摘 要:【目的】探索作為樹干水分變化狀況指標(biāo)的樹木水分虧缺(TWD)變化特征及其與飽和水汽壓差(VPD)的關(guān)系,揭示徑向變化對環(huán)境水分脅迫的響應(yīng)特征,為合理指導(dǎo)紅錐人工林經(jīng)營提供科學(xué)依據(jù)和數(shù)據(jù)支持?!痉椒ā坷脧较蜃兓涗泝x記錄不同分化等級紅錐樹干徑向變化過程,同步監(jiān)測環(huán)境因子,分析TWD對VPD的響應(yīng)特征?!窘Y(jié)果】不同分化等級紅錐的TWD波動趨勢相似,TWD隨著VPD的變化而變化,但并不同步。小時尺度上,TWD和VPD顯著正相關(guān)(r=0.488,r=0.489,r =0.512,P<0.01),劃分失水期和復(fù)水期后,兩個時期的TWD和VPD也顯著正相關(guān),且失水期的相關(guān)性增強(qiáng)(r=0.623,r=0.667,r=0.593,P<0.01)。日尺度上,無論是否劃分失水期和復(fù)水期,二者均顯著正相關(guān),但相關(guān)性減弱。前后1天內(nèi)的時滯響應(yīng)分析結(jié)果顯示,無論分化等級,TWD與VPD顯著正相關(guān)(P<0.01);劃分失水期和復(fù)水期后,在任何時間段考慮時滯響應(yīng)時也均達(dá)到顯著正相關(guān),失水期的相關(guān)性強(qiáng)于復(fù)水期的相關(guān)性。未劃分失水期和復(fù)水期時,不同分化等級紅錐TWD對VPD響應(yīng)滯后時間均為3 h。劃分失水期和復(fù)水期后,失水期TWD對VPD響應(yīng)滯后時間縮短,復(fù)水期TWD對VPD響應(yīng)滯后時間延長。優(yōu)勢木、中等木和被壓木復(fù)水期的滯后時間比失水期分別長3、4和5 h。VPD大幅度波動條件(VPDL)下,隨著VPD的反復(fù)升降,TWD表現(xiàn)為失水-復(fù)水交替出現(xiàn),變化的總體趨勢是上升的;VPD小幅度波動條件(VPDs)下,TWD變化趨勢較平緩,兩種條件下TWD對VPD的響應(yīng)均存在時滯。無論分化等級,VPDL條件下TWD與VPD之間的相關(guān)性(r=0.550,r=0.553,r=0.584,P<0.01)均強(qiáng)于VPDs下的相關(guān)性(r=0.256,r=0.260,r=0.281,P<0.01)。VPDL條件下,考慮滯后時間后,無論是否劃分失水期和復(fù)水期,不同分化等級紅錐TWD與VPD之間的相關(guān)性均增強(qiáng)。VPDs條件下,復(fù)水期的相關(guān)性低于忽略時滯效應(yīng)時的相關(guān)性。【結(jié)論】TWD對VPD的響應(yīng)存在時滯效應(yīng),在失水期和復(fù)水期,TWD對VPD的響應(yīng)特征不同,且在不同分化等級間存在差異;失水期和復(fù)水期的劃分有助于研究TWD與VPD的相關(guān)性。
關(guān)鍵詞:徑向變化動態(tài);徑向變化記錄儀;紅錐;時滯效應(yīng);林木分化等級
中圖分類號:S718.43 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-923X(2024)09-0094-11
基金項(xiàng)目:中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(CAFYBB2021MA002);廣西自然科學(xué)基金(2019GXNSFBA245067)。
Time lag of stem water deficit in response to vapor pressure deficit of Castanopsis hystrix
LIU Shiling1,2,3, YANG Baoguo1, ZHENG Lu1,2,3, ZHANG Pei1, PANG Shengjiang1, CHEN Lin1,2,3, MIN Huilin1,2,3, SHU Weiwei1,2,3, TIAN Zuwei1, HUANG Rong1
(1. Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Chongzuo 532600, Guangxi, China; 2. Guangxi Youyiguan Forest Ecosystem National Observation and Research Station, Chongzuo 532600, Guangxi, China; 3. Youyiguan Forest Ecosystem Observation and Research Station of Guangxi, Chongzuo 532600, Guangxi, China)
Abstract:【Objective】Tree water deficit-induced stem shrinkage (TWD) is an indicator for tree water status. By studying the variation characteristics of TWD and its relationship with VPD, and revealing the response characteristics of radial change to environmental water stress, the scientific basis and data support for reasonable guidance of Castanopsis hystrix plantation management was provided.【Method】Dendrometer was used to continuously record the radial growth change process of C. hystrix, and the environmental factors were measured simultaneously. The main goal of this study was to analyze the response characteristics of TWD to VPD.【Result】The TWD fluctuation trend of different differentiation classes was similar, and TWD varied with VPD, but not synchronously. On the hourly scale, TWD and VPD were significantly positively correlated (r = 0.488, r = 0.489, r = 0.512, P<0.01), and TWD and VPD were also significantly positively correlated after the water loss period and water recover period were divided. The correlation of water loss period was enhanced (r = 0.623, r = 0.667, r = 0.593, P<0.01). On the daily scale, no matter whether water loss period and water recovery period were divided, the two were significantly positively correlated, but the correlation was weakened. The results of comparison of pearson’s correlation coefficients between TWD and VPD under the condition of considering the time delay effect within 1-day showed that TWD and VPD were significantly positively correlated (P<0.01) regardless of differentiation classes. After dividing the water loss period and the water recovery period, the correlation of the water loss period was stronger than that of the water recovery period. When the water loss period and the water recovery period were not divided, the variation of TWD lagged behind that of VPD to a certain extent, by about 3 h. After the water loss period and the water recovery period were divided, the time lag of TWD to VPD in the water loss period was shortened, and time lag of TWD to VPD in the water recovery period was lengthened. The time lag of dominant, intermediate, and suppressed trees during water recovery period was 3 h, 4 h and 5 h, respectively, longer than that during the water loss period. Under VPD large fluctuation condition (VPDL), with repeatedly rising and falling of VPD, TWD appeared as water loss and recovery alternately. Under VPD small fluctuation condition (VPDs), TWD changed slowly. The time lag of TWD to VPD was existed under both conditions. The correlation between TWD and VPD under VPDL was stronger (r = 0.550, r = 0.553, r = 0.584, P<0.01) than that under VPDs (r = 0.256, r = 0.260, r = 0.281, P<0.01), regardless of differentiation classes. Under VPDL, after considering the time lag, the correlation between TWD and VPD of different differentiation classes was enhanced regardless of whether the water loss period and the water recovery period were divided. Under VPDs, the correlation of water recovery period was lower than that when the time lag effect was ignored.【Conclusion】TWD has a time-lag effect in response to VPD. TWD has different response characteristics to VPD in the water loss period and water recovery period, and these relationships have differences among different tree differentiation classes. The division of water loss period and water recovery period is helpful to study the correlation between TWD and VPD.
Keywords: radial variation dynamics; dendrometer; Castanopsis hystrix; time-lag effect; tree differentiation classes
水是植物生長發(fā)育必不可少的要素,生長季節(jié)適量的水分供應(yīng)是保證樹木健壯生長的關(guān)鍵[1]。飽和水汽壓差(VPD)是全球水資源和植物水分關(guān)系的一個主要決定因素[2]。21世紀(jì)以來,所有氣候帶的大氣干旱化(以VPD為代表)都有所增加[3]。高VPD增加了土壤的水分損失率,使地表干燥,并導(dǎo)致更頻繁和嚴(yán)重的干旱事件和植物水分脅迫[4]。水力結(jié)構(gòu)功能維持是植物在干旱條件下存活的基礎(chǔ),水勢是體現(xiàn)植物水分狀況的直接指標(biāo)[5],但水勢指標(biāo)測定的難點(diǎn)在于對高大樹木樹冠葉子的獲取。近年來研究發(fā)現(xiàn),樹干徑向變化是樹木水分狀況變化的一個潛在指標(biāo)[6],對了解樹木生長和生理特性應(yīng)對氣候變化具有重要意義。為闡明樹木水分狀況的動態(tài)變化特征及其與VPD的關(guān)系,對樹干徑向進(jìn)行連續(xù)監(jiān)測與分析是至關(guān)重要的。
樹干徑向變化的高分辨率時間監(jiān)測可以提供不同時間尺度下的徑向生長模式分析,以及揭示由水分變化引起的可逆徑向變化。Zweifel[7]將由樹干水分狀況引起的可逆徑向變化稱為樹木水分虧缺(tree water deficit-induced stem shrinkage,TWD),并假設(shè)樹木在樹干徑向可逆變化期間零增長。通過研究53個站點(diǎn)收集的21個樹種的年際徑向生長數(shù)據(jù)發(fā)現(xiàn),2018年歐洲熱浪導(dǎo)致了廣泛的樹干收縮,針葉樹和闊葉樹徑向水分虧缺不同[8]。對7種溫帶樹種的徑向生長研究發(fā)現(xiàn),徑向生長受高VPD的嚴(yán)重限制,而低VPD條件下即使在中等干燥的土壤中也能生長[9]。VPD對徑向變化的相對影響仍然不清楚,并且可能根據(jù)物種和環(huán)境條件而變化。研究表明,從土壤-植物-大氣連續(xù)體的整體來看,植物對環(huán)境水分的響應(yīng)存在時滯現(xiàn)象[10]。對興安落葉松Larix gmelinii的TWD與VPD關(guān)系研究發(fā)現(xiàn),二者存在明顯的滯后效應(yīng)[11]。另有研究發(fā)現(xiàn),不同分化等級個體間對氣候敏感性的差異比物種間的差異更大[12],樹的形態(tài)特征(如樹高等)與樹干徑向的變化具有密切關(guān)系[13]。然而,以往研究鮮有考慮不同分化等級個體TWD對VPD的敏感性差異,特別是不同時期(失水期和復(fù)水期)和不同水分條件下TWD與VPD的響應(yīng)特征。
紅錐Castanopsis hystrix是我國亞熱帶地區(qū)的重要速生闊葉用材樹種[14],是廣東省種植面積最大(5.33萬hm2以上)的珍貴樹種,且種植面積仍在逐年增加[15]。紅錐已被廣東、廣西、福建等省區(qū)列為重點(diǎn)發(fā)展的珍貴樹種,也是廣西建設(shè)全國木材戰(zhàn)略核心儲備基地和全國亞熱帶珍貴樹種基地的主要造林珍貴樹種[16-17]。該研究以我國桂西南熱帶林業(yè)實(shí)驗(yàn)中心2001年種植的紅錐人工林為研究對象,通過對樹干徑向動態(tài)變化及相關(guān)的氣象資料進(jìn)行連續(xù)監(jiān)測,分析不同時期和不同水分條件下TWD與VPD的相關(guān)性,以揭示不同分化等級間的時滯效應(yīng)差異,確定徑向變化對環(huán)境水分脅迫的響應(yīng)特征,為合理指導(dǎo)紅錐人工林經(jīng)營提供科學(xué)依據(jù)和數(shù)據(jù)支持。
1 研究區(qū)概況與研究方法
1.1 研究區(qū)概況
研究區(qū)位于廣西憑祥市友誼關(guān)森林生態(tài)系統(tǒng)國家定位觀測研究站(21°57′~22°16′N,106°41′~106°59′E),屬亞熱帶季風(fēng)氣候。據(jù)1965—2015年憑祥市氣象局的觀測資料,年均氣溫20.5~21.7 ℃,年降水量1 200~1 500 mm,全年降水量的78%發(fā)生在5—9月,年均相對濕度80%~84%。地帶性土壤為紅壤,pH值為4.5~7.5,土層厚度≥60 cm,腐殖質(zhì)層厚度5~10 cm。
1.2 樹木選擇和生長監(jiān)測
紅錐人工林為2001年種植,現(xiàn)存林分密度為750株·hm-2。2017年底,設(shè)置30 m×30 m的紅錐樣地。采取定性和定量相結(jié)合的方法,在林分內(nèi)選取優(yōu)勢木、中等木和被壓木各4株[18](表1),在胸高1.3 m處安裝樹干徑向生長變化記錄儀(Ecomatik,Germany,精度±2 μm),連續(xù)監(jiān)測徑向變化動態(tài)。數(shù)據(jù)記錄時間為每30 min記錄1次,本研究涵蓋的數(shù)據(jù)為2022年4—9月的監(jiān)測值。
1.3 環(huán)境因子觀測
生長監(jiān)測期間的氣象資料如平均氣溫(Tave,℃)、降水量(P,mm)、10 cm深土壤體積含水率(SWC10)和10 cm深土壤溫度(TS10)等從廣西友誼關(guān)森林生態(tài)系統(tǒng)定位觀測研究站獲得。該站依據(jù)國家氣象站標(biāo)準(zhǔn)和要求設(shè)有標(biāo)準(zhǔn)氣象觀測場(25 m×25 m),氣象觀測場距紅錐試驗(yàn)林<1.5 km。數(shù)據(jù)記錄時間為每1 min記錄1次,飽和水汽壓差(VPD,kPa)根據(jù)Murray等[19]的方法計(jì)算。
研究期間降水總量為845.8 mm,主要集中在5—9月;日均氣溫為11.4~34.9 ℃,平均為25.4 ℃;10 cm深土壤體積含水量為0.163~0.382 m3·m-3,平均為0.227 m3·m-3;飽和水汽壓差為0~3.2 kPa,平均為0.76 kPa(圖1)。
1.4 數(shù)據(jù)處理
將整個研究期觀測到的時間序列數(shù)據(jù)分為失水期(TWDi)和復(fù)水期(TWDd),前者為TWD增加的時段,后者為TWD減小的時段。所有氣象數(shù)據(jù)和徑向數(shù)據(jù)換算為1 h的值。如果TWD值在1 h后下降,則記錄為TWDd,否則記錄為TWDi。
本研究采用Pearson相關(guān)分析和錯位對比法,分析TWD與VPD變化的錯位相關(guān)性。以步長為1 h,進(jìn)行小時時間窗口下TWD與VPD逐行錯位分析,分析提前或滯后24 h的時滯效應(yīng),兩列數(shù)據(jù)錯位后相關(guān)性最高且達(dá)到顯著性水平時,所對應(yīng)的時間即提前/滯后時間。采用SPSS19.0和SigmaPlot10.0軟件對數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和圖形繪制。
2 結(jié)果與分析
2.1 TWD和VPD的變化特征
從整體表現(xiàn)來看,不同分化等級紅錐的TWD波動趨勢相似,除被壓木外,TWD在失水期變化快,持續(xù)時間短;在復(fù)水期變化緩慢,持續(xù)時間長,TWDi和TWDd交替出現(xiàn)(圖2,表2)。TWDi的變化時長和累積變化量表現(xiàn)為被壓木>中等木>優(yōu)勢木,被壓木的TWDd變化時長和累積變化量低于其他兩個分化等級,優(yōu)勢木的TWDi發(fā)生時長最短,復(fù)水頻率更高(表2)。不同月份間比較,5—6月份TWDi和TWDd大于0的發(fā)生次數(shù)少,其變化持續(xù)時間較短,振幅較小,TWDi和TWDd的累積變化量低于其他月份(圖2)。失水期和復(fù)水期的VPD變化也表現(xiàn)不同。在失水期,VPD變化較大(圖2a);在復(fù)水期,VPD變化較?。▓D2b)。不同月份間比較,5—6月份VPD均值小于其他月份(圖2)。在整個觀測期內(nèi),TWD隨著VPD的變化而變化,但并不同步。
2.2 TWD對VPD變化的即時及滯后效應(yīng)響應(yīng)
無論分化等級,在小時尺度上,未劃分失水期和復(fù)水期時,TWD和VPD顯著正相關(guān)(r=0.488,r=0.489,r =0.512,P<0.01)(表3)。劃分失水期和復(fù)水期后,兩個時期的TWD和VPD仍顯著正相關(guān),與未劃分失水期和復(fù)水期相比,失水期TWD與VPD的相關(guān)性增強(qiáng)(r=0.623,r=0.667,r=0.593,P<0.01),且強(qiáng)于復(fù)水期TWD與VPD的相關(guān)性(r=0.490,r=0.435,r=0.461,P<0.01)(表3)。日尺度上,無論是否劃分失水期和復(fù)水期,二者仍顯著正相關(guān),但相關(guān)性減弱(表3)。
前后1天內(nèi)的時滯響應(yīng)分析結(jié)果顯示,不同分化等級紅錐TWD對VPD的響應(yīng)較一致(圖3,表4)。未劃分失水期和復(fù)水期時,TWD與VPD顯著正相關(guān)(P<0.01)。劃分失水期和復(fù)水期后,在任何時間段考慮時滯響應(yīng)時也均達(dá)到顯著正相關(guān),失水期TWD與VPD的相關(guān)性強(qiáng)于復(fù)水期TWD與VPD的相關(guān)性。
TWD對VPD響應(yīng)的滯后時間在失水期和復(fù)水期存在差異。不同分化等級紅錐復(fù)水期TWD對VPD的響應(yīng)滯后時間均大于失水期,優(yōu)勢木、中等木和被壓木的復(fù)水期TWD對VPD的響應(yīng)滯后時間分別比失水期長3、4和5 h。整個研究期,不同分化等級紅錐TWD對VPD響應(yīng)的滯后時間均為3 h。與未劃分失水期和復(fù)水期相比,復(fù)水期TWD對VPD的反應(yīng)時滯延長,而失水期TWD對 VPD的反應(yīng)時滯縮短。
2.3 徑向收縮隨VPD變化的兩種趨勢特征
2個典型周期(VPD大/小幅度波動條件下)TWD隨VPD的變化如圖4所示,在不同條件下,TWD呈現(xiàn)出兩種變化趨勢??傮w上,TWD隨VPD的變化而變化,二者呈正相關(guān),且TWD在變化趨勢上滯后于VPD。
VPD大幅度波動條件(VPDL)下,TWD與VPD表現(xiàn)出相似的特征和變化趨勢。隨著VPD的反復(fù)升降,TWD表現(xiàn)為失水-復(fù)水交替出現(xiàn),變化的總體趨勢是上升的,但存在響應(yīng)時滯。在VPD小幅度波動條件(VPDs)下,TWD變化趨勢較平緩,TWD對VPD的響應(yīng)也存在時滯。不同分化等級紅錐TWD波動趨勢較為一致,但VPDL條件下,優(yōu)勢木TWD變化表現(xiàn)為失水與復(fù)水交替最為明顯,而在VPDs條件下,優(yōu)勢木TWD變化最為平緩。無論VPDL或VPDs條件下, TWDi和TWDd的變化時長和累積變化量均表現(xiàn)為被壓木>中等木>優(yōu)勢木。
不同分化等級紅錐TWD與VPD的相關(guān)性有所不同,表現(xiàn)為被壓木>平均木>優(yōu)勢木。無論分化等級,VPDL條件下TWD與VPD之間的相關(guān)性(r=0.550,r=0.553,r=0.584,P<0.01)均強(qiáng)于VPDs下的相關(guān)性(r=0.256,r=0.260,r=0.281,P<0.01)(表5)。VPDL條件下,考慮滯后時間后,不同分化等級紅錐TWD與VPD之間的相關(guān)性均增強(qiáng)(r=0.620,r=0.688,r=0.675,P<0.01);劃分失水期和復(fù)水期后,兩個時期的相關(guān)性也均增強(qiáng)。VPDs條件下,考慮滯后時間后,不同分化等級紅錐TWD與VPD之間的相關(guān)性增強(qiáng)(r=0.335,r=0.352,r=0.322,P<0.01),失水期二者的相關(guān)性也增強(qiáng),但復(fù)水期二者的相關(guān)性低于忽略時滯效應(yīng)時的相關(guān)性。
3 討 論
以往研究報(bào)道了干旱對亞熱帶樹種生長的顯著影響[21],強(qiáng)調(diào)水分對樹木生長起著至關(guān)重要的作用,水分脅迫會限制我國亞熱帶地區(qū)樹木的生長。本研究中,不同分化等級紅錐在生長季節(jié)經(jīng)歷了一定的水分脅迫,優(yōu)勢木的TWDi發(fā)生時長較短,復(fù)水頻率更高,這是由于TWD與樹干彈性樹皮細(xì)胞(形成層、韌皮部和薄壁組織細(xì)胞)中水的移動和儲存有關(guān)[22-23]。一方面,優(yōu)勢木具有較強(qiáng)的樹干儲水能力[24],其對環(huán)境因子改變的緩沖能力較強(qiáng);另一方面,優(yōu)勢木可以利用深層土壤穩(wěn)定的水源,吸水效率高[25],其快速的水分運(yùn)輸可以減輕蒸騰損失引起的樹干水分失衡,從而導(dǎo)致較短的水分虧缺和較早的復(fù)水。5—6月份的TWDi和TWDd的累積變化量低于其他月份。5—6月降水量相對較大,月均土壤體積含水量(0.248、0.231 m3/m3)高于其他月份(0.210、0.218、0.229、0.221 m3/m3)。年尺度下的紅錐樹干徑向生長速率研究表明,優(yōu)勢木、中等木徑向生長最大速度分別出現(xiàn)在5月末、6月中旬[26],結(jié)合5—6月份的TWD變化,表明這兩個月紅錐生長受水分脅迫的程度較輕。
TWD與VPD呈正相關(guān),這與以往關(guān)于希臘杜松Juniperus excelsa、遼東櫟Quercus wutaishanica、華北落葉松Larix principis-rupprechtii和歐洲云杉Picea abies徑向變化對VPD的響應(yīng)研究結(jié)果一致[27-29],表明高VPD將降低大氣水勢,導(dǎo)致樹干流量和蒸騰失水增加,干旱脅迫加劇[30-31]??紤]時滯效應(yīng)時,二者的相關(guān)性更強(qiáng)。TWD反映了樹干的貯水量,與蒸騰作用密切相關(guān)。徑向收縮的時間和幅度提供了關(guān)于蒸騰和土壤水分狀況隨時間的相對變化的信息[32]。從土壤-植物-大氣連續(xù)體整體的角度來看,植物對環(huán)境水分的反應(yīng)存在時滯[10]。時滯效應(yīng)是由于葉片蒸騰作用受樹木內(nèi)外因子的影響而發(fā)生調(diào)節(jié)的結(jié)果。樹木的蒸騰作用受VPD的控制[33],樹冠不同高度和方向的葉片氣孔蒸騰量不同。這些差異將表現(xiàn)為樹干TWD的變化,導(dǎo)致TWD和VPD不同步的現(xiàn)象。本研究中,優(yōu)勢木TWD對VPD的敏感性略低,說明優(yōu)勢木受干旱的影響程度較小,這與劉家霖等[34]的研究結(jié)果相似,即受競爭脅迫的興安落葉松中等木、被壓木對高溫、低空氣濕度的天氣更敏感。本研究中,在失水期TWD對VPD的響應(yīng)時滯縮短,在復(fù)水期響應(yīng)時滯延長,這表明在水分補(bǔ)充階段和水分損失階段樹木對水分變化的響應(yīng)不同,可能是因?yàn)樵谒止?yīng)不足的情況下,失水期的徑向變化與VPD之間的相關(guān)性比在復(fù)水期由空氣和土壤水分增加引起的徑向變化與VPD之間的相關(guān)性更強(qiáng)。本研究中,優(yōu)勢木、中等木和被壓木的TWDd滯后時間比TWDi分別長3、4和5 h,優(yōu)勢木TWD對VPD的時滯效應(yīng)更短,造成此現(xiàn)象的原因可能是不同分化等級林木的儲水能力和水分運(yùn)輸能力存在差異[24-25]。
深入挖掘高時間分辨率的徑向變化數(shù)據(jù)和與之匹配的環(huán)境因子數(shù)據(jù),可進(jìn)一步細(xì)化相關(guān)研究結(jié)論,聚焦不同條件下個體特征的響應(yīng)機(jī)制。本研究中,TWD在不同條件下對VPD的響應(yīng)模式存在差異,在VPDs條件下,TWD對VPD變化的敏感性較低。對VPDL和VPDs條件下TWD和VPD的相關(guān)關(guān)系研究表明,考慮時滯效應(yīng)增加了TWD和VPDL之間的相關(guān)性,表明隨著VPD的增加,樹木將受到更多的水分脅迫。VPDs條件下,在TWDd中,考慮時滯效應(yīng)減弱了TWD與VPD的相關(guān)性,這與興安落葉松研究中在TWDd中考慮時滯效應(yīng)增強(qiáng)了TWD與VPD的相關(guān)性的結(jié)果不同[11],究其原因可能與研究區(qū)域有關(guān),其研究區(qū)域是大興安嶺地區(qū),年均氣溫為-4.4 ℃,年均相對濕度為65.9%,年降水量約為473.5 mm,遠(yuǎn)低于本研究區(qū)域的年均氣溫(20.5~21.7 ℃)、年均相對濕度(80%~84%)和年降水量(1 200~1 600 mm)。VPD對TWD產(chǎn)生限制的閾值不是恒定的,不同氣候帶的VPD閾值存在差異,如Zweifel等[9]報(bào)道了溫帶樹木生長的VPD閾值為0.4 kPa,而對潮濕熱帶森林的長期森林動態(tài)分析表明,熱帶樹木生長的VPD閾值約0.9 kPa[35]。此外,Zweifel等[9]認(rèn)為,當(dāng)VPD足夠低時,即使土壤適度干燥,樹干仍可以進(jìn)行徑向生長;其次可能與樹種特性有關(guān),Raffelsbauer等[36]研究表明不同的樹種具有不同的水回收能力。
以往徑向生長與環(huán)境因子的關(guān)系研究常考慮多個環(huán)境因子,這雖然使研究更加系統(tǒng),但削弱了研究的深度和針對性。本研究高分辨率的徑向生長數(shù)據(jù)為分析樹干徑向水分虧缺與飽和水汽壓差的關(guān)系提供了良好機(jī)會,但是單一生長季和點(diǎn)位的研究結(jié)果也使得本研究存在一定的局限性,今后的工作可以深入分析不同氣候條件下(如干旱年和濕潤年)二者相關(guān)性的差別,或設(shè)置多樹種的監(jiān)測,并以本研究的結(jié)果為基礎(chǔ)繼續(xù)探索不同樹種對VPD的響應(yīng)特征。此外,未來的研究應(yīng)納入其他因素,如功能性狀、樹干液流等,對于進(jìn)一步理解該研究至關(guān)重要。
4 結(jié) 論
在失水期和復(fù)水期,TWD對VPD的響應(yīng)特征不同,且在不同分化等級間存在差異;失水期和復(fù)水期的劃分有助于研究TWD與VPD的相關(guān)性。TWD與VPD呈正相關(guān),且存在時滯效應(yīng)。在研究TWD與VPD的相關(guān)性時,需要考慮時滯的影響。
參考文獻(xiàn):
[1] 胡衍平,劉衛(wèi)東,龐文勝,等.水分脅迫對山烏桕幼苗生長及生理生化的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(8): 62-72. HU Y P, LIU W D, PANG W S, et al. Effects of water stress on the growth, physiological and biochemical characteristics of Sapium discolor seedlings[J]. Journal of Central South University of Forestry & Technology,2023,43(8):62-72.
[2] GROSSIORD C, BUCKLEY T N, CERNUSAK L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020,226(6):1550-1566.
[3] FANG Z X, ZHANG W M, BRANDT M, et al. Globally increasing atmospheric aridity over the 21st century[J]. Earth’s Future,2022,10(10):e2022EF003019.
[4] DAI A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change,2013,3(1): 52-58.
[5] 張擁兵,王林,薛浩,等.不同干旱程度對棗樹苗木水碳平衡和生物量分配的影響[J].經(jīng)濟(jì)林研究,2022,40(3):208-215. ZHANG Y B, WANG L, XUE H, et al. Effects of different degrees of drought on water-carbon balance and biomass allocation of jujube seedlings[J]. Non-wood Forest Research,2022,40(3): 208-215.
[6] SKELTON R. Stem diameter fluctuations provide a new window into plant water status and function[J]. Plant Physiology, 2020,183(4):1414-1415.
[7] ZWEIFEL R. Radial stem variations-a source of tree physiological information not fully exploited yet[J]. Plant, Cell & Environment,2016,39(2):231-232.
[8] SALOMóN R L, PETERS R L, ZWEIFEL R, et al. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests[J]. Nature Communications, 2022,13(1):28-38.
[9] ZWEIFEL R, STERCK F, BRAUN S, et al. Why trees grow at night[J]. New Phytologist,2021,231(6):2174-2185.
[10] COCOZZA C, TOGNETTI R, GIOVANNELLI A. Highresolution analytical approach to describe the sensitivity of treeenvironment dependences through stem radial variation[J]. Forests, 2018,9(3):134-151.
[11] TIAN Y, LIU X, ZHANG X, et al. Time lag of stem water deficit in response to increased vapor pressure deficit[J]. Forest Science, 2023,69(3):311-320.
[12] DELUIS M, NOVAK K, CUFAR K, et al. Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea[J]. Trees,2009,23(5):1065-1073.
[13] 趙平.樹木儲存水對水力限制的補(bǔ)償研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),2010,21(6):1565-1572. ZHAO P. Compensation of tree water storage for hydraulic limitation: Research progress[J]. Chinese Journal of Applied Ecology,2010,21(6):1565-1572.
[14] 鄒揚(yáng)東,王春勝,尹海鋒,等.混交比例對西南樺和紅錐早期生長與競爭的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023, 43(11):93-99. ZOU Y D, WANG C S, YIN H F, et al. Effects of mixing ratio on early growth and competition of Betula alnoides and Castanopsis hystrix[J]. Journal of Central South University of Forestry & Technology,2023,43(11):93-99.
[15] 劉小金,徐大平.廣東省珍貴樹種資源分布特點(diǎn)、產(chǎn)業(yè)現(xiàn)狀與發(fā)展建議[J].廣東農(nóng)業(yè)科學(xué),2021,48(7):57-65. LIU X J, XU D P. Characteristics of resource distribution, industry status and development proposal of precious tree species in Guangdong[J]. Guangdong Agricultural Sciences,2021,48(7): 57-65.
[16] 吳國欣,何彥然,張偉,等.廣西國家儲備林建設(shè)現(xiàn)狀及高質(zhì)量發(fā)展策略[J].廣西林業(yè)科學(xué),2022,51(3):445-451. WU G X, HE Y R, ZHANG W, et al. Current situation and high-quality development strategies of national reserve forest construction in Guangxi[J]. Guangxi Forestry Science,2022,51(3): 445-451.
[17] 楊曉慧,楊會肖,徐放,等.不同育苗容器對紅錐苗期生長及根系發(fā)育的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2021,41(11): 16-26. YANG X H, YANG H X, XU F, et al. Effect of different seedling containers on the growth and root system development of Castanopsis hystrix[J]. Journal of Central South University of Forestry & Technology,2021,41(11):16-26
[18] 玉寶,烏吉斯古楞,王百田,等.興安落葉松天然林樹冠生長特性分析[J].林業(yè)科學(xué),2010,46(5):41-48. YU B, WUJISIGULENG, WANG B T, et al. Analysis of growth characteristics in natural Larix gmelinii forests[J]. Scientia Silvae Sinicae,2010,46(5):41-48.
[19] MURRAY F W. On the computation of saturation vapor pressure[J]. Journal of Applied Meteorology,1967,6(1):203-204.
[20] ZWEIFEL R, HAENI M, BUCHMANN N, et al. “Are trees able to grow in periods of stem shrinkage?”[J]. New Phytologist, 2016,211(3):839-849.
[21] GHEYRET G, ZHANG H T, GUO Y P, et al. Radial growth response of trees to seasonal soil humidity in a subtropical forest[J]. Basic and Applied Ecology,2021,55(4):74-86.
[22] CHAN T, H?LTT? T, BERNINGER F, et al. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal[J]. Plant, Cell & Environment,2015,39(2): 233-244.
[23] MENCUCCINI M, SALMON Y, MITCHELL P, et al. An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies[J]. Plant, Cell & Environment,2017,40(2):290-303.
[24] KUMAGAI T, AOKI S, OTSUKI K, et al. Impact of stem water storage on diurnal estimates of whole-tree transpiration and canopy conductance from sap flow measurements in Japanese cedar and Japanese cypress trees[J]. Hydrological Processes, 2009,23(16):2335-2344.
[25] 郭錦榮,白天軍,鄧文平,等.不同胸徑日本柳杉樹干液流及其蒸騰耗水差異[J].西南林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2019, 39(2):70-77. GUO J R, BAI T J, DENG W P, et al. Differences in sap flow and Transpiring water consumption of Cryptomeria japonica with different DBH[J]. Journal of Southwest Forestry University(Natural Sciences),2019,39(2):70-77.
[26] 劉士玲,楊保國,姚建峰,等.廣西紅椎樹干徑向生長研究[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,41(5):82-90. LIU S L, YANG B G, YAO J F, et al. Study on stem radial growth of Castanopsis hystrix in Guangxi[J]. Journal of South Agricultural University,2020,41(5):82-90.
[27] ZHANG Q, LYU L X, WANG Y. Patterns of daily stem growth in different tree species in a warm-temperate forest in northern China[J]. Dendrochronologia,2022,72:125934.
[28] OBERHUBER W, HAMMERLE A, KOFLER W. Tree water status and growth of saplings and mature Norway spruce(Picea abies) at a dry distribution limit[J]. Frontiers in Plant Science,2015,6:703-714.
[29] GüNEY A, ZWEIFEL R, TüRKAN S, et al. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range[J]. Annals of Forest Science,2020,77(4):105.
[30] SáNCHEZ-COSTA E, POYATOS R, SABATé S. Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations[J]. Agricultural and Forest Meteorology,2015,207:24-37.
[31] LI W, SI J, YU T, et al. Response of Populus euphratica Oliv. sap flow to environmental variables for a desert riparian forest in the Heihe River Basin, Northwest China[J]. Journal of Arid Land,2016,8(4):591-603.
[32] KING G, FONTI P, NIEVERGELT D, et al. Climatic drivers of hourly to yearly tree radius variations along a 6 ℃ natural warming gradient[J]. Agricultural and Forest Meteorology,2013,168:36-46.
[33] EHRENBERGER W, RüGER S, FITZKE R, et al. Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in Young Oak trees[J]. Functional Plant Biology,2012,39(4):297-305.
[34] 劉家霖,滿秀玲,胡悅.興安落葉松天然林不同分化等級林木樹干液流對綜合環(huán)境因子的響應(yīng)[J].林業(yè)科學(xué)研究,2016, 29(5):726-734. LIU J L, MAN X L, HU Y. Response of Tree sap flow of Larix gmelinii with various differentiation classes to multiple environmental factors[J]. Forest Research,2016,29(5):726-734.
[35] BAUMAN D, FORTUNEL C, DELHAYE G, et al. Tropical tree mortality has increased with rising atmospheric water stress[J]. Nature,2022,608(7923):528-533.
[36] RAFFELSBAUER V, SPANNL S, PE?A K, et al. Tree circumference changes and species-specific growth recovery after extreme dry events in a montane rainforest in southern Ecuador[J]. Frontiers in Plant Science,2019,10:342-351.
[本文編校:謝榮秀]