池,等.西南樺扦插的基質(zhì)配方優(yōu)化與最佳季節(jié)研究[J].三明學(xué)院學(xué)報(bào),2007,24(4):429-432. LIU X H, XING J H, LIANG Y C, et al. Study on the different medium and months in rooting of Betulas chinensis[J]. Journal of Sanming University,2007,24(4):429-432.
[7] ZHANG S, ZHAO Z, ZHANG L L, et al. Comparative proteomic analysis of tetraploid black locust (Robinia pseudoacacia L.) cuttings in different phases of adventitious root development[J]. Trees,2015,29(2):367-384.
[8] PACURAR D L, PACURAR M L, BUSSELL J D, et al. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot mutation[J]. Journal of Experimental Botany,2014,65(6):1605-1618.
[9] LUCAS M, SWARUP R, PAPONOV I A, et al. Short-root regulates primary, lateral, and adventitious root development in Arabidopsis[J]. Plant Physiology,2011,155(1):384-398.
[10] 常二梅,江澤平,劉建鋒,等.側(cè)柏古樹組織培養(yǎng)體系的建立[J].林業(yè)科學(xué)研究,2023,36(4):41-49. CHANG E M, JIANG Z P, LIU J F, et al. Establishment of tissue culture system of the ancient trees of Platyphelus orientalis[J]. Forestry Research,2023,36(4):41-49.
[11] 張兆勤,雷小平,何金根.龍泉市南方紅豆杉古樹資源及開發(fā)利用研究[J].現(xiàn)代農(nóng)業(yè)科技,2010(2):237-239. ZHANG Z Q, LEI X P, HE J G. Study on resources and utilization of ancient Taxus chinensis trees in Longquan city[J]. Modern Agricultural Science and Technology,2010(2):237-239.
[12] 錢家連,李迎超,許慧慧,等.不同年齡栓皮櫟嫩枝扦插生根及解剖學(xué)分析和酶活性變化[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2023,40(1): 107-114. QIAN J L, LI Y C, XU H H, et al. Rooting, anatomical analysis and changes of enzyme activity of softwood cuttings of Quercus variabilis at different ages[J]. Journal of Zhejiang A & F University, 2023,40(1):107-114.
[13] 卜曉婷,喬孝祿,徐曉華,等.母樹年齡、采穗時期和抑制物質(zhì)對納塔櫟生根的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2022,50(2): 11-16,28. BU X T, QIAO X L, XU X H, et al. Effects of parent stock age, cutting time and rooting inhibitors on stem cutting of Quercus nuttallii[J]. Journal of Northeast Forestry University, 2022,50(2):11-16,28.
[14] PIPINIS E, KOSTAS S, HATZILAZAROU S, et al. Effects of donor tree age, cutting collection time and K-IBA application on rooting ability of Taxus baccata L. stem cuttings: preliminary results[J]. Folia Oecologica,2023,50(1):97-103.
[15] 朱之悌,盛瑩萍.論樹木的老化—幼年性、成年性、相互關(guān)系及其利用[J].北京林業(yè)大學(xué)學(xué)報(bào),1992,14(增3):92-104. ZHU Z T, SHENG Y P. OU0AyZg4JpnTViUwMOdvo4LIZRqLVp0jAsuwobJfl26w=n aging of trees: juvenile, maturity, their relations and utilization[J]. Journal of Beijing Forestry University,1992,14(Suppl.3):92-104.
[16] 康向陽.新一輪毛白楊遺傳改良策略的思考和實(shí)踐[J].北京林業(yè)大學(xué)學(xué)報(bào),2016,38(7):1-8. KANG X Y. Thinking and practice for strategy on a new round genetic improvement of Populus tomentosa[J]. Journal of Beijing Forestry University,2016,38(7):1-8.
[17] 楊舜垚,張貴芳,張曦,等.濕加松個體老化模式與平茬復(fù)幼的機(jī)理[J].中國科學(xué):生命科學(xué),2023,53(8):1146-1165. YANG S Y, ZHANG G F, ZHANG X, et al. The ontogenetic ageing pattern and the molecular mechanism for pruning rejuvenation in Pinus elliottii×P. caribaea [J]. Scientia Sinica(Vitae),2023,53(8):1146-1165.
[18] 張瑞娥.毛白楊不同優(yōu)良無性系組培特性的比較研究[D].楊凌:西北農(nóng)林科技大學(xué),2003. ZHANG R E. A comparatively study on the tissue culture characteristics of Populus tomentosa Carr. clones[D]. Yangling: Northwest A&F University,2003.
[19] 姜英,蔣燚,申文輝,等.成年黑荊樹復(fù)幼扦插繁殖技術(shù)研究[J].林業(yè)科技通訊,2015(1):29-31. JIANG Y, JIANG Y, SHEN W H, et al. Research on reproduction techniques of adult Acacia mearnsii tree with multiple young cuttings[J]. Forestry Science and Technology,2015(1):29-31.
[20] 李婷婷,薛璟祺,王順利,等.植物非結(jié)構(gòu)性碳水化合物代謝及體內(nèi)轉(zhuǎn)運(yùn)研究進(jìn)展[J].植物生理學(xué)報(bào),2018,54(1):25-35. LI T T, XUE J Q, WANG S L, et al. Research advances in the metabolism and transport of non-structural carbohydrate in plants[J]. Plant Physiology Journal,2018,54(1):25-35.
[21] MU H Z, JIN X H, MA X Y, et al. Ortet age effect, anatomy and physiology of adventitious rooting in Tilia mandshurica softwood cuttings[J]. Forests,2022,13(9):1427.
[22] 張帆,王鴻,張雪冰,等.吲哚丁酸對桃砧木GF677不定根形成過程中生理生化指標(biāo)的影響[J].云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2023,38(6):1025-1031. ZHANG F, WANG H, ZHANG X B, et al. Effects of 3-Indole Butyric Acid on physiological and biochemical indexes of adventitious root formation in Peach Rootstock GF677[J]. Journal of Yunnan Agricultural University (Natural Science), 2023,38(6):1025-1031.
[23] HUSEN A. Rejuvenation and adventitious rooting in coppiceshoot cuttings of Tectona grandis as affected by stock-plant Etiolation[J]. American Journal of Plant Sciences,2011,2(3): 370-374.
[24] 閆紹鵬,武曉東,王秋玉,等.歐美山楊雜種嫩枝微扦插生根相關(guān)氧化酶活性變化及繁殖技術(shù)[J].東北林業(yè)大學(xué)學(xué)報(bào), 2011,39(11):5-7,11. YAN S P, WU X D, WANG Q Y, et al. Changes in relevant oxidase activity during the rooting of cuttings of Populus tremula ×P. tremuloides and cutting propagation technique[J]. Journal of Northeast Forestry University,2011,39(11):5-7,11.
[25] 言倜信.南酸棗扦插繁殖技術(shù)與生理機(jī)理研究[D].長沙:中南林業(yè)科技大學(xué),2015. YAN T X. The research on the propagation techniques and rooting mechanism of stem cuttings of Choerospondias axillaris[D]. Changsha: Central South University of Forestry & Technology,2015.
[26] 王青,張捷,仲崇祿,等.麻楝扦插生根進(jìn)程中內(nèi)源激素和營養(yǎng)物質(zhì)含量的變化[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2020,40(4): 111-119. WANG Q, ZHANG J, ZHONG C L, et al. Variation of endogenesis hormone and nutritive matter concentration in Chukrasia tabularis cuttings during rooting[J]. Journal of Central South University of Forestry & Technology,2020,40(4):111-119.
[27] ROSS S, SPERONI G, SOUZA-PéREZ M, et al. Stem-cutting anatomy and biochemical responses associated with competence for adventitious root differentiation in Acca sellowiana (Myrtaceae)[J]. Trees,2021,35(4):1221-1232.
[28] LIU L, LI K, ZHOU X J, et al. Integrative analysis of metabolome and transcriptome reveals the role of strigolactones in woundinginduced rice metabolic re-programming[J]. Metabolites, 2022,12(9):789.
[29] GUAN Y G, HU W Z, XU Y P, et al. Metabolomics and physiological analyses validates previous findings on the mechanism of response to wounding stress of different intensities in broccoli[J]. Food Research International,2021,140(1):110058.
[30] 馬玲.黃心夜合扦插生根機(jī)理及不同扦插時間的代謝物差異的研究[D].貴陽:貴州師范大學(xué),2023. MA L. Study on rooting mechanism and metabolite differences at different cutting times of cutting of Michelia martinii[D]. Guiyang: Guizhou Normal University,2023.
[31] CHEN W Z, HE L B, TIAN S Y, et al. Factors involved in the success of Castanea henryi stem cuttings in different cutting mediums and cutting selection periods[J]. Journal of Forestry Research,2020,32(4):1-13.
[32] 周乃富,張俊佩,劉昊,等.木本植物非均質(zhì)化組織石蠟切片制作方法[J].植物學(xué)報(bào),2018,53(5):653-660. ZHOU N F, ZHANG J P, LIU H, et al. New protocols for paraffin sections of heterogeneous tissues of woody plants[J]. Chinese Bulletin of Botany,2018,53(5):653-660.
[33] 趙世杰,史國安,董新純.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2002:83-99. ZHAO S J, SHI G A, DONG X C. Experimental guide to plant physiology[M]. Beijing: China Agricultural Science and Technology Press,2002:83-99.
[34] 李合生.植物生理生化實(shí)驗(yàn)原理和技術(shù)[M].北京:高等教育出版社,2000. LI H S. Principles and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press,2000.
[35] 李寶軍,劉志恬,薛素琳,等.采前氨基寡糖素噴施通過激活苯丙烷途徑促進(jìn)采后厚皮甜瓜愈傷[J].食品科學(xué),2022, 43(21):275-281. Ll B J, LIU Z T, XUE S L, et al. Preharvest sprays with amino oligosaccharide promote wound healing in harvested muskmelons by activating the phenylpropane pathway[J]. Food Science, 2022,43(21):275-281.
[36] 郝建軍,康宗利,于洋.植物生理學(xué)實(shí)驗(yàn)技術(shù)[M].北京:化學(xué)工業(yè)出版社,2007. HAO J J, KANG Z L, YU Y. Experimental techniques in plant physiology[M]. Beijing: Chemical Industry Press,2007.
[37] 王建華,孫曉梅,王笑山,等.母株年齡、激素種類及其濃度對日本落葉松扦插生根的影響[J].林業(yè)科學(xué)研究,2006,19(1): 102-108. WANG J H, SUN X M, WANG X S, et al. Effects of age, type of auxin and treatment concentration on rooting ability of Larix leptolepis[J]. Forest Research,2006,19(1):102-108.
[38] 杜常健,孫佳成,韓振泰,等.板栗扦插生根過程的解剖結(jié)構(gòu)和生理變化研究[J].西北植物學(xué)報(bào),2019,39(11):1979-1987. DU C J, SUN J C, HAN Z T, et al. Study on changes of anatomical structure and physiology during cuttings rooting of Castanea mollissima[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019,39(11):1979-1987.
[39] 常二梅,董遙,劉建鋒,等.不同樹齡側(cè)柏古樹扦插生根過程中的生理響應(yīng)[J].植物研究,2023,43(4): 582-590. CHANG E M, DONG Y, LIU J F, et al. Physiological response of ancient Platycladus orientalis with different ages during cutting rooting process[J]. Bulletin of Botanical Research,2023,43(4): 582-590.
[40] 錢家連,李迎超,許慧慧,等.不同年齡栓皮櫟嫩枝扦插生根及解剖學(xué)分析和酶活性變化[J].浙江農(nóng)林大學(xué)學(xué)報(bào), 2023,40(1):107-114. QIAN J L, LI Y C, XU H H, et al. rooting, anatomical analysis and changes of enzyme activity of softwood rooting, anatomical analysis and changes of enzyme activity of softwood cuttings of Quercus variabilis at different ages[J]. Journal of Zhejiang A & F University,2023,40(1):107-114.
[41] 徐程揚(yáng),張忠輝,李紹臣.核桃楸枝條、插穗中生根抑制物質(zhì)的含量[J].吉林林學(xué)院學(xué)報(bào),1998,14(4):28-31. XU C Y, ZHANG Z H, LI S C. Dynamic state of rooting inhibitor in branches and cuttings of Juglans mandshurica[J]. Journal of Jilin Forestry University,1998,14(4):28-31.
[42] 杜偉,班月圓,唐壯,等.桑樹硬枝扦插生根過程基部皮層的差異蛋白質(zhì)組分析[J].蠶業(yè)科學(xué),2015,41(4):593-602. DU W, BAN Y Y, TANG Z, et al. Analysis on differential proteome in base cortex during rooting of mulberry hardwood cuttings[J]. Acta Sericologica Sinica,2015,41(4):593-602.
[43] 李振芳,張亞東,陳慧玲,等.不同楸樹品種根段及枝干萌條內(nèi)源激素質(zhì)量分?jǐn)?shù)及扦插生根率[J].東北林業(yè)大學(xué)學(xué)報(bào), 2023,51(9):28-33. LI Z F, ZHANG Y D, CHEN H L, et al. Endogenous hormone content and rooting rate of root sprouts and branch sprouts of different variety of Catalpa varieties[J]. Journal of Northeast Forestry University,2023,51(9):28-33.
[44] 呂庚鑫,孟益德,慶軍,等.‘華仲6號’杜仲嫩枝扦插生根的解剖及生理變化[J].林業(yè)科學(xué),2022,58(2):113-124. Lü G X, MENG Y D, QING J, et al. Changes of anatomical structure and physiology during softwood cutting rooting of Eucommia ulmoides ‘Huazhong No.6’[J]. Scientia Silvae Sinicae, 2022,58(2):113-124.
[45] LIU G B, ZHAO J Z, LIAO T, et al. Histological dissection of cutting-inducible adventitious rooting in Platycladus orientalis reveals developmental endogenous hormonal homeostasis[J]. Industrial Crops & Products,2021,170(1):113817.
[46] BALLESTER A, SAN-JOSé M C, VIDAL N, et al. Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut[J]. Annals of Botany,1999,83(6):619-629.
[47] JI X L, LI H L, QIAO Z W, et al. The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple[J]. Plant Physiology,2022,189(2):1005-1020.
[48] 陳廣輝,王軍輝,張守攻,等.世界云杉采穗圃研究現(xiàn)狀及研究重點(diǎn)[J].山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,38(4): 650-653. CHEN G H, WANG J H, ZHANG S G, et al. Current situation and stress of research on Picea asperata cutting orchard on the world[J]. Journal of Shandong Agricultural University (Natural Science),2007,38(4):650-653.
[49] 趙媛媛,張貴芳,楊潛泉,等.松樹扦插及規(guī)模化繁育技術(shù)[J].中國科學(xué):生命科學(xué),2020,50(9):996-1004. ZHAO Y Y, ZHANG G F, YANG Q Q, et al. Cutting breeding and massive propagation technique in pine[J]. Scientia Sinica(Vitae), 2020,50(9):996-1004.
[50] DAG A, EREL R, BEN-GAL A, et al. The effect of olive tree stock plant nutritional status on propagation rates[J]. Hort-Science, 2012,47(2):307-310.
[51] BARALDI R, ROSSI F, LERCARI B. In vitro shoot development of Prunus GF 655-2: interaction between light and benzyladenine[J]. Physiologia Planttarum,1988,74(2):440-443.
[52] DAUD N, FAIZAL A, GEELEN D. Adventitious rooting of Jatropha curcas L. is stimulated by phloroglu-cinol and by red LED light[J]. In Vitro Cellular & Developmental Biology-Plant, 2013,49(2):183-190.
[53] JARVIS B C, SHAHEED A I. Adventitious root formation in relation to irradiance and auxin supply[J]. Biologia Planttarum, 1987,29(5):321-333.
[54] MA J J, CHEN X, SONG Y T, et al. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-toreproductive transition in pine[J]. Plant Physiology,2021,187(1): 247-262.
[本文編校:謝榮秀]