〔摘要〕 目的 研究柴胡皂苷D通過(guò)NOD樣受體蛋白3(NOD-like receptor protein 3,NLRP3)介導(dǎo)細(xì)胞焦亡,抑制未分化甲狀腺癌細(xì)胞增殖的作用及機(jī)制。方法 培養(yǎng)未分化甲狀腺癌細(xì)胞株HTh83和KMH2,不同濃度柴胡皂苷D(1、4、7、10、13、16、19、22、25、28、31、34、37 μmol/L)作用48 h后檢測(cè)細(xì)胞存活率,計(jì)算半數(shù)抑制濃度(50% inhibition concentration,IC50);細(xì)胞分為對(duì)照組(0 μmol/L柴胡皂苷D)、低濃度組(2.2 μmol/L柴胡皂苷D)、中濃度組(11 μmol/L柴胡皂苷D)、高濃度組(22 μmol/L柴胡皂苷D)、si-NC組(轉(zhuǎn)染NC siRNA)、高濃度+si-NC組(22 μmol/L柴胡皂苷D聯(lián)合轉(zhuǎn)染NC siRNA)、高濃度+si-NLRP3組(22 μmol/L柴胡皂苷D聯(lián)合轉(zhuǎn)染NLRP3 siRNA),處理48 h后檢測(cè)克隆形成數(shù)目,NLRP3、裂解型Caspase-1、GSDMD氨基末端片段(GSDMD N terminal fragment, GSDMD-N)的表達(dá)水平及培養(yǎng)基中白細(xì)胞介素-1β(interleukin-1β, IL-1β)、白細(xì)胞介素-18(interleukin-18, IL-18)的水平。結(jié)果 柴胡皂苷D以濃度依賴的方式降低HTh83細(xì)胞和KMH2細(xì)胞的存活率(P<0.05);低濃度組、中濃度組、高濃度組的細(xì)胞克隆數(shù)目低于對(duì)照組(P<0.05),NLRP3、裂解型Caspase-1、GSDMD-N的表達(dá)水平及培養(yǎng)基中IL-1β、IL-18的水平高于對(duì)照組(P<0.05);高濃度+si-NLRP3組細(xì)胞的存活率及克隆數(shù)目高于高濃度+si-NC組(P<0.05),NLRP3、裂解型Caspase-1、GSDMD-N的表達(dá)水平及培養(yǎng)基中IL-1β、IL-18的水平低于高濃度+si-NC組(P<0.05)。結(jié)論 柴胡皂苷D能顯著抑制未分化甲狀腺癌細(xì)胞增殖,其作用機(jī)制可能與激活NLRP3,介導(dǎo)細(xì)胞焦亡有關(guān)。
〔關(guān)鍵詞〕 未分化甲狀腺癌;柴胡皂苷D;增殖;NOD樣受體蛋白3;焦亡
〔中圖分類號(hào)〕R285.5 〔文獻(xiàn)標(biāo)志碼〕A 〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2024.10.011
Mechanism of saikosaponin D in inhibiting the proliferation of anaplastic thyroid cancer cells via NLRP3-mediated pyroptosis
GAO Fang1, LI Jun1, GUO Yanxia2, LI Hong3*
1. Department of Pharmacy, Tangshan Fengnan District Hospital of Chinese Medicine, Tangshan, Hebei 063300, China;
2. Department of Pharmacy Preparation, Tangshan Fengnan District Hospital of Chinese Medicine, Tangshan, Hebei 063300, China; 3. Department of Pharmacy, Tangshan Hospital of Chinese Medicine, Tangshan, Hebei 063300, China.
〔Abstract〕 Objective To study the effects and mechanism of saikosaponin D in inhibiting the proliferation of anaplastic thyroid cancer cells via NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis. Methods Anaplastic thyroid cancer cell lines HTh83 and KMH2 were cultured and treated with various concentrations of saikosaponin D (1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37 μmol/L) for 48 h. Cell survival rate was subsequently measured and half-maximal inhibitory concentration (IC50) was calculated. The cells were divided into control group (0 μmol/L saikosaponin D), low concentration group (2.2 μmol/L saikosaponin D), medium concentration group (11 μmol/L saikosaponin D), high concentration group (22 μmol/L saikosaponin D) and si-NC group (transfected with NC) siRNA), high concentration+si-NC group (22 μmol/L saikosaponin D co-transfected with NC siRNA), and high concentration+si-NLRP3 group (22 μmol/L saikosaponin D co-transfected with NLRP3 siRNA). After 48 h of treatment, the colony formation was quantified, the expression levels of NLRP3, cleaved caspase-1, and GSDMD N terminal fragment (GSDMD-N) as well as the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in the medium were measured. Results Saikosaponin D reduced the survival rate of HTh83 cells and KMH2 cells in a concentration-dependent manner. The number of cell clones in low-, medium-, and high-concentration groups was lower than that in the control group (P<0.05), while the expression levels of NLRP3, cleaved caspase-1, and GSDMD-N, and the levels of IL-1β and IL-18 in the medium were higher than those in the control group (P<0.05). The survival rate and clone number in high concentration +si-NC group were higher than those in high concentration+si-NC group, while the expression levels of NLRP3, cleaved caspase-1, and GSDMD-N, and the levels of IL-1β and IL-18 in the medium were lower than those in high concentration+si-NC group (P<0.05). Conclusion Saikosaponin D significantly inhibits the proliferation of anaplastic thyroid cancer cells, and its mechanism is probably related to the activation of NLRP3 and the mediation of pyroptosis.
〔Keywords〕 anaplastic thyroid cancer; saikosaponin D; proliferation; Nod-like receptor protein 3; pyroptosis
未分化甲狀腺癌是一種具有極高惡性程度的甲狀腺惡性腫瘤,患者的臨床預(yù)后差、生存期往往不超過(guò)半年[1-2]。雖然未分化甲狀腺癌的分子機(jī)制尚不完全明確,但相關(guān)研究資料認(rèn)為,細(xì)胞焦亡是調(diào)控未分化甲狀腺癌細(xì)胞惡性生物學(xué)行為的重要靶點(diǎn)[3]。細(xì)胞焦亡過(guò)程中伴隨著大量炎癥物質(zhì)的釋放,因而該過(guò)程又稱炎癥性死亡。NOD樣受體蛋白3(NOD-like receptor protein 3,NLRP3)是調(diào)控焦亡的重要受體蛋白,NLRP3通過(guò)介導(dǎo)Gasdermin D(GSDMD)氨基末端的切割、形成GSDMD氨基末端片段(GSDMD N terminal,GSDMD-N)的方式執(zhí)行細(xì)胞焦亡[4-6]。
中醫(yī)學(xué)理論認(rèn)為,甲狀腺癌屬“石癭”范疇。柴胡疏肝散合二陳湯具有活血止痛、行氣解郁的功效,臨床研究證實(shí)該方劑對(duì)甲狀腺癌術(shù)后復(fù)發(fā)具有抑制作用[7]。柴胡疏肝散合二陳湯中柴胡的活性成分柴胡皂苷D具有抗癌活性,可通過(guò)激活NLRP3/GSDMD-N介導(dǎo)的細(xì)胞焦亡抑制非小細(xì)胞肺癌細(xì)胞增殖[8],但柴胡皂苷D對(duì)未分化甲狀腺癌細(xì)胞增殖及焦亡的調(diào)控作用尚不明確?;诖?,本研究通過(guò)細(xì)胞實(shí)驗(yàn)對(duì)柴胡皂苷D通過(guò)NRLP3介導(dǎo)細(xì)胞焦亡,抑制未分化甲狀腺癌細(xì)胞增殖的機(jī)制展開(kāi)探索。
1 材料與方法
1.1 材料
未分化甲狀腺癌細(xì)胞株HTh83和KMH2、CCK-8細(xì)胞增殖檢測(cè)試劑盒(批號(hào):CL-0806、CL-0623、P-CA-001,武漢普諾賽生命科技有限公司);柴胡皂苷D(批號(hào):B20150,上海源葉生物科技有限公司);二甲基亞砜(dimethyl sulfoxide,DMSO)、結(jié)晶紫(批號(hào):D2650、Y0000418,美國(guó)Sigma公司);NLRP3一抗、裂解型Caspase-1一抗、GSDMD-N一抗(批號(hào):ab263899、ab286125、ab210070,美國(guó)Abcam公司);辣根過(guò)氧化物酶標(biāo)記的山羊抗兔抗體(批號(hào):PK20001,武漢三鷹生物技術(shù)有限公司)。
細(xì)胞培養(yǎng)箱(Galaxy 170S型,Eppendorf公司);全波長(zhǎng)酶標(biāo)儀(ReadMax 1500型,上海閃譜生物科技有限公司);倒置顯微鏡(ECLIPSE Ts2型,日本Nikon公司);凝膠成像系統(tǒng)(1600R型,上海天能生命科學(xué)有限公司)。
1.2 方法
1.2.1 藥物配制 用DMSO溶解柴胡皂苷D,制備成濃度為1 mmol/L的藥物母液,放置在-20 ℃避光保存。進(jìn)行細(xì)胞分組處理時(shí),用培養(yǎng)基稀釋至終濃度。
1.2.2 細(xì)胞培養(yǎng) HTh83和KMH2細(xì)胞均在含有10%胎牛血清的高糖DMEM培養(yǎng)液中培養(yǎng),培養(yǎng)條件為37 ℃及5%CO2。
1.2.3 CCK-8實(shí)驗(yàn)檢測(cè)細(xì)胞增殖 消化收集對(duì)數(shù)生長(zhǎng)期的HTh83和KMH2細(xì)胞,按照2 000個(gè)/孔接種在96孔培養(yǎng)板內(nèi),貼壁培養(yǎng)24 h后更換為含有不同濃度柴胡皂苷D(1、4、7、10、13、16、19、22、25、28、31、34、37 μmol/L[9])的培養(yǎng)基,設(shè)置對(duì)照組,并于每個(gè)濃度重復(fù)5次。培養(yǎng)48 h后加入CCK-8檢測(cè)液,繼續(xù)培養(yǎng)1 h后在酶標(biāo)儀中檢測(cè)450 nm波長(zhǎng)處的吸光值(A)。細(xì)胞存活率=(A處理組-A空白組)/(A對(duì)照組-A空白組)×100%。根據(jù)細(xì)胞存活率計(jì)算柴胡皂苷D的半數(shù)抑制濃度(50% inhibition concentration,IC50)。
1.2.4 平板克隆實(shí)驗(yàn)檢測(cè)細(xì)胞克隆數(shù)目 消化收集對(duì)數(shù)生長(zhǎng)期的HTh83和KMH2細(xì)胞,按照1 000個(gè)/孔接種在6孔培養(yǎng)板內(nèi),貼壁培養(yǎng)24 h后按照對(duì)照組(0 μmol/L柴胡皂苷D)、低濃度組(2.2 μmol/L柴胡皂苷D)、中濃度組(11 μmol/L 柴胡皂苷D)、高濃度組(22 μmol/L 柴胡皂苷D)、si-NC組(轉(zhuǎn)染NC siRNA)、高濃度+si-NC組(22 μmol/L柴胡皂苷D聯(lián)合轉(zhuǎn)染NC siRNA)、高濃度+si-NLRP3組(22 μmol/L柴胡皂苷D聯(lián)合轉(zhuǎn)染NLRP3 siRNA)處理。每2天更換1次培養(yǎng)液,第14天時(shí)棄培養(yǎng)基,磷酸鹽緩沖液清洗3次后用4%多聚甲醛固定20 min,再次清洗后用0.1%結(jié)晶紫室溫染色20 min,洗凈結(jié)晶紫并拍照,計(jì)算克隆數(shù)目。
1.2.5 Western blot檢測(cè)蛋白表達(dá)水平 消化收集對(duì)數(shù)生長(zhǎng)期的HTh83和KMH2細(xì)胞,按照5×105個(gè)/孔接種在12孔培養(yǎng)板內(nèi),貼壁培養(yǎng)24 h后按照對(duì)照組(0 μmol/L柴胡皂苷D)、低濃度組(2.2 μmol/L柴胡皂苷D)、中濃度組(11 μmol/L柴胡皂苷D)、高濃度組(22 μmol/L柴胡皂苷D)、si-NC組(轉(zhuǎn)染NC siRNA)、高濃度+si-NC組(22 μmol/L柴胡皂苷D聯(lián)合轉(zhuǎn)染NC siRNA)、高濃度+si-NLRP3組(22 μmol/L柴胡皂苷D聯(lián)合轉(zhuǎn)染NLRP3 siRNA)作用48 h。棄培養(yǎng)基,采用蛋白裂解液提取細(xì)胞蛋白,按照Western blot流程進(jìn)行實(shí)驗(yàn),以β-actin為內(nèi)參,檢測(cè)NLRP3、裂解型Caspase-1、GSDMD-N的蛋白表達(dá)水平。
1.2.6 ELISA檢測(cè)培養(yǎng)基中IL-1β、IL-18水平 按照“1.2.5”的方法接種細(xì)胞和分組處理,收集處理后的細(xì)胞培養(yǎng)基,采用ELISA試劑盒檢測(cè)培養(yǎng)基中白細(xì)胞介素-1β(interleukin-1β, IL-1β)、白細(xì)胞介素-18(interleukin-18, IL-18)的水平。
1.3 統(tǒng)計(jì)學(xué)處理
采用GraphPad Prism 6.0軟件進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)學(xué)處理及制圖。實(shí)驗(yàn)數(shù)據(jù)均為計(jì)量資料,以“x±s”表示,進(jìn)行單因素方差分析。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 柴胡皂苷D對(duì)HTh83和KMH2細(xì)胞增殖的影響
與對(duì)照組比較,不同濃度柴胡皂苷D(1、4、7、10、13、16、19、22、25、28、31、34、37 μmol/L)作用HTh83和KMH2細(xì)胞48 h后細(xì)胞存活率均顯著降低(P<0.05),HTh83細(xì)胞和KMH2細(xì)胞柴胡皂苷D作用48 h的IC50分別為22.20、22.90 μmol/L。詳見(jiàn)圖1。根據(jù)IC50的0.1倍、0.5倍和1.0倍選擇低濃度(2.2 μmol/L)、中濃度(11 μmol/L)、高濃度(22 μmol/L)柴胡皂苷D作用48 h進(jìn)行后續(xù)實(shí)驗(yàn)。
2.2 柴胡皂苷D對(duì)HTh83和KMH2細(xì)胞克隆形成的影響
柴胡皂苷D作用48 h時(shí),低濃度組、中濃度組、高濃度組HTh83和KMH2細(xì)胞的克隆數(shù)目均低于對(duì)照組(P<0.05),且HTh83和KMH2細(xì)胞的克隆數(shù)目隨柴胡皂苷D濃度升高而降低(P<0.05)。詳見(jiàn)表1。
2.3 柴胡皂苷D對(duì)HTh83和KMH2細(xì)胞中NLRP3介導(dǎo)焦亡的影響
柴胡皂苷D作用48 h時(shí),低濃度組、中濃度組、高濃度組HTh83和KMH2細(xì)胞的NLRP3、裂解型Caspase-1、GSDMD-N的表達(dá)水平以及培養(yǎng)基中IL-1β、IL-18的水平均高于對(duì)照組(P<0.05),且HTh83和KMH2細(xì)胞的NLRP3、裂解型Caspase-1、GSDMD-N的表達(dá)水平以及培養(yǎng)基中IL-1β、IL-18的水平隨柴胡皂苷D濃度升高而增加(P<0.05)。詳見(jiàn)圖2、表2。
2.4 NLRP3 siRNA轉(zhuǎn)染對(duì)柴胡皂苷D促進(jìn)HTh83和KMH2細(xì)胞中NLRP3介導(dǎo)焦亡的影響
高濃度+si-NC組HTh83和KMH2細(xì)胞處理48 h時(shí)的NLRP3、裂解型Caspase-1、GSDMD-N表達(dá)水平以及培養(yǎng)基中IL-1β、IL-18的水平均高于si-NC組(P<0.05);高濃度+si-NLRP3組HTh83和KMH2細(xì)胞處理48 h時(shí)的NLRP3、裂解型Caspase-1、GSDMD-N表達(dá)水平以及培養(yǎng)基中IL-1β、IL-18的水平均低于高濃度+si-NC組(P<0.05)。詳見(jiàn)圖3、表3。
2.5 抑制NLRP3表達(dá)對(duì)柴胡皂苷D抑制HTh83和KMH2細(xì)胞增殖和克隆形成的影響
高濃度+si-NC組HTh83和KMH2細(xì)胞處理48 h時(shí)的細(xì)胞存活率及克隆數(shù)目均低于si-NC組(P<0.05);高濃度+si-NLRP3組HTh83和KMH2細(xì)胞處理48 h時(shí)的細(xì)胞存活率及克隆數(shù)目均高于高濃度+si-NC組(P<0.05)。詳見(jiàn)表4。
3 討論
未分化甲狀腺癌是一種起源于甲狀腺濾泡上皮細(xì)胞的高度惡性腫瘤,常規(guī)手術(shù)切除、放化療的療效均不理想,患者確診后的平均生存期為6~8個(gè)月[1-2]。未分化甲狀腺癌細(xì)胞表現(xiàn)出極強(qiáng)的增殖活性,與之相關(guān)的可能機(jī)制包括細(xì)胞凋亡、焦亡、鐵死亡等生物學(xué)環(huán)節(jié)異常[10-11],但具體分子機(jī)制尚不完全清楚。因此,研究疾病的分子機(jī)制、發(fā)現(xiàn)新的治療靶點(diǎn)和治療手段對(duì)改善未分化甲狀腺癌的治療現(xiàn)狀、延長(zhǎng)患者的生存期具有重要意義。中藥材及其活性成分是近些年抗癌研究的熱點(diǎn),本研究對(duì)中藥柴胡的活性成分柴胡皂苷D抑制未分化甲狀腺癌細(xì)胞增殖的作用及機(jī)制展開(kāi)分析。
中醫(yī)學(xué)認(rèn)為甲狀腺癌歸屬于“石癭”范疇,其發(fā)病與肝郁氣滯、痰濕凝聚有關(guān),以柴胡為君藥的柴胡疏肝散合二陳湯能夠針對(duì)甲狀腺癌的中醫(yī)病機(jī)發(fā)揮活血止痛、行氣解郁的功效[7]。研究資料顯示,甲狀腺癌術(shù)后應(yīng)用柴胡疏肝散合二陳湯治療能顯著降低腫瘤復(fù)發(fā)率,提示該方劑具有抗甲狀腺癌的功效[7]。柴胡疏肝散合二陳湯中柴胡的活性成分為柴胡皂苷D,多項(xiàng)基礎(chǔ)研究證實(shí),柴胡皂苷D對(duì)肺癌細(xì)胞、胰腺癌細(xì)胞、膠質(zhì)瘤細(xì)胞、子宮內(nèi)膜癌細(xì)胞、肺癌細(xì)胞的增殖具有抑制作用[8, 12-16]。本研究在兩種未分化甲狀腺癌細(xì)胞株HTh83和KMH2中探究柴胡皂苷D抑制增殖的作用。結(jié)果顯示,柴胡皂苷D以濃度依賴性的方式抑制HTh83細(xì)胞和KMH2細(xì)胞增殖。平板克隆實(shí)驗(yàn)結(jié)果顯示,不同濃度柴胡皂苷D能顯著抑制HTh83細(xì)胞和KMH2細(xì)胞克隆形成。以上實(shí)驗(yàn)結(jié)果表明,柴胡皂苷D對(duì)未分化甲狀腺癌細(xì)胞的增殖具有抑制效應(yīng)。
焦亡作為一種新的程序性細(xì)胞死亡形式,其與未分化甲狀腺癌發(fā)生發(fā)展的密切關(guān)系受到越來(lái)越多的關(guān)注。焦亡過(guò)程中伴隨大量炎癥物質(zhì)釋放,調(diào)控炎癥反應(yīng)的受體蛋白NLRP3是激活細(xì)胞焦亡的經(jīng)典途徑,NLRP3能夠使細(xì)胞內(nèi)裂解型Caspase-1生成增加,后者切割GSDMD形成的GSDMD-N是執(zhí)行焦亡的蛋白[17-18]。GSDMD-N能定位于細(xì)胞膜并聚集成膜孔,使細(xì)胞中的炎癥物質(zhì)從膜孔釋放并引起細(xì)胞發(fā)生炎癥性死亡,即細(xì)胞焦亡[19-22]。非小細(xì)胞肺癌相關(guān)的研究證實(shí),柴胡皂苷D通過(guò)激活NLRP3/GSDMD-N介導(dǎo)的焦亡抑制癌細(xì)胞增殖[8]。本研究對(duì)未分化甲狀腺癌細(xì)胞中柴胡皂苷D調(diào)控細(xì)胞焦亡的作用進(jìn)行分析。結(jié)果顯示,不同濃度柴胡皂苷D顯著增加HTh83細(xì)胞和KMH2細(xì)胞中NLRP3、裂解型Caspase-1及GSDMD-N的表達(dá)。這一結(jié)果與柴胡皂苷D在非小細(xì)胞肺癌中的實(shí)驗(yàn)結(jié)果一致[8],表明柴胡皂苷D對(duì)未分化甲狀腺癌細(xì)胞的焦亡具有促進(jìn)作用,進(jìn)而提示柴胡皂苷D可能通過(guò)促進(jìn)焦亡的方式抑制未分化甲狀腺癌細(xì)胞增殖。
多項(xiàng)基礎(chǔ)研究證實(shí),抑制焦亡對(duì)未分化甲狀腺癌細(xì)胞的增殖具有顯著抑制作用[23-25]。本研究進(jìn)一步設(shè)計(jì)轉(zhuǎn)染siRNA的逆轉(zhuǎn)實(shí)驗(yàn),驗(yàn)證細(xì)胞焦亡在柴胡皂苷D抑制未分化甲狀腺癌細(xì)胞增殖中的作用。通過(guò)轉(zhuǎn)染NLRP3 siRNA的方式在柴胡皂苷D作用于細(xì)胞的過(guò)程中抑制NLRP3表達(dá),進(jìn)而阻礙NLRP3介導(dǎo)的細(xì)胞焦亡。細(xì)胞增殖及克隆形成的檢測(cè)結(jié)果顯示,柴胡皂苷D作用于細(xì)胞的同時(shí),通過(guò)轉(zhuǎn)染siRNA的方式抑制NLRP3表達(dá)后,柴胡皂苷D在HTh83細(xì)胞和KMH2細(xì)胞中抑制增殖和克隆形成、促進(jìn)焦亡的作用均明顯減弱,提示柴胡皂苷D對(duì)未分化甲狀腺癌細(xì)胞增殖的抑制作用與促進(jìn)NLRP3介導(dǎo)細(xì)胞焦亡的激活有關(guān)。
綜上所述,柴胡皂苷D對(duì)未分化甲狀腺癌細(xì)胞的增殖具有抑制作用,這一抑制作用與促進(jìn)NLRP3介導(dǎo)細(xì)胞焦亡的激活有關(guān)。本研究結(jié)果為探索柴胡皂苷D在未分化甲狀腺癌中的治療價(jià)值及深入認(rèn)識(shí)細(xì)胞焦亡在未分化甲狀腺癌發(fā)生發(fā)展中的生物學(xué)價(jià)值提供了細(xì)胞實(shí)驗(yàn)證據(jù)。
參考文獻(xiàn)
[1] TAO Y J, LI P, FENG C, et al. New insights into immune cells and immunotherapy for thyroid cancer[J]. Immunological Investigations, 2023, 52(8): 1039-1064.
[2] LI C, DONG X, YUAN Q, et al. Identification of novel characteristic biomarkers and immune infiltration profile for the anaplastic thyroid cancer via machine learning algorithms[J]. Journal of Endocrinological Investigation, 2023, 46(8): 1633-1650.
[3] ZHAO Q W, FENG H R, YANG Z Y, et al. The central role of a two-way positive feedback pathway in molecular targeted therapies-mediated pyroptosis in anaplastic thyroid cancer[J]. Clinical and Translational Medicine, 2022, 12(2): e727.
[4] ZHAO C Y, MU M C, LI X P, et al. USP50 regulates NLRP3 inflammasome activation in duodenogastric reflux-induced gastric tumorigenesis[J]. Frontiers in Immunology, 2024, 15: 1326137.
[5] ZENG Y, LI M X, WU S Q, et al. Carvedilol induces pyroptosis through NLRP3-caspase1-ASC inflammasome by nuclear migration of NF-κB in prostate cancer models[J]. Molecular Biology Reports, 2024, 51(1): 201.
[6] LI M, WU R R, WANG L, et al. Usenamine A triggers NLRP3/caspase-1/GSDMD-mediated pyroptosis in lung adenocarcinoma by targeting the DDX3X/SQSTM1 axis[J]. Aging, 2024, 16(2): 1663-1684.
[7] 賀小華. 甲狀腺次全切除術(shù)后應(yīng)用柴胡疏肝散合二陳湯對(duì)甲狀腺癌患者的效果分析[J]. 天津藥學(xué), 2021, 33(1): 37-39.
[8] CHEN M Q, HU C Y, YANG L, et al. Saikosaponin-D induces the pyroptosis of lung cancer by increasing ROS and activating the NF-κB/NLRP3/caspase-1/GSDMD pathway[J]. Journal of Biochemical and Molecular Toxicology, 2023, 37(8): e23444.
[9] 關(guān)月宏, 劉桂梅, 劉雨思, 等. 柴胡皂苷D通過(guò)Akt/mTOR通路調(diào)控胰腺癌Panc-1細(xì)胞凋亡及自噬[J]. 中國(guó)中藥雜志, 2023, 48(19): 5278-5284.
[10] GUO L, YUAN M, JIANG S H, et al. Expression of pyroptosis-associated genes and construction of prognostic model for thyroid cancer[J]. Translational Cancer Research, 2023, 12(12): 3360-3383.
[11] WU J J, LIANG J Y, LIU R Q, et al. Autophagic blockade potentiates anlotinib-mediated ferroptosis in anaplastic thyroid cancer[J]. Endocrine-Related Cancer, 2023, 30(9): e230036.
[12] XU X S, CUI L H, ZHANG L Q, et al. Saikosaponin d modulates the polarization of tumor-associated macrophages by deactivating the PI3K/AKT/mTOR pathway in murine models of pancreatic cancer[J]. International Immunopharmacology, 2023, 122: 110579.
[13] TANG T T, JIANG L, ZHONG Q, et al. Saikosaponin D exerts cytotoxicity on human endometrial cancer ishikawa cells by inducing apoptosis and inhibiting metastasis through MAPK pathways[J]. Food and Chemical Toxicology, 2023, 177: 113815.
[14] LIU G M, GUAN Y H, LIU Y X, et al. Saikosaponin D inducing apoptosis and autophagy through the activation of endoplasmic reticulum stress in glioblastoma[J]. BioMed Research International, 2022, 2022: 5489553.
[15] WU S, CHEN W, LIU K, et al. Saikosaponin D inhibits proliferation and induces apoptosis of non-small cell lung cancer cells by inhibiting the STAT3 pathway[J]. The Journal of International Medical Research, 2020, 48(9): 300060520937163.
[16] WANG B F, MIN W L, LIN S, et al. Saikosaponin-d increases radiation-induced apoptosis of hepatoma cells by promoting autophagy via inhibiting mTOR phosphorylation[J]. International Journal of Medical Sciences, 2021, 18(6): 1465-1473.
[17] FENG S H, ZHAO B, ZHAN X, et al. Quercetin-induced pyroptosis in colon cancer through NEK7-mediated NLRP3 inflammasome-GSDMD signaling pathway activation[J]. American Journal of Cancer Research, 2024, 14(3): 934-958.
[18] LI M, WU R R, WANG L, et al. Usenamine A triggers NLRP3/caspase-1/GSDMD-mediated pyroptosis in lung adenocarcinoma by targeting the DDX3X/SQSTM1 axis[J]. Aging, 2024, 16(2): 1663-1684.
[19] MIAO R, JIANG C, CHANG W Y, et al. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis[J]. Immunity, 2023, 56(11): 2523-2541.
[20] BALASUBRAMANIAN A, HSU A Y, GHIMIRE L, et al. The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis[J]. Science Immunology, 2024, 9(94): 1452.
[21] XING Y Q, ZHANG F Y, JI P P, et al. Efficient delivery of GSDMD-N mRNA by engineered extracellular vesicles induces pyroptosis for enhanced immunotherapy[J]. Small, 2023, 19(20): e2204031.
[22] WU L G, WU X, LIU J J, et al. Expression and significance of effector proteins NLRP3 and gasdermin D N-terminal protein in the pyrolysis pathway in breast cancer[J]. Medicine, 2023, 102(40): e35440.
[23] GUO Y W, ZHU L, DUAN Y T, et al. Ruxolitinib induces apoptosis and pyroptosis of anaplastic thyroid cancer via the transcriptional inhibition of DRP1-mediated mitochondrial fission[J]. Cell Death & Disease, 2024, 15(2): 125.
[24] GUO H H, MA R S, ZHANG Y F, et al. Ibuprofen inhibits anaplastic thyroid cells in vivo and in vitro by triggering NLRP3-ASC-GSDMD-dependent pyroptosis[J]. Inflammopharmacology, 2024, 32(1): 733-745.
[25] GUO H H, MA R S, ZHANG Y F, et al. Alantolactone induces concurrent apoptosis and GSDME-dependent pyroptosis of anaplastic thyroid cancer through ROS mitochondria-dependent caspase pathway[J]. Phytomedicine, 2023, 108: 154528.