摘 要: 免疫層析技術(shù)是一類典型的以抗原抗體特異性免疫反應(yīng)為基礎(chǔ)的快速診斷技術(shù),以不同材料作為示蹤標(biāo)記物,具有快速、特異、價(jià)格低廉的特點(diǎn),對豬常見病毒病的現(xiàn)場檢測具有廣泛的應(yīng)用價(jià)值。本文基于免疫層析技術(shù)原理,根據(jù)不同的信號表現(xiàn)方式將當(dāng)前常見的免疫層析技術(shù)進(jìn)行了歸類,詳細(xì)介紹了比色型免疫層析技術(shù),熒光型免疫層析技術(shù)的代表性標(biāo)志物,綜述了免疫層析技術(shù)在豬常見病毒病快速檢測中的應(yīng)用,并將不同標(biāo)記物免疫層析試紙條的優(yōu)點(diǎn)與挑戰(zhàn)進(jìn)行比較,以期為豬病毒病快速檢測技術(shù)的發(fā)展提供思路。
關(guān)鍵詞: 免疫層析技術(shù);豬病毒病;快速檢測;臨床應(yīng)用
中圖分類號:S854.4
文獻(xiàn)標(biāo)志碼:A
文章編號:0366-6964(2024)11-4900-12
收稿日期:2024-01-02
基金項(xiàng)目:“十四五”重點(diǎn)研發(fā)項(xiàng)目 (2022YFD1801103);國家自然科學(xué)基金項(xiàng)目(32302916);家畜產(chǎn)業(yè)技術(shù)體系北京市家畜創(chuàng)新團(tuán)隊(duì)(BAIC05-2023);北京農(nóng)學(xué)院青年教師科研創(chuàng)新能力提升計(jì)劃資助項(xiàng)目(QJKC-2023011);北京農(nóng)學(xué)院科技創(chuàng)新“火花行動(dòng)”支持計(jì)劃(BUA-HHXD2023001);市屬高校分類發(fā)展都市農(nóng)林特色教師隊(duì)伍建設(shè)(11000024T000002961733)
作者簡介:蘆烘德(2000-),男,山東濟(jì)南人,碩士生,主要從事中藥替抗防控動(dòng)物疫病研究,E-mail: 1643142874@qq.com
*通信作者:董 虹,主要從事提高機(jī)體免疫和抗菌中藥篩選及分子機(jī)制研究,E-mail: donghong@bua.edu.cn;何至遠(yuǎn),主要從事中藥替抗防控動(dòng)物疫病研究,E-mail: hezhiyuan@bua.edu.cn
Application of Immunochromatographic Technique in the Rapid Detection of Common Swine Viral Diseases
LU" Hongde1,2, LIU" Haoyang1,2, GONG" Shimiao1,2, YANG" Zhi1,2, WANG" Yuxuan1,2, WANG" Luhao1,2,
HE" Zhiyuan1,2*, DONG" Hong1,2*
(1.Beijing Key Laboratory of TCVM, Beijing University of Agriculture, Beijing 102206," China;
2.Beijing Engineering Research Center of CVM,
Beijing University of Agriculture, Beijing 102206," China)
Abstract:" Immunochromatography is a typical rapid diagnostic technology based on antigen-antibody-specific immune reaction, using different materials as tracer markers, which is rapid, specific and inexpensive, and has wide application value for on-site detection of common viral diseases in pigs. In this paper, based on the principle of immunochromatographic technology, the current common immunochromatographic techniques were categorized according to different signal manifestation modes, colorimetric immunochromatographic techniques, fluorescent immunochromatographic techniques of the representative markers were introduced in detail, the application of immunochromatographic techniques in the rapid detection of common porcine viral diseases was reviewed, and the advantages and challenges of immunochromatographic test strips with different markers were compared, with a view to providing ideas for the development of rapid detection techniques for porcine viral diseases.
Key words: immunochromatography; swine viral diseases; rapid detection; application
*Corresponding authors:" DONG Hong, E-mail: donghong@bua.edu.cn; HE Zhiyuan, E-mail: hezhiyuan@bua.edu.cn
近年來,我國生豬養(yǎng)殖業(yè)快速發(fā)展,已成為全球最大的生豬產(chǎn)出國,然而在生豬生產(chǎn)過程中不斷出現(xiàn)“新病突發(fā)、老病復(fù)發(fā)”的現(xiàn)象,豬場中反復(fù)出現(xiàn)不同程度的混合交叉感染等復(fù)雜多變的情況[1]。同時(shí),部分豬場飼養(yǎng)密度大,飼養(yǎng)環(huán)境復(fù)雜,衛(wèi)生消毒不徹底,導(dǎo)致豬群的發(fā)病率和死亡率進(jìn)一步增高。此外,由于生豬及其相關(guān)產(chǎn)品的全球貿(mào)易流動(dòng)日益增多,豬病毒病的傳播途徑增多、傳播范圍擴(kuò)大,進(jìn)一步增加了生豬疫病防控的難度。
明確病原是制定防控方案的基礎(chǔ)。目前,臨床上主要根據(jù)病豬的臨床癥狀和病理剖檢變化,初步判斷病原;接著采用病毒分離、酶聯(lián)免疫吸附試驗(yàn)、常規(guī)和實(shí)時(shí)聚合酶鏈?zhǔn)椒磻?yīng)等實(shí)驗(yàn)室診斷方法進(jìn)一步檢測,但這些實(shí)驗(yàn)室診斷方法普遍耗時(shí)長,且需要相關(guān)儀器設(shè)備,便捷性略有不足。而基層獸醫(yī)只有及時(shí)發(fā)現(xiàn)并監(jiān)測豬群疫情發(fā)生和發(fā)展情況,才能采取有效手段,降低甚至消除病毒對豬群的影響,保障生豬養(yǎng)殖場的經(jīng)濟(jì)效益。因此,快速準(zhǔn)確的檢測方法是防控豬病毒病的關(guān)鍵。
免疫層析技術(shù)(immunochromatographic assay, ICA)基于抗原抗體的特異性結(jié)合與層析技術(shù)相融合,具有使用簡便、檢測快、成本低和體積小等特點(diǎn),充分滿足了臨床診斷的即時(shí)性檢測(point-of-care testing, POCT)需求[2-3]。近年來,隨著各類新材料、新技術(shù)的開發(fā)和完善,免疫層析技術(shù)逐漸成為豬病毒病快速檢測應(yīng)用中的研究熱點(diǎn),免疫層析試紙條(immunochromatographic test strips, ICTSs)也隨著免疫層析技術(shù)的不斷完善而得到快速發(fā)展。本文對免疫層析技術(shù)在豬常見病毒病檢測中的應(yīng)用進(jìn)行了總結(jié)和分析,最后討論了免疫層析技術(shù)存在的不足和未來展望,旨在為豬病毒病快速檢測技術(shù)的發(fā)展提供參考。
1 免疫層析技術(shù)簡介
ICA于20世紀(jì)60年代興起,到20世紀(jì)80年代逐漸完善,是一種將免疫技術(shù)和色譜層析技術(shù)相結(jié)合的快速檢測技術(shù)。基于其開發(fā)的ICTSs主要由樣品墊、結(jié)合墊、聚氯乙烯(polyvinyl chloride, PCV)底板以及硝酸纖維素(nitrocellulose, NC)膜等組成(見圖1),其核心檢測原理是待測物溶液通過層析作用在層析條上移動(dòng),到達(dá)反應(yīng)區(qū)域后發(fā)生抗原-抗體的特異性結(jié)合反應(yīng),從而實(shí)現(xiàn)特異性免疫檢測。
2 免疫層析技術(shù)檢測原理
根據(jù)其檢測原理,以膠體金免疫層析試紙條為例,免疫層析試紙條可分為競爭法和非競爭法(夾心法和間接法)兩類(見圖2)。競爭法大多適用于小分子物質(zhì)的檢測;夾心法一般適用于大分子物質(zhì)(如細(xì)菌和病毒等)檢測,而間接法主要適用于血清特異性抗體的檢測。
而隨著材料科學(xué)的發(fā)展,越來越多具有高敏感性和強(qiáng)表面穩(wěn)定性的納米材料通過標(biāo)記抗體作為結(jié)合墊上裝載的信號標(biāo)記探針[4]。不同標(biāo)記材料制備的信號探針在檢測中呈現(xiàn)出不同的信號表現(xiàn)方式及效果,所對應(yīng)的信號檢測模式也有所不同[5]。探針的信號強(qiáng)度和穩(wěn)定性是影響檢測靈敏度的重要因素[6]。根據(jù)不同的信號表現(xiàn)方式,可將免疫層析技術(shù)分為:基于比色信號的比色型免疫層析技術(shù),基于熒光信號的熒光型免疫層析技術(shù)以及基于磁信號的磁性免疫層析等。其中,比色型和熒光型免疫層析技術(shù)應(yīng)用最為廣泛。
2.1 比色型免疫層析技術(shù)
以比色型材料作為信號探針的免疫層析技術(shù),是目前應(yīng)用最為廣泛的免疫層析技術(shù),其原理是通過特異性反應(yīng),產(chǎn)生可進(jìn)行判斷的顏色條帶,通過肉眼或者借助讀取儀即可對待測物進(jìn)行定性及半定量分析。目前常用的比色型納米標(biāo)記材料主要包括納米金和乳膠微球等。
2.2 熒光型免疫層析技術(shù)
為滿足檢測需求,以各種熒光納米材料作為示蹤標(biāo)記物,對特異性抗體(或抗原)進(jìn)行標(biāo)記,再與待測的抗原(或抗體)結(jié)合,使用熒光檢測儀檢測其特異性熒光反應(yīng)的熒光免疫層析技術(shù),也相繼應(yīng)用于豬常見病毒病的臨床診斷[7-8]。根據(jù)熒光標(biāo)記物的種類不同,可分為熒光素免疫層析技術(shù)、量子點(diǎn)免疫層析技術(shù)等,進(jìn)一步提高了檢測試紙條的特異性和穩(wěn)定性。
3 比色型免疫層析技術(shù)在豬病毒病快檢中的應(yīng)用
3.1 膠體金免疫層析
免疫膠體金技術(shù)主要包括斑點(diǎn)免疫金滲濾法(dot immunogold filtration assay, DIGFA)和膠體金免疫層析法(colloidal gold immunochromatographic assay, GICA)兩類,目前在豬病毒病的檢測中使用最為廣泛的當(dāng)屬GICA[9]。GICA是對抗原(或抗體)物質(zhì)進(jìn)行定性或定量(半定量)分析的快檢技術(shù)。
目前,針對膠體金免疫層析法存在的局限性,主要從以下三方面進(jìn)行優(yōu)化:① 抗原-抗體反應(yīng)體系:研究豬病毒抗原與相應(yīng)抗體的交互作用,包括病毒抗原的篩選與分離、鑒定病毒抗體等。該方向的研究主要為病毒檢測提供了技術(shù)基礎(chǔ)。Bai等[10]通過構(gòu)建具有天然同源二聚體構(gòu)象、與抗豬瘟病毒(classical swine fever virus, CSFV)-E2單抗WH303有較高親和力的重組E2胞外蛋白,研制出用于豬瘟抗體檢測的新型免疫層析試紙,其檢測靈敏度是CnC2試紙的4倍。此外,Zhang等[11]基于非洲豬瘟病毒(African swine fever virus, ASFV)感染的靶點(diǎn)蛋白P30,研制出雙P30單克隆抗體標(biāo)記的膠體金試紙條,也顯著提高了檢測特異性。② 膠體金納米顆粒:研究納米顆粒的制備技術(shù),比如其大小、形態(tài)、表面修飾等,以及與病毒抗原標(biāo)記的相容性和穩(wěn)定性,優(yōu)化檢測系統(tǒng)的性能和靈敏度。Zhou等[12]采用靜電法將辣根過氧化物酶(horseradish peroxidase, HRP)和檢測抗體同時(shí)固定在納米金顆粒表面,形成納米金探針,顯著增強(qiáng)檢測豬細(xì)小病毒的靈敏度。③ 免疫試劑的制備和銜接方式:研究膠體金納米顆粒與病毒抗體間的結(jié)合方式和性能,改進(jìn)免疫試劑的制備工藝,提高檢測的特異性。Ding等[13]將抗截短的衣殼蛋白(capsid protein, CAP)血清經(jīng)辛酸/硫酸銨沉淀(caprylic acid/ammonium sulfate precipitation, CAAS)初步純化后,再用親和色譜柱與dCAP偶聯(lián)純化特異性PAbs,最終合成膠體金-PAbs偶聯(lián)物,從而制備出基于豬圓環(huán)病毒2型(porcine circovirus type 2, PCV2)-dCAP多克隆抗體的檢測豬圓環(huán)病毒抗原的GICA,該試紙具有更好的敏感性、特異性和準(zhǔn)確性。
3.2 乳膠免疫層析
乳膠免疫層析法(latex immunochromatographic assay,LIA)以乳膠微球?yàn)闃?biāo)記材料,相較于膠體金,乳膠微球具有顏色多樣、易于合成和大小均勻等優(yōu)點(diǎn),便于偶聯(lián)抗體,有較高的靈敏度。胡一帆等[14]以ASFVp30、p54和pK205R蛋白作為檢測線,以兔IgG作為質(zhì)控線,利用葡萄球菌A蛋白(Staphylococcal protein A, SPA)和乳膠微球偶聯(lián)作為免疫探針,建立了ASFV抗體檢測乳膠微球免疫層析方法,用該試紙條與商品化ASFV阻斷ELISA抗體檢測試劑盒分別檢測同一批血清樣本,p30抗體檢測試紙條的符合率為96.8%,p54和pK205R抗體檢測試紙條的符合率達(dá)100%。相較于膠體金免疫層析法,乳膠免疫層析法檢測結(jié)果更為直觀,顯色更加穩(wěn)定。
比色型免疫層析技術(shù),因其探針制備簡單便捷,成本低,被應(yīng)用于多種豬病毒的檢測(見表1)。
其他比色型免疫層析技術(shù)如膠體碳免疫層析法(colloidal carbon immunochromatographic assay, CICA)是近年來發(fā)展迅速可代替膠體金免疫層析的新型檢測技術(shù),其本身顏色與白色的硝酸纖維素膜形成鮮明色差,對比度高,價(jià)格低,顏色信號的讀取更加方便[33],在以核酸、蛋白質(zhì)等小分子化合物為靶標(biāo)分析物的檢測中得到廣泛應(yīng)用[34]。
4 熒光型免疫層析技術(shù)在豬病毒病快檢中的應(yīng)用
4.1 熒光微球免疫層析
熒光微球免疫層析法(fluorescent microbead immunochromatographic assay, FM-ICA)以熒光微球作為示蹤標(biāo)記物。常用于FMICA的微球材料主要包括直徑在微米級以下的硅、硒、磁等高分子材料[17]。Li等[35]將截短的ASFV p54蛋白作為抗原與Eu摻雜的熒光微球結(jié)合作為示蹤劑,對ASFV抗體的檢測具有很高的特異性。熒光微球可以更好地保護(hù)其表面標(biāo)記或體內(nèi)結(jié)構(gòu)含有的熒光性物質(zhì),增強(qiáng)了熒光的穩(wěn)定性,降低了熒光素染料發(fā)生自淬的可能性;微球體積雖然較小,但富集作用更強(qiáng),使其可應(yīng)用的領(lǐng)域和范圍更廣泛[36-37]。
4.2 時(shí)間分辨熒光免疫層析
時(shí)間分辨熒光免疫層析法(time-resolved fluorescence immunochromatographic assay, TRFIA)是以鑭系元素及其螯合劑等高敏物質(zhì)作為熒光信號的標(biāo)記物,通過標(biāo)記抗原、抗體和蛋白質(zhì)等物質(zhì),檢測熒光波長和發(fā)光時(shí)間的一種非同位素免疫檢測技術(shù)[38-39]。目前,TRFIA已被用于人和動(dòng)物各種病毒性傳染病的診斷和篩查。Chen等[40]建立了一種Eu3+螯合物標(biāo)記檢測抗體的雙抗體夾心TRFIA方法,其檢測ASFV的靈敏度為0.015 ng·mL-1(動(dòng)態(tài)范圍為0.24~500 ng·mL-1),具有高特異性。此外,使用銪納米顆粒(EuNPs)標(biāo)記的病毒體抗原和高效價(jià)PRV gE單克隆抗體(PRV gE-mAb)開發(fā)的TRFIA,也可用于PRV感染和接種疫苗后豬群的現(xiàn)場鑒別診斷,極大提高了檢測效率[41]。與普通熒光素相比,TRFIA的標(biāo)記物接觸面小,幾乎不影響與標(biāo)記物結(jié)合的大分子蛋白的空間結(jié)構(gòu),另外,放射峰窄、熒光壽命長、環(huán)境干擾少等熒光特性,使其特異性和穩(wěn)定性顯著升高,檢測結(jié)果更可靠[35,41-42]。
4.3 量子點(diǎn)免疫層析
量子點(diǎn)(quantum dots, QDs)主要是元素周期表中Ⅱ-Ⅵ或Ⅲ-Ⅴ的元素組成的納米顆粒,具有光穩(wěn)定性好、發(fā)射廣譜尺寸可調(diào)、吸收光譜寬和熒光強(qiáng)度高等特點(diǎn),因此不同粒徑的量子點(diǎn)可以通過同一波長的光進(jìn)行捕獲,實(shí)現(xiàn)同時(shí)檢測多目標(biāo)的結(jié)果,基于該種光學(xué)特性,量子點(diǎn)已被廣泛應(yīng)用于開發(fā)高靈敏度、多選擇性的免疫層析試紙條[43-45]。此外,QD還被應(yīng)用于病毒感染成像,Liang等[46]通過鏈霉親和素-生物素親和系統(tǒng)用QD標(biāo)記豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV),實(shí)時(shí)追蹤活細(xì)胞內(nèi)的小病毒。
量子點(diǎn)熒光微球免疫層析法(quantum dot fluorescent microsphere immunochromatographic assay, QDFM-ICA)的標(biāo)記物是通過在高聚物載體吸附或包埋量子點(diǎn)而構(gòu)成的量子點(diǎn)微球。它不僅兼具量子點(diǎn)熒光強(qiáng)度強(qiáng)、穩(wěn)定性高、生物相容性高、抗漂白能力和熒光壽命長等優(yōu)勢,同時(shí),將量子點(diǎn)裝載后,可有效保護(hù)量子點(diǎn)和隔絕量子點(diǎn)對其他生物大分子的毒性。由于單個(gè)量子點(diǎn)微球可裝載大量的量子點(diǎn),進(jìn)一步提升了單個(gè)熒光探針的熒光性能,其作為新的熒光標(biāo)記物能更顯著提高快速檢測的穩(wěn)定性、靈敏度和定量分析性能[47-49]。張?jiān)剑?0]選用高敏感性的ASFV P30蛋白作為被標(biāo)記蛋白,建立了量子點(diǎn)熒光微球免疫層析試紙條,與膠體金試紙條進(jìn)行比較驗(yàn)證,證明了該方法具有更高的靈敏度。在322份臨床血清樣品檢測中,準(zhǔn)確率達(dá)98.45%。
為了更為直觀地體現(xiàn)熒光型免疫層析技術(shù)在豬病毒病快速檢測中的應(yīng)用,總結(jié)了不同熒光標(biāo)記材料作為信號探針檢測出的豬常見易感病毒(見表2)。
除上述熒光標(biāo)記材料外,上轉(zhuǎn)換熒光納米材料(upconversion nanoparticles, UCNPs)具有長波激發(fā)和短波發(fā)射的特性,能更好地穿透組織,但其發(fā)光效率偏低,制備復(fù)雜[5]?;谠摬牧系纳飩鞲衅?,在病毒檢測中具有顯著優(yōu)勢[64],目前,上轉(zhuǎn)換免疫層析技術(shù)在檢測細(xì)菌抗原、藥物殘留方面有廣泛的應(yīng)用。
5 免疫層析試紙條的比較分析
免疫層析的有效性主要取決于抗原-抗體復(fù)合體的結(jié)合效率和檢測復(fù)合體生成率的能力[65],同時(shí)ICTSs的靈敏度是其應(yīng)用于臨床檢測的一個(gè)關(guān)鍵性指標(biāo),而不同標(biāo)記物則是影響其靈敏度的重要因素之一,例如納米顆粒、熒光微球以及量子點(diǎn)等常用標(biāo)記物各有其優(yōu)點(diǎn),但它們?nèi)悦媾R挑戰(zhàn)(見表3)。而基于其他信號的免疫層析技術(shù),如基于磁信號的磁性免疫層析,基于表面增強(qiáng)拉曼散射信號的表面增強(qiáng)拉曼散射免疫層析,因標(biāo)記材料的特殊性質(zhì),在檢測過程中展現(xiàn)出高靈敏度的優(yōu)勢,已被用于檢測獸藥殘留、癌癥標(biāo)志物等[66-67]。由于制備條件復(fù)雜,市售成熟產(chǎn)品的價(jià)格高,檢測結(jié)果難以讀取,目前還未應(yīng)用于豬常見病毒病的快速檢測中。
6 總結(jié)與展望
隨著現(xiàn)代生豬養(yǎng)殖產(chǎn)業(yè)集約化和規(guī)?;牟粩喟l(fā)展壯大,豬病的發(fā)生頻率、危害程度及傳播范圍也在逐步提高,群發(fā)性疾病尤其是病毒性傳染病嚴(yán)重阻礙養(yǎng)豬業(yè)的可持續(xù)發(fā)展,如何進(jìn)行豬病毒病的快速檢測和有效防控,已經(jīng)成為當(dāng)前生豬產(chǎn)業(yè)的重中之重。通過臨床癥狀和流行病學(xué)往往難以對豬病毒病進(jìn)行準(zhǔn)確判定,同時(shí)病毒變異快,且大多數(shù)豬病毒病無特異性疫苗或藥物,因此,快速檢測確定豬病毒病的類型、病因,及時(shí)采取合理的防控措施,對于阻斷豬病毒病的傳播和進(jìn)行病豬的及時(shí)救治具有重要意義。當(dāng)前,相較于實(shí)驗(yàn)室診斷方法,免疫層析技術(shù)雖便捷,快速,可用于大批量樣本的篩查,但其靈敏度低,因存在主觀差異性導(dǎo)致假陽性率和假陰性率仍較高。其結(jié)果可以用于初篩檢測,但不能作為確診依據(jù)[74]。期望隨著新型標(biāo)志物(表面增強(qiáng)拉曼散射材料、納米磁珠等)的開發(fā)、特異性識別元件(抗體、分子印跡聚合物、適配體等)的制備以及一體化檢測設(shè)備的研發(fā),能開發(fā)出更便捷、靈敏、廉價(jià)的豬病毒病快檢技術(shù)。
總體而言,隨著免疫層析技術(shù)的應(yīng)用和普及,極大地降低了基層或經(jīng)濟(jì)不發(fā)達(dá)地區(qū)豬病毒病的檢測難度,在豬發(fā)病早期階段可進(jìn)行快速地檢測,盡早采取科學(xué)有效的防治措施,對保障生豬養(yǎng)殖戶的效益具有重大作用。
參考文獻(xiàn)(References):
[1] IBRAHIM Y M, WERID G M, ZHANG H, et al. Potential zoonotic swine enteric viruses: the risk ignored for public health[J]. Virus Res, 2022, 315:198767.
[2] SADEGHI P, SOHRABI H, HEJAZI M, et al. Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species:the intertwine of nanotechnology with sensing strategies[J]. TrAC Trends Anal Chem, 2021, 145:116460.
[3] TSUBOI I, IINUMA K. Immunochromatography—application example and POCT type genetic testing[J]. Chem Pharm Bull, 2021, 69(10):984-988.
[4] 李向梅, 劉志威, 陳曉敏, 等. 食品安全免疫層析檢測技術(shù)研究進(jìn)展[J]. 食品安全質(zhì)量檢測學(xué)報(bào), 2020, 11(15):4939-4955.
LI X M, LIU Z W, CHEN X M, et al. Advances of immunochromatography assay for food safety[J]. Journal of Food Safety amp; Quality, 2020, 11(15):4939-4955. (in Chinese)
[5] 劉 源, 張開惠, 王瑩瑩, 等. 多重免疫層析檢測技術(shù)在食品安全快速檢測中的研究進(jìn)展[J]. 食品與發(fā)酵工業(yè), 2023, 49(1):337-346, 360.
LIU Y, ZHANG K H, WANG Y Y, et al. Research progress of multiplex immunochromatography assay in food safety rapid detection[J]. Food and Fermentation Industries, 2023, 49(1):337-346, 360. (in Chinese)
[6] 黃小林, 李倩影, 吳雨豪, 等. 多重免疫層析試紙輔助食品安全快速檢測的研究進(jìn)展[J]. 食品與生物技術(shù)學(xué)報(bào), 2021, 40(11):12-21.
HUANG X L, LI Q Y, WU Y H, et al. Research progress of multiplex immunochromatographic test strips for rapid food safety detection[J]. Journal of Food Science and Biotechnology, 2021, 40(11):12-21. (in Chinese)
[7] GONG X Q, CAI J, ZHANG B, et al. A review of fluorescent signal-based lateral flow immunochromatographic strips[J]. J Mater Chem B, 2017, 5(26):5079-5091.
[8] SHEIKHZADEH E, BENI V, ZOUROB M. Nanomaterial application in bio/sensors for the detection of infectious diseases[J]. Talanta, 2021, 230:122026.
[9] LIU Y L, ZHAN L, QIN Z P, et al. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis[J]. ACS Nano, 2021, 15(3):3593-3611.
[10] BAI Y L, JIA R, WEI Q, et al. Development and application of a high-sensitivity immunochromatographic test strip for detecting classical swine fever virus antibodies[J]. Transbound Emerg Dis, 2022, 69(4):e788-e798.
[11] ZHANG X Y, LIU X Y, WU X D, et al. A colloidal gold test strip assay for the detection of African swine fever virus based on two monoclonal antibodies against P30[J]. Arch Virol, 2021, 166(3):871-879.
[12] ZHOU Y, ZHOU T, ZHOU R, et al. Chemiluminescence immunoassay for the rapid and sensitive detection of antibody against porcine parvovirus by using horseradish peroxidase/detection antibody-coated gold nanoparticles as nanoprobes[J]. Luminescence, 2014, 29(4):338-343.
[13] DING H J, SHEN Y, GAO Y F, et al. Development of gold Immunochromatographic assay strip based on specific polyclonal antibodies against capsid protein for rapid detection of porcine circovirus 2 in Zhejiang province, China[J]. BMC Vet Res, 2022, 18(1):373.
[14] 胡一帆, 陳玲超, 王安鋮, 等. 非洲豬瘟病毒抗體檢測乳膠免疫層析試紙條的研制[J/OL]. 中國動(dòng)物傳染病學(xué)報(bào), 1-14. [2023-12-14]https://doi. org/10. 19958/j. cnki. cn31-2031/s. 20230906. 003.
HU Y F, CHEN L C, WANG A C, et al. Development of latex immunochromatographic strip for detection of antibodies of African swine fever virus[J/OL]. Chinese Journal of Animal Infectious Diseases, 1-14. [2023-12-14]https://doi. org/10. 19958/j. cnki. cn31-2031/s. 20230906. 003. (in Chinese)
[15] YANG S Z, YANG J F, SUN Y N, et al. A rapid immunochromatographic strip for neutralizing antibodies detection of foot and mouth disease virus serotype O[J]. RSC Adv, 2017, 7(76):48095-48101.
[16] YU J E, OUH I O, KANG H, et al. An enhanced immunochromatographic strip test using colloidal gold nanoparticle-labeled dual-type N proteins for detection of antibodies to PRRS virus[J]. J Vet Sci, 2018, 19(4):519-527.
[17] LI X W, WANG L, SHI X B, et al. Development of an immunochromatographic strip for rapid detection of antibodies against classical swine fever virus[J]. J Virol Methods, 2012, 180(1-2):32-37.
[18] 張勝楠. 基于P30、P54抗原的ASF診斷方法建立與初步應(yīng)用[D]. 揚(yáng)州:揚(yáng)州大學(xué), 2023.
ZHANG S N. Establishment and preliminary application of diagnostic methods for ASF based on P30 and P54 antigens[D]. Yangzhou:Yangzhou University, 2023. (in Chinese)
[19] 劉兆磊, 馬廣鵬, 姜艷平, 等. A群豬輪狀病毒膠體金免疫層析試紙條的研制[J]. 中國獸醫(yī)科學(xué), 2008, 38(11):952-956.
LIU Z L, MA G P, JIANG Y P, et al. Development of colloidal gold immunochromatographic test strip for detection of porcine rotavirus Group A[J]. Chinese Veterinary Science, 2008, 38(11):952-956. (in Chinese)
[20] 郭力偉, 程亞輝, 徐大偉, 等. 豬偽狂犬病病毒gE蛋白單克隆抗體的制備及膠體金免疫層析檢測方法的建立[J]. 黑龍江畜牧獸醫(yī), 2021(20):82-87.
GUO L W, CHENG Y H, XU D W, et al. Preparation of monoclonal antibody against gE protein of Pseudorabies virus and establishment of colloidal gold immunochromatographic assay[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(20):82-87. (in Chinese)
[21] 汪懌旸, 趙振鵬, 趙 巍, 等. 豬流行性腹瀉病毒膠體金檢測方法的建立[J]. 畜牧與獸醫(yī), 2018, 50(4):100-105.
WANG Y Y, ZHAO Z P, ZHAO W, et al. Establishment of a colloidal gold detection method for porcine epidemic diarrhea virus[J]. Animal Husbandry amp; Veterinary Medicine, 2018, 50(4):100-105. (in Chinese)
[22] 李嘉琛. 豬傳染性胃腸炎病毒ELISA抗體檢測方法的建立及膠體金免疫層析試紙條的研制[D]. 北京:中國獸醫(yī)藥品監(jiān)察所, 2017.
LI J C. Development of ELISA detection method for antibody and colloidal gold immunochromatographic strip of transmissible Gastroenteritis virus[D]. Beijing:China Institute of Veterinary Drug Control, 2017. (in Chinese)
[23] 王校偉. 豬流感病毒H1N1亞型單克隆抗體的制備與膠體金試紙條的研制[D]. 泰安:山東農(nóng)業(yè)大學(xué), 2012.
WANG X W. Preparation of monoclonal antibodies of swine influenza virus HIN1 and development of colloidal gold strip for detection of the influenza virus[D]. Taian:Shandong Agricultural University, 2012. (in Chinese)
[24] 田純見, 賈 坤, 林志雄, 等. 檢測豬乙型腦炎抗體膠體金免疫層析法的建立與初步應(yīng)用[J]. 廣東畜牧獸醫(yī)科技, 2013, 38(2):21-25.
TIAN C J, JIA K, LIN Z X, et al. The GICA method for detection of porcine Japanese B encephalitis antibody[J]. Guangdong Journal of Animal and Veterinary Science, 2013, 38(2):21-25. (in Chinese)
[25] 張" 敏, 孔冬妮, 李 建, 等. 豬δ冠狀病毒膠體金試紙條檢測方法的建立[J]. 中國獸藥雜志, 2021, 55(12):1-8.
ZHANG M, KONG D N, LI J, et al. Establishment of colloidal gold strip detection method for porcine deltacoronavirus[J]. Chinese Journal of Veterinary Drug, 2021, 55(12):1-8. (in Chinese)
[26] CHEN K Y, ZHAO K, SONG D G, et al. Development and evaluation of an immunochromatographic strip for rapid detection of porcine hemagglutinating encephalomyelitis virus[J]. Virol J, 2012, 9(1):172.
[27] 孫 晨. 水泡性口炎病毒膠體金快速診斷試紙條的研制[D]. 長春:吉林大學(xué), 2012.
SUN C. Development of a rapid immunochromatographic strip for the diagnosis of vesicular stomatitis virus[D]. Changchun:Jilin University, 2012. (in Chinese)
[28] 丁豪杰, 卓洵輝, 丁建祖, 等. 豬圓環(huán)病毒2型抗體膠體金免疫層析檢測方法的建立及應(yīng)用[J]. 中國預(yù)防獸醫(yī)學(xué)報(bào), 2021, 43(1):46-53, 105.
DING H J, ZHUO X H, DING J Z, et al. Establishment and application of colloidal gold immunochromatographic detection method for porcine circovirus type 2 antibody[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(1):46-53, 105. (in Chinese)
[29] 高 茵. 豬圓環(huán)病毒3型膠體金免疫層析試驗(yàn)方法的建立與應(yīng)用[D]. 邯鄲:河北工程大學(xué), 2021.
GAO Y. The establishment and application of a colloidal gold immunochromatographic method for porcine circovirus type 3[D]. Handan:Hebei University of Engineering, 2021. (in Chinese)
[30] 李宛生, 李敏華, 張洪亮, 等. 北美型豬繁殖與呼吸綜合征病毒免疫層析試紙條的研制及初步應(yīng)用[J]. 中國預(yù)防獸醫(yī)學(xué)報(bào), 2022, 44(8):842-849.
LI W S, LI M H, ZHANG H L, et al. Development and preliminary application of immunochromatography strip for detecting North American-type porcine reproductive and respiratory syndrome virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(8):842-849. (in Chinese)
[31] ZOU S Y, WU L, LI G, et al. Development of an accurate lateral flow immunoassay for PEDV detection in swine fecal samples with a filter pad design[J]. Anim Dis, 2021, 1(1):27.
[32] 陶思銳, 查銀河, 何玉龍, 等. 豬圓環(huán)病毒2型抗原乳膠免疫層析試紙的構(gòu)建與應(yīng)用[J]. 中國獸醫(yī)科學(xué), 2022, 52(8):999-1007.
TAO S R, ZHA Y H, HE Y L, et al. Development and application of latex immunitychromatography test strip for porcine circovirus type 2 antigen[J]. Chinese Veterinary Science, 2022, 52(8):999-1007. (in Chinese)
[33] 曹志強(qiáng), 王則奮, 阮 恒, 等. 毒品的快速檢測技術(shù)與應(yīng)用[J]. 大眾科技, 2023, 25(7):74-76, 51.
CAO Z Q, WANG Z F, RUAN H, et al. Rapid detection technology and application of drugs[J]. Popular Science amp; Technology, 2023, 25(7):74-76, 51. (in Chinese)
[34] 謝雪欽. 免疫層析試紙條標(biāo)記探針研究進(jìn)展[J]. 食品安全質(zhì)量檢測學(xué)報(bào), 2014, 5(7):2138-2145.
XIE X Q. Research advances in labels for immunochromatographic test strip[J]. Journal of Food Safety amp; Quality, 2014, 5(7):2138-2145. (in Chinese)
[35] LI C F, HE X L, YANG Y, et al. Rapid and visual detection of African swine fever virus antibody by using fluorescent immunochromatography test strip[J]. Talanta, 2020, 219:121284.
[36] XIE Q Y, WU Y H, XIONG Q R, et al. Advantages of fluorescent microspheres compared with colloidal gold as a label in immunochromatographic lateral flow assays[J]. Biosens Bioelectron, 2014, 54:262-265.
[37] JI C H, WEI Y F, WANG J Y, et al. Development of a dual fluorescent microsphere immunological assay for detection of pseudorabies virus gE and gB IgG antibodies[J]. Viruses, 2020, 12(9):912.
[38] LI H T, HUANG Z F, LIN B C, et al. Simultaneous detection of fungal (1, 3)-β-D-glucan and procalcitonin using a dual-label time-resolved fluorescence immunoassay[J]. Biotechnol Appl Biochem, 2021, 68(1):157-164.
[39] LI X M, WU X Z, WANG J, et al. Three lateral flow immunochromatographic assays based on different nanoparticle probes for on-site detection of tylosin and tilmicosin in milk and pork[J]. Sens Actuators B:Chem, 2019, 301:127059.
[40] CHEN C C, LAI H R, LIANG H K, et al. A new method for detection African swine fever virus:time-resolved fluorescence immunoassay[J]. J Fluoresc, 2021, 31(5):1291-1296.
[41] CHEN H, ZHANG X L, JIN Z Y, et al. Differential diagnosis of PRV-infected versus vaccinated pigs using a novel EuNPs-virus antigen probe-based blocking fluorescent lateral flow immunoassay[J]. Biosens Bioelectron, 2020, 155:112101.
[42] HU L M, LUO K, XIA J, et al. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine[J]. Biosens Bioelectron, 2017, 91:95-103.
[43] MA F, LI C C, ZHANG C Y. Development of quantum dot-based biosensors:principles and applications[J]. J Mater Chem B, 2018, 6(39):6173-6190.
[44] LIU H J, WANG X Y, WANG H, et al. Synthesis and biomedical applications of graphitic carbon nitride quantum dots[J]. J Mater Chem B, 2019, 7(36):5432-5448.
[45] ZHOU J M, QIAN W J, YANG Q B, et al. Analysis of virginiamycin M1 in swine feed, muscle and liver samples by quantum dots-based fluorescent immunochromatographic assay[J]. Food Addit Contam:Part A, 2022, 39(8):1390-1400.
[46] LIANG Z P, LI P J, WANG C P, et al. Visualizing the transport of porcine reproductive and respiratory syndrome virus in live cells by quantum dots-based single virus tracking[J]. Virol Sin, 2020, 35(4):407-416.
[47] HASSAN A H A, BERGUA J F, MORALES-NARVEZ E, et al. Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E." coli O157:H7 in minced beef and river water[J]. Food Chem, 2019, 297:124965.
[48] QIE Z, LIU Q Q, YAN W L, et al. Universal and ultrasensitive immunochromatographic assay by using an antigen as a bifunctional element and antialbumin antibody on a test line[J]. Anal Chem, 2019, 91(15):9530-9537.
[49] LI J H, BAI Y, LI F, et al. Rapid and ultra-sensitive detection of African swine fever virus antibody on site using QDM based-ASFV immunosensor (QAIS)[J]. Anal Chim Acta, 2022, 1189:339187.
[50] 張 越. 非洲豬瘟病毒抗體量子點(diǎn)熒光微球免疫層析試紙條檢測方法的建立與應(yīng)用[D]. 南京:南京農(nóng)業(yè)大學(xué), 2021.
ZHANG Y. Development and application of A quantum dot microsphere immunochromatographic assay for detection of AFRICA SWINE FEVER virus antibodies[D]. Nanjing:Nanjing Agricultural University, 2021. (in Chinese)
[51] 柳亞茹. 豬圓環(huán)病毒2型抗原抗體熒光微球免疫層析快速檢測方法的建立與應(yīng)用[D]. 泰安:山東農(nóng)業(yè)大學(xué), 2019.
LIU Y R. Establishment and application of immunochromatography assay with fluorescent microspheres for rapid detecting antigen and antibody to porcine circovirus type 2[D]. Taian:Shandong Agricultural University, 2019. (in Chinese)
[52] 王澤洲, 王 琴, 趙啟祖, 等. 豬瘟抗體鑭系熒光免疫層析法的建立[J]. 四川畜牧獸醫(yī), 2018, 45(6):26-28, 32.
WANG Z Z, WANG Q, ZHAO Q Z, et al. Establishment of the lanthanide fluorescence immunochromatographic assay to detect classical swine fever antibody[J]. Sichuan Animal amp; Veterinary Sciences, 2018, 45(6):26-28, 32. (in Chinese)
[53] 王澤洲, 張 毅, 吳俊清, 等. 豬藍(lán)耳病抗體高敏熒光免疫層析快檢試劑盒的研制[J]. 四川畜牧獸醫(yī), 2019, 46(11):27-29, 32.
WANG Z Z, ZHANG Y, WU J Q, et al. Development of a high-sensitivity fluorescence immunochromatographic rapid test kit for porcine blue ear disease antibodies[J]. Sichuan Animal amp; Veterinary Sciences, 2019, 46(11):27-29, 32. (in Chinese)
[54] 鄒斯亦. PEDV抗原檢測側(cè)向免疫層析試劑盒的研發(fā)與應(yīng)用性評價(jià)[D]. 廣州:暨南大學(xué), 2021.
ZOU S Y. Research and development process of lateral flow immunoassay for PEDV antigen detection[D]. Guangzhou:Ji’nan University, 2021. (in Chinese)
[55] 陳翠翠, 鐘樹海, 賴宏銳, 等. 非洲豬瘟病毒抗體時(shí)間分辨免疫熒光方法的建立及初步應(yīng)用[J]. 中國預(yù)防獸醫(yī)學(xué)報(bào), 2022, 44(3):284-288, 319.
CHEN C C, ZHONG S H, LAI H R, et al. Preparation and preliminary application of time-resolved immunofluorescence assay for African swine fever virus antibody[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(3):284-288, 319. (in Chinese)
[56] 冉姍姍. 豬圓環(huán)病毒3型抗體時(shí)間分辨免疫層析檢測方法的建立[D]. 武漢:華中農(nóng)業(yè)大學(xué), 2022.
RAN S S. Development of time-resolved fluoroimmunoassay for detection of PCV3 antibody[D]. Wuhan:Huazhong Agricultural University, 2022. (in Chinese)
[57] 孫 雨, 宋曉暉, 肖 穎, 等. 口蹄疫病毒非結(jié)構(gòu)蛋白抗體時(shí)間分辨熒光免疫分析檢測方法的建立[J]. 中國獸醫(yī)科學(xué), 2019, 49(7):812-820.
SUN Y, SONG X H, XIAO Y, et al. Development of time-resolved fluoroimmunoassay method for the detection of non-structural protein antibodies against foot-and-mouth disease virus[J]. Chinese Veterinary Science, 2019, 49(7):812-820. (in Chinese)
[58] 王華俊, 趙雪麗, 閆若潛, 等. 豬流行性腹瀉病毒時(shí)間分辨熒光免疫層析檢測方法的建立[J]. 中國預(yù)防獸醫(yī)學(xué)報(bào), 2021, 43(1):40-45.
WANG H J, ZHAO X L, YAN R Q, et al. Establishment of a time-resolved fluorescence immunochromatographic assay for detection of PEDV[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(1):40-45. (in Chinese)
[59] 楊蘇珍, 劉運(yùn)超, 邢云瑞, 等. 基于量子點(diǎn)技術(shù)的豬偽狂犬病病毒gB抗體免疫層析試紙研究[J]. 中國畜牧獸醫(yī), 2023, 50(10):4160-4167.
YANG S Z, LIU Y C, XING Y R, et al. Study on quantum dots-based fluorescent immunochromatographic strip for gB antibody of porcine pseudorabies virus[J]. China Animal Husbandry amp; Veterinary Medicine, 2023, 50(10):4160-4167. (in Chinese)
[60] 徐志遠(yuǎn), 施遠(yuǎn)國, 陳 兵, 等. 非洲豬瘟病毒熒光量子點(diǎn)檢測試紙條的研制[J]. 中國獸醫(yī)科學(xué), 2023, 53(4):419-425.
XU Z Y, SHI Y G, CHEN B, et al. Development of fluorescent quantum dots test strip for African swine fever virus[J]. Chinese Veterinary Science, 2023, 53(4):419-425. (in Chinese)
[61] 江地科, 尹清清, 項(xiàng)明源, 等. 檢測豬瘟病毒膠體金和量子點(diǎn)試紙條的初步研制[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2020, 36(1):116-121.
JIANG D K, YIN Q Q, XIANG M Y, et al. Development of colloidal gold and quantum dot test strip for detection of classical swine fever virus[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1):116-121. (in Chinese)
[62] 李 軍. 豬流行性腹瀉的流行病學(xué)調(diào)查及其快速檢測方法的建立與初步應(yīng)用[D]. 廣州:華南農(nóng)業(yè)大學(xué), 2019.
LI J. Epidemiological investigation of porcine epidemic diarrhea and establishment and preliminary application of rapid diagnosis methods[D]. Guangzhou:South China Agricultural University, 2019. (in Chinese)
[63] 謝青云, 易瑋婕, 李嘉豪, 等. 適合早期診斷的非洲豬瘟sIgA抗體量子點(diǎn)免疫層析檢測方法建立[J]. 畜牧獸醫(yī)學(xué)報(bào), 2023, 54(10): 4311-4319.
XIE Q Y, YI W J, LI J H, et al. Development of quantum dot microsphere-based immunostrip for early detection of specific sIgA antibody to African swine fever virus[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4311-4319. (in Chinese)
[64] MA Y J, SONG M L, LI L H, et al. Advances in upconversion luminescence nanomaterial-based biosensor for virus diagnosis[J]. Exploration, 2022, 2(6):20210216.
[65] DI NARDO F, CHIARELLO M, CAVALERA S, et al. Ten years of lateral flow immunoassay technique applications:trends, challenges and future perspectives[J]. Sensors, 2021, 21(15):5185.
[66] 劉 暢. 磁性免疫層析試紙的制備及其在喹諾酮快速檢測中的應(yīng)用[D]. 天津:天津農(nóng)學(xué)院, 2021.
LIU C. Preparation of magnetic immunochromatographic test strip and the application in rapid detection of fluoroquinolones[D]. Tianjin:Tianjin Agricultural University, 2021. (in Chinese)
[67] 陸路春. 基于SERS免疫層析的癌癥標(biāo)志物檢測技術(shù)研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué), 2020.
LU L C. Technology of cancer bioarkers detection based on SERS immunoassay[D]. Hefei:Anhui Agricultural University, 2020. (in Chinese)
[68] JIANG N, AHMED R, DAMAYANTHARAN M, et al. Lateral and vertical flow assays for point-of-care diagnostics[J]. Adv Healthcare Mater, 2019, 8(14):1900244.
[69] HUANG Z, HU S, XIONG Y H, et al. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay[J]. TrAC Trends Anal Chem, 2019, 114:151-170.
[70] MAHMOUDI T, DE LA GUARDIA M, SHIRDEL B, et al. Recent advancements in structural improvements of lateral flow assays towards point-of-care testing[J]. TrAC Trends Anal Chem, 2019, 116:13-30.
[71] BANERJEE R, JAISWAL A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases[J]. Analyst, 2018, 143(9):1970-1996.
[72] HARADA Y, OHMURO-MATSUYAMA Y, TSUNA M, et al. An open sandwich immunochromatography for non-competitive detection of small antigens[J]. Anal Sci, 2021, 37(3):455-459.
[73] 孫燕燕, 李 昕, 林 密, 等. Pt-Pd合金納米顆粒標(biāo)記口蹄疫A型病毒抗體檢測的免疫層析方法[J]. 中國農(nóng)業(yè)科學(xué), 2021, 54(3):653-661.
SUN Y Y, LI X, LIN M, et al. Establishment of a novel immunochromatographic assay based on foot-and-mouth disease virus serotype A labeled by Pt-Pd bimetal nanoparticles[J]. Scientia Agricultura Sinica, 2021, 54(3):653-661. (in Chinese)
[74] 王 蒴, 王信惠, 黎 唯. 鼠疫免疫學(xué)檢測技術(shù)的應(yīng)用和研究進(jìn)展[J]. 中國媒介生物學(xué)及控制雜志, 2019, 30(2):228-231.
WANG S, WANG X H, LI W. Progress in the application and study of immunological detection technology for Yersinia pestis[J]. Chinese Journal of Vector Biology and Control, 2019, 30(2):228-231. (in Chinese)
(編輯 白永平)