国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

油頁巖原位開采物理模擬試驗研究現(xiàn)狀及展望

2024-12-18 00:00:00唐巨鵬余泓浩
關(guān)鍵詞:油頁巖試驗裝置

摘" 要:合理高效地原位開采油頁巖資源對緩解常規(guī)油氣資源枯竭具有重要的戰(zhàn)略意義。鑒于目前油頁巖現(xiàn)場原位開采的不確定性和工藝復(fù)雜性,物理模擬試驗成為了研究油頁巖原位開采熱解及傳熱機制的有效手段。通過查閱大量文獻發(fā)現(xiàn):油頁巖原位開采模擬試驗裝置由毫米(顆粒)尺寸向厘米、米級(現(xiàn)場)大型尺寸迭代升級,各種大型多功能三軸智能化試驗系統(tǒng)已研制成功。試驗研究了溫度、應(yīng)力和共熱物質(zhì)對油頁巖熱解的影響,分析了油氣產(chǎn)物、孔縫結(jié)構(gòu)和滲透率演化特征,形成了具有我國特色的油頁巖原位開采研究體系。針對新形勢下油頁巖原位開采研究存在的不足,對未來的研究方向提出建議和展望,旨在完善油頁巖原位開采研究體系,早日實現(xiàn)油頁巖大規(guī)模原位開采。

關(guān)鍵詞:油頁巖;原位開采;試驗裝置;物理模擬;熱解機理;傳熱機制

中圖分類號:TU375" " " " " " " " 文獻標(biāo)志碼:A" " " " " " " " " 文章編號:1008-0562(2024)05-0565-16

Research status and prospect on physical simulation test of oil

shale in-situ mining

TANG Jupeng1,2,3, YU Honghao2

(1. School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China;

2. School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China;

3. New Energy Research Center, Liaoning Technical University, Fuxin 123000, China)

Abstract: Reasonable and efficient in-situ exploitation of oil shale resources is of great strategic significance to alleviate the depletion of conventional oil and gas resources. In view of the uncertainty and process complexity of in-situ mining of oil shale, physical simulation test has become an effective means to study the pyrolysis and heat transfer mechanism of in-situ mining of oil shale. Through consulting a large number of literatures, it is found that the simulation test device for in-situ mining of oil shale is iteratively upgraded from millimeter (particle) size to centimeter and meter (in-site) large size, and various large-scale multi-functional triaxial intelligent test systems have been successfully developed. The effects of temperature, stress and co-heat substances on the pyrolysis of oil shale were studied experimentally. The evolution characteristics of oil and gas products, pore structure and permeability were analyzed, and a research system of in-situ mining of oil shale with Chinese characteristics was formed. In view of the shortcomings of oil shale in-situ mining research under the new situation, suggestions and prospects for future research directions are proposed to improve the research system of oil shale in-situ mining and realize large-scale in-situ mining of oil shale as soon as possible.

Key words: oil shale; in-situ mining; test device; physical simulation; pyrolysis mechanism; heat transfer mechanism

0" 引言

油頁巖資源遍布全球,地質(zhì)年代從寒武紀(jì)到始新世不等,具有廣闊的開發(fā)前景[1-3]。中國擁有油頁巖資源7 199.37億噸,世界排名第二,有效利用油頁巖可以顯著緩解供油壓力[4-5],根據(jù)文獻[4]統(tǒng)計得到世界各地區(qū)油頁巖資源量的主要分布情況,見圖1。油頁巖中的干酪根只有經(jīng)過高溫干餾或者熱解后才能轉(zhuǎn)化為液態(tài)頁巖油氣[6-8]。目前,石油成本不斷增大,頁巖油有望在未來幾年內(nèi)彌補世界化石能源的缺口。油頁巖開采以地面干餾為主,存在污染環(huán)境、利用率低、廢渣處理困難等缺陷[9-10]。成熟后的油頁巖原位開采技術(shù)具有綠色環(huán)保、開發(fā)成本低、可深部開采等優(yōu)勢,是油頁巖未來開采的重要方式[11-12]。

油頁巖原位加熱技術(shù)可分為傳導(dǎo)、對流、反應(yīng)熱和輻射加熱4類[4,13-14]。其中,傳導(dǎo)加熱技術(shù)是在地下數(shù)百米深的油頁巖儲層中放置電熱元件導(dǎo)管,依靠儲層間的熱傳導(dǎo)熱解生成油氣產(chǎn)品。對流加熱技術(shù)利用水力壓裂技術(shù)形成油頁巖儲層裂縫,通過注入足夠熱量的高溫流體熱解油頁巖,攜帶油氣余熱流體沿裂縫流向生產(chǎn)井,采用冷凝等裝置分離并收集油氣產(chǎn)物。反應(yīng)熱加熱技術(shù)需輸入少量外界能量,在油頁巖原位裂解過程中獲取能量完成熱解。輻射加熱技術(shù)通過微波將油頁巖儲層加熱至設(shè)定溫度,并注入專用流體進行驅(qū)油。國外從上世紀(jì)開展油頁巖開采技術(shù)的相關(guān)研究[15-17],具有代表性的例如ICP技術(shù)、ElectrofracTM技術(shù)均采用傳導(dǎo)加熱方式。2005年太原理工大學(xué)提出了注蒸汽對流方式加熱油頁巖技術(shù)[18],2011年吉林大學(xué)相繼研發(fā)了近臨界水法、自生熱法對流加熱和化學(xué)反應(yīng)熱開采技術(shù)[19],中石油提出了水平井電加熱輕質(zhì)化原位開采技術(shù)[20]。

由于油頁巖現(xiàn)場原位開采的不確定性和工藝復(fù)雜性,不易實現(xiàn)現(xiàn)場監(jiān)測研究,因此,物理模擬試驗成為研究油頁巖原位開采效果的重要手段之一。物理模擬試驗成本低、可自主控制變量且可重復(fù)試驗,國內(nèi)外研究團隊已通過物理模擬試驗獲取了大量油頁巖原位開采相關(guān)數(shù)據(jù),從不同角度研究了原位開采的熱解和傳熱機理,但仍存在一些問題與不足。

國家“雙碳”目標(biāo)的確立和能源轉(zhuǎn)型升級給油頁巖勘探開發(fā)帶來了巨大挑戰(zhàn),非常規(guī)油氣資源勘探開發(fā)技術(shù)的快速發(fā)展給中國油頁巖資源的開發(fā)帶來重大機遇。為直觀展示研究成果,通過梳理油頁巖原位開采物理模擬試驗的研究歷程,從試驗裝置的更新迭代、試驗影響因素和演化特征3個方面開展綜述,簡述現(xiàn)有研究存在的問題與不足,并對未來重點研究方向進行展望。

1 油頁巖原位開采物理模擬試驗研究

1.1" 不同尺寸的油頁巖熱解試驗

高地應(yīng)力條件下油頁巖原位開采過程中儲層溫度和壓力分布等變化規(guī)律是制約原位開采技術(shù)能否成功應(yīng)用于工程的關(guān)鍵[21]。國內(nèi)外研究團隊研發(fā)了不同尺寸的油頁巖原位開采試驗裝置,由實驗室尺寸向現(xiàn)場尺寸躍升,逐步推進油頁巖原位大規(guī)模開采。截至目前為止,原位開采物理模擬裝置分為3種,即毫米級尺寸、厘米級尺寸和米級尺寸,這3種尺寸可實現(xiàn)不同功能需求的油頁巖原位開采試驗。高溫高壓密封熱解裝置作為最新一代設(shè)備,可模擬油頁巖儲層的真實熱采溫度和原位應(yīng)力狀態(tài)。原位開采設(shè)備由小尺寸到大尺寸、由低溫向高溫、由無應(yīng)力向三軸應(yīng)力的更新迭代,促進了油頁巖原位熱解和傳熱機理的研究進展。本文查閱大量文獻,整理了國內(nèi)近12年來具有代表性的油頁巖原位開采物理模擬試驗裝置,并對其相關(guān)研究進行概述,見表1。

(1)毫米級尺寸裝置

DOAN等[43]在溫度較低、時間較長和適度升高壓力的條件下處理頁巖,降低了產(chǎn)品產(chǎn)量,但產(chǎn)品質(zhì)量有所提高。SAEED等[44]采用破碎和未破碎的巖心樣品,通過反應(yīng)器評估了Natih B組(阿曼)油頁巖的熱液轉(zhuǎn)化效果。BARUAH等[45]采用自制熱解裝置,用去離子水和鹽水浸泡熱解油頁巖粉末狀樣品,模擬地下含水層對烴源巖排烴和組成的影響。YAN等[46]研究表明油頁巖中礦物能夠催化有機物的分解和釋放。CUI等[47]通過固定床反應(yīng)器研究油頁巖和櫻桃核的熱解產(chǎn)物特性,并通過分析氫的遷移路徑探討了共熱解過程中的相互作用機理。XU等[48-49]研究了油頁巖氧化熱解過程中的化學(xué)組成、孔隙演化及其對熱物性的影響,研究表明油頁巖氧化熱解技術(shù)具有廣闊的應(yīng)用前景。馬中良等[50]開展了近臨界水熱解試驗,研究表明高含量的CO2和高地層流體壓力會增加頁巖油的回收率。GUO等[51]采用自行改造的菲舍爾反應(yīng)釜,在不同溫度、水、樺甸油頁巖質(zhì)量比條件下開展熱解試驗,明確了水分對油頁巖產(chǎn)物分布和特征的影響規(guī)律,水和空氣輔助油頁巖高溫?zé)峤庠囼炑b置示意見圖2。HU等[52]為研究水壓對油頁巖亞、超臨界水熱解的影響,在400 ℃等溫環(huán)境下通過自主開發(fā)的有機巖石熱解試驗系統(tǒng),開展了不同水壓下的巴里昆油頁巖熱解試驗。ZHENG等[53]通過特制的反應(yīng)器對茂名油頁巖開展一系列熱解試驗,研究CoCl2輔助蒸汽加熱茂名油頁巖的熱解特性和熱解動力學(xué)。HE等[54-56]設(shè)計了可多點測溫的油頁巖微波熱解裝置,通過試驗量化了微波因素對產(chǎn)物分布、油性及氣體組成的影響程度,油頁巖微波熱解試驗裝置見圖3。MU等[57]通過油頁巖與塑料在固定床系統(tǒng)中開展共熱解制油,研究表明共熱解可有效減少油相中的O、N組分,促進油頁巖干酪根中脂肪鏈的斷裂。

毫米級尺寸試驗裝置將熱解設(shè)備改裝升級,充分考慮了油頁巖熱解過程中的化學(xué)作用,實現(xiàn)了溫度控制和油氣收集。學(xué)者們通過該尺寸裝置開展了大量的油頁巖熱解產(chǎn)物及其動力學(xué)特性研究,分析了油頁巖中有機質(zhì)的熱解和釋放機制。但該裝置也存在一定的局限性,例如由于試件尺寸較小,無法施加應(yīng)力,無法對應(yīng)力作用下油頁巖的熱解規(guī)律開展研究等。

(2)厘米級尺寸裝置

ESEME等[58]在控制壓應(yīng)力條件下對二疊系-中新世油頁巖圓柱開展了無水非等溫加熱試驗,研究石油生成和排油過程中的分子和化合物類分餾,研究表明烴源初次運移是導(dǎo)致油頁巖成分變化的原因。BOLOTOV等[59]在燃燒管中將油頁巖巖心樣品充填和壓裂,對燃燒過程中的壓降形成過程、氣體組成進行了參數(shù)計算。ZHAO等[60-61]對撫順油頁巖開展了高溫及三維應(yīng)力加載試驗,分析其孔隙結(jié)構(gòu)特征,研究表明油頁巖內(nèi)部孔隙體積和孔隙率均隨溫度的升高而增大,隨著油質(zhì)產(chǎn)物被載熱氣體裹挾運移釋放,油頁巖內(nèi)部的孔隙空間逐漸增大。WANG等[62]基于油頁巖過熱蒸汽原位熱解模擬試驗,系統(tǒng)研究了新疆油頁巖在熱解過程中裂縫特征、熱解特征和細(xì)觀特征的變化規(guī)律。GUO等[19,40]設(shè)計了可真實模擬地下原位不同注采參數(shù)條件下油頁巖原位自熱解試驗裝置,該裝置可根據(jù)試驗獲取溫度、壓力、流體流動等關(guān)鍵特征參數(shù),以及氣體、液體、固體三相產(chǎn)物特性反演油頁巖原位自生熱反應(yīng)過程,探究油頁巖自生熱高效開采方法的關(guān)鍵機理,油頁巖自生熱模擬試驗裝置見圖4。韋自健[41]通過高溫-高壓擬三軸油頁巖熱解系統(tǒng),開展了不同成熟度頁巖原位加熱轉(zhuǎn)化后注空氣熱效應(yīng)追蹤與產(chǎn)物實時監(jiān)測,構(gòu)建了注空氣熱效應(yīng)潛力油藏界限與可行性快速篩選方法,高溫-高壓擬三軸油頁巖熱解系統(tǒng)見圖5。趙林[63]對新疆油頁巖開展對流熱解試驗,研究表明熱解氣體產(chǎn)物主要為一氧化碳、氫氣和有機產(chǎn)物等。王國營等[64-65]通過實時高溫三軸滲透測試系統(tǒng)熱解油頁巖,研究表明油頁巖垂直和平行層理滲透率演化的閾值溫度分別為450 ℃和400 ℃,油頁巖傳導(dǎo)加熱高溫三軸滲透率測試系統(tǒng)見圖6。

HUANG等[66]通過高溫蒸汽油頁巖三軸滲透率測試系統(tǒng),研究了在水蒸氣加熱條件下含單穿透裂縫油頁巖的滲透率和微觀結(jié)構(gòu)特征,研究表明當(dāng)油頁巖被水蒸氣加熱時,裂縫是主要的流動通道,裂縫連通性會影響油頁巖受熱解區(qū)域面積,油頁巖對流加熱高溫三軸滲透性測試系統(tǒng)見圖7。趙帥[35]通過自制的高溫高壓油頁巖熱解試驗裝置分別開展了N2、超臨界CO2熱解樺甸油頁巖試驗。馮增朝等[67-69]通過高溫-高壓三軸試驗機研究了熱-力耦合作用下油頁巖的滲透特性,研究表明油頁巖閾值溫度為500 ℃時,增大油頁巖強度可削弱外部應(yīng)力對巖石孔裂隙的壓縮閉合作用,大幅度提升油頁巖的滲透率。

厘米級尺寸的物理模擬試驗?zāi)軌蛟黾討?yīng)力條件,模擬真實的原位狀態(tài),實現(xiàn)模擬試驗裝置的溫度和應(yīng)力控制,探究油頁巖熱解過程中熱-力耦合作用的影響。但由于試件尺寸較小,無法獲取熱解過程中試件的溫度分布和氣體運移規(guī)律。

(3)米級尺寸裝置

LIU等[70]通過兩口井的相關(guān)現(xiàn)場試驗,分析水化膨脹和熱膨脹對儲層滲透率的影響機理,研究表明熱膨脹會引起局部滲透率顯著降低,不利于均勻流場的發(fā)展,可能會阻礙熱解產(chǎn)物的遷移。要實現(xiàn)油頁巖原位熱解高效開采,需對溫度、升溫速率等控制參數(shù)進行優(yōu)化。WANG等[71-74]基于富有機質(zhì)頁巖注汽熱解長距離反應(yīng)體系,深入分析了蒸汽溫度和反應(yīng)距離對氣體產(chǎn)物組成的影響,并與其他熱解過程進行對比,評價注汽熱解富有機質(zhì)頁巖的優(yōu)勢,揭示油頁巖注水蒸汽熱解提質(zhì)機理??抵厩诤屯趵诘萚75-76]通過原位注蒸汽熱解大尺寸油頁巖,分析油頁巖原位開采技術(shù)的適用性,研究表明熱解過程中最高注水壓力為地應(yīng)力的41%,蒸汽注入壓力為地層應(yīng)力的1/4,油頁巖原位熱解區(qū)內(nèi)油氣采收率可達(dá)95%。米級油頁巖壓裂-熱解模擬系統(tǒng)示意見圖8。遼寧工程技術(shù)大學(xué)新能源研究團隊自行研制了油頁巖原位注高溫蒸汽開采試驗裝置,可分析不同熱采距離下油頁巖的熱解特性,油頁巖注熱開采模擬試驗裝置見圖9。

眾多學(xué)者通過米級尺寸試驗裝置,從溫度、應(yīng)力和產(chǎn)物分布等多角度展開了大量研究。米級尺寸試驗裝置在大尺度原位熱解裝置的基礎(chǔ)上,能夠?qū)崿F(xiàn)溫度和應(yīng)力分布監(jiān)測以及熱解距離與產(chǎn)氣組分研究,探究油頁巖原位大尺度熱解過程中熱流固化耦合作用,為現(xiàn)場大規(guī)模開采提供參數(shù)指標(biāo),但該裝置存在熱解過程無法可視化等缺陷。

1.2" 影響油頁巖原位熱解試驗的因素

溫度、應(yīng)力和共熱物質(zhì)是影響油頁巖原位開采的關(guān)鍵因素,其中,溫度起主導(dǎo)作用。溫度升高打破巖體平衡狀態(tài)后,油頁巖儲層在熱流固化耦合作用的影響下,性質(zhì)、傳熱和熱解機理均會發(fā)生改變。

(1)溫度

TIWARI等[77]研究了熱解溫度對油頁巖孔隙體積的影響,研究表明溫度的增大會提高油頁巖的失重率和采收率。SAIF等[78-79]分析了390 ℃~400 ℃條件下油頁巖內(nèi)富有機質(zhì)層和貧有機質(zhì)層的結(jié)構(gòu)變化,研究表明熱解過程中孔隙率發(fā)生了巨大變化,形成了微米尺度的非均質(zhì)孔隙,孔隙尺度實時高溫動態(tài)成像裝置見圖10。

PAN等[80]將油頁巖從室溫加熱至750 ℃,通過環(huán)境掃描電子顯微鏡在納米尺度上對油頁巖的實時熱解過程進行了成像。TANG等[81]基于不同溫度條件下的油頁巖重整試驗,采用CT技術(shù)研究裂縫分布特征,研究表明溫度越高,孔隙空間越大。HUANG 等[82]在不同蒸汽溫度條件下對油頁巖樣品進行加熱并獲取CT圖像,采用三相分割法得到油頁巖中孔隙、裂縫和有機質(zhì)分布規(guī)律。王越等[83]測定了從室溫到600 ℃的熱解過程中樺甸油頁巖的熱膨脹特性,研究表明水分和有機質(zhì)是油頁巖熱解膨脹的內(nèi)在動力,有機質(zhì)含量與熱膨脹度呈正相關(guān)關(guān)系。李廣友等[84]研究表明在250 ℃~500 ℃熱解過程中,油頁巖的孔隙度演變可分為3個階段,500 ℃時油頁巖滲透率較常溫下提高了4個數(shù)量級。王磊等[85]研究表明熱解溫度和時間均會影響油頁巖失重率,熱解新疆油頁巖的最佳溫度為500 ℃。ZHAO 等[86]研究表明隨著熱解溫度的升高,烴類氣體含量呈先升高后降低的變化趨勢,當(dāng)熱解溫度超過400 ℃時,頁巖油中輕質(zhì)組分的含量迅速增加,當(dāng)熱解溫度超過500 ℃時,頁巖油輕組分含量超過42%。

溫度作為影響油頁巖原位開采最主要的外界因素,控制和主導(dǎo)油頁巖的熱解程度?,F(xiàn)有研究表明溫度越高,油頁巖的有機質(zhì)損失越大,內(nèi)部孔隙和裂縫結(jié)構(gòu)發(fā)育越顯著,油氣產(chǎn)物運移通道越多。

(2)應(yīng)力

BURNHAM等[87]研究表明在小應(yīng)變條件下,由聲速測定的彈性模量約為靜態(tài)測量結(jié)果的2倍,通過外推得到的楊氏模量與前人的測量結(jié)果一致。王磊等[61]通過對油頁巖施加垂直應(yīng)力和水平應(yīng)力來模擬地應(yīng)力環(huán)境,研究表明隨熱解的進行水平應(yīng)力差呈先增大后減小的變化趨勢。趙靜等[64]研究了熱解過程中油頁巖的滲透特性與孔隙壓力的關(guān)系,研究表明孔隙壓力可通過多種物理作用影響孔隙結(jié)構(gòu)。耿毅德等[88-89]研究表明孔隙體積和裂縫分布隨三軸應(yīng)力的增加均呈先減小后增大的變化趨勢,三軸應(yīng)力為15 MPa時,裂縫總數(shù)最大。YANG等[90-92]研究表明隨著應(yīng)力增大,油頁巖裂紋尖端會出現(xiàn)高溫紅外異常,試樣表面出現(xiàn)的異常紅外前驅(qū)體與破壞模式有關(guān),高溫紅外前驅(qū)體出現(xiàn)在剪切破壞區(qū),低溫紅外前驅(qū)體出現(xiàn)在拉伸區(qū)。王國營等[93]研究了不同應(yīng)力條件下油頁巖的變形規(guī)律,研究表明軸向應(yīng)力為2.5 MPa和5 MPa時,隨著溫度的升高平行于層理的熱變形呈膨脹-壓縮-膨脹-再壓縮的變化趨勢,實時高溫單軸壓縮系統(tǒng)見圖11。劉中華等[94]開展了三軸應(yīng)力作用下干餾后油頁巖的滲透率測試試驗,研究表明體積應(yīng)力、孔隙壓力均與滲透系數(shù)呈指數(shù)關(guān)系。

在原位熱解過程中,油頁巖力學(xué)性質(zhì)會影響井筒穩(wěn)定性、水力壓裂過程和儲層滲透率,能夠從不同高溫應(yīng)力角度研究油頁巖變形和破壞模式,揭示滲透性能與應(yīng)力的關(guān)系。在未來研究中可根據(jù)油頁巖的地應(yīng)力和強度設(shè)置合理的高溫流體注入壓力,確保滲流通道的暢通。

(3)共熱物質(zhì)

ALJARIRI等[95]研究表明300 ℃條件下油頁巖的熱解產(chǎn)物中含硫量較高,約為12 %(質(zhì)量分?jǐn)?shù)),300 ℃~320 ℃條件下的熱解產(chǎn)物中含硫量顯著降低,約為7%。CUI等[47]研究表明櫻桃核與油頁巖共熱熱解后,油頁巖和櫻桃核中的氫、氧大部分轉(zhuǎn)移至氣體中,導(dǎo)致脂肪族增加,芳烴和含氧化合物減少,油氣品質(zhì)提高。MU等[57]研究表明油頁巖與塑性共熱解可降低重質(zhì)組分和油中O、N原子含量,增大輕質(zhì)組分占比。YAN等[46]研究表明礦物可從兩方面促進干酪根氧化,一方面,礦物催化使干酪根第一氧化階段中更多的有機物被氧化;另一方面,無機框架的存在會顯著削弱氧擴散到樣品顆粒內(nèi)部的阻力。LIU等[96]采用程控加熱系統(tǒng)模擬了不同風(fēng)量下煙煤和油頁巖的低溫氧化過程,研究表明油頁巖中豐富的游離氫鍵可穩(wěn)定煙煤的缺氫官能團,削弱混合樣品在加速氧化階段的氧化能力。GUO等[97]研究表明在油頁巖原位轉(zhuǎn)化過程中加入氧氣后,熱解過程可分為低溫氧化熱解和高溫氧化熱解,其轉(zhuǎn)變溫度約為340 ℃。李家晟等[98]研究表明氧可促進油頁巖熱解,降低油頁巖干酪根裂解溫度,提高裂解速度。CoCl2輔助蒸汽加熱可降低油頁巖的初始熱解溫度和表觀活化能,增大油頁巖的質(zhì)量損失[53]。

油頁巖熱解過程受多種反應(yīng)機制影響,共熱物質(zhì)不同,油頁巖熱解產(chǎn)物會表現(xiàn)出不同性質(zhì)。上述研究通過定量分析熱解產(chǎn)物,對比有無共熱物質(zhì)時油氣等產(chǎn)物的含量,研究表明在熱解過程中加入合適的共熱物質(zhì)可起到提質(zhì)增效的作用。但是目前油頁巖樣品尺寸較小,大尺寸下產(chǎn)物提質(zhì)規(guī)律尚不清楚。

2" 油頁巖原位熱解試驗的演化特征

油頁巖中干酪根受熱會分解為油氣產(chǎn)物,殘余骨架由于存在大量孔隙和裂縫而成為多孔介質(zhì)結(jié)構(gòu),滲透性顯著增強。微觀機理決定宏觀行為,油頁巖孔隙和裂縫結(jié)構(gòu)會影響輸熱氣體和油氣產(chǎn)物運移,是油頁巖原位高效開采的關(guān)鍵。無論何種加熱方式,油頁巖在升溫?zé)峤膺^程中均具有“兩現(xiàn)象一改變”,即油氣溢出現(xiàn)象、孔縫發(fā)育現(xiàn)象和滲透率改變。學(xué)者們基于“兩現(xiàn)象一改變”,深入探究了油頁巖熱解、孔縫發(fā)育和滲透率的演化機理。

2.1" 油氣產(chǎn)物演化特征

油頁巖的熱解可分為兩個階段[99]:低溫段,可揮發(fā)性氣體溢出引起熱解失重;高溫段,有機質(zhì)和固定碳熱解失重。油頁巖氣態(tài)熱解產(chǎn)物的組成取決于干酪根和部分蒸發(fā)損失[58],最終成分主要有H2O、CO2、H2、CH4和一些低級烷烴[100]。液態(tài)產(chǎn)物主要為脂肪族化合物,熱解油主要由飽和烴、芳烴組成,氫碳比較高[43]。WANG等[73-74,88]研究表明高溫蒸氣熱解油頁巖得到的H2含量比直接干餾得到的H2含量高約8倍,頁巖油輕組分含量是干餾的2倍,是原油的3倍。SAEED等[44]研究表明油頁巖水熱會產(chǎn)生高質(zhì)量的合成油,脂肪族烴含量遠(yuǎn)高于芳烴含量,飽和烴、芳烴的含量高于樹脂和瀝青質(zhì)。BARUAH等[45]研究表明通過浸泡和加氫熱解試驗得到的油樣富含脂肪族化合物,且熱解過程中產(chǎn)生的主要氣體為CH4。HU等[52]研究了水壓對油頁巖亞/超臨界水熱解的影響,研究表明飽和烴含量、樹脂和瀝青質(zhì)含量均隨水壓的增大而降低,油頁巖高溫高壓反應(yīng)器及樣品與產(chǎn)物見圖12。水不僅能夠通過削弱大分子化合物對礦物的吸附來促進油的運移,增加頁巖油中重質(zhì)組分的含量[51],還能夠促進重油裂解反應(yīng),生成CO2和烴類氣體[59]。

油氣是油頁巖熱解后的重要產(chǎn)物,通過分析其演化規(guī)律可判斷油頁巖原位開采的經(jīng)濟性和可行性。現(xiàn)有研究大部分是分析氣態(tài)、液態(tài)產(chǎn)物的含量,從化合物和烴類氣體角度,探究提質(zhì)增效的新方法,研究表明油頁巖熱解可分為揮發(fā)氣體溢出和固體物質(zhì)熱解兩個階段,其中,氣態(tài)熱解產(chǎn)物中部分無環(huán)烷烴優(yōu)先排出,其組成取決于源干酪根。目前,試驗過程中油氣收集僅限于某一時間段,尚無法探究油氣產(chǎn)物的動態(tài)演化特征。

2.2" 孔隙和裂縫演化特征

油頁巖孔隙系統(tǒng)包括大型粒間孔、粒內(nèi)溶蝕孔以及黏土礦物和有機質(zhì)孔隙內(nèi)的小型微孔[101]。溫度是決定孔隙發(fā)育程度的主要因素,有機質(zhì)分解運移是孔隙產(chǎn)生的直接原因,原始狀態(tài)下,孤立孔隙占比較高[102]。油頁巖高溫?zé)峤夂?,孔隙結(jié)構(gòu)演化可分為3個階段[103]:250 ℃~300 ℃,熱解氣體填充原生孔隙;350 ℃~375 ℃,產(chǎn)生液態(tài)烴,遺留大量次生裂隙;400 ℃~500 ℃,油質(zhì)分解為氣體,孔隙擴張。熱解過程中,微裂縫最初形成于干酪根邊緣且充滿油氣,隨著變質(zhì)作用的影響,固體干酪根向低密度瀝青、油轉(zhuǎn)化,壓力增大,油頁巖裂縫網(wǎng)發(fā)育[104]。

在干酪根熱解和礦物顆粒膨脹熱應(yīng)力的共同作用下油頁巖發(fā)生破裂,孔隙、裂隙不斷擴展和發(fā)育[89]。HUANG等[82]研究表明室溫(25 ℃)條件下油頁巖內(nèi)分布著大量的橢球狀有機質(zhì)簇,隨著溫度升高有機質(zhì)逐漸熱解并排出熱解產(chǎn)物,留下大量的橢球狀孔隙,有機質(zhì)孔隙呈不規(guī)則的多邊形幾何狀[105]。TIWARI等[77]研究表明425 ℃時油頁巖熱解產(chǎn)生的孔隙空間是不均勻的,且與巖心中原始干酪根的分布一致。在較高的熱解溫度下,孔隙空間呈塊狀分布。RABBANI等[106]研究表明加熱溫度為390 ℃~400 ℃時,油頁巖孔隙度和裂縫孔徑均出現(xiàn)了臨界增加現(xiàn)象??抵厩诘萚107-108]研究表明經(jīng)傳導(dǎo)和對流加熱后油頁巖的孔隙率分別為原始孔隙率的2.90倍和3.51倍,加熱溫度為300 ℃~500 ℃時,直徑為1.70~" "4.10 μm的孔隙數(shù)量明顯增多。WANG等[74]研究表明在555 ℃熱解溫度下,油頁巖平均孔徑和中位數(shù)孔徑增加了約10倍。經(jīng)熱解后,孔隙度為23%~31%的油頁巖礦體占總礦體體積的74.95%[109]。在高溫下油頁巖表現(xiàn)出三向張力,層間弱面強度最小,在熱應(yīng)力和溫度作用下最先發(fā)生破裂,產(chǎn)生的孔隙主要為毛管孔隙[110],且由納米孔為主向微納米孔、納米孔共同發(fā)育轉(zhuǎn)變[111],在拉應(yīng)力作用下易發(fā)生層內(nèi)拉伸脆性斷裂,所形成的層間縫合線將與高角度裂縫和孔隙連接,形成大尺度網(wǎng)狀結(jié)構(gòu)[112]。多孔介質(zhì)的孔隙連通性由孔隙度和孔隙分布特征共同決定,如果只考慮孔隙度,可能會誤判多孔介質(zhì)的孔隙連通性[113]。

隨著油頁巖熱解溫度的增加,孔隙逐漸連通且向裂縫轉(zhuǎn)化,這意味著油頁巖運移性質(zhì)發(fā)生了階躍變化。裂縫的數(shù)量、長度和寬度急劇增加,形成巨大的裂縫網(wǎng)絡(luò)[114]。SAIF等[79]研究表明油頁巖熱解溫度為354 ℃時出現(xiàn)第1個孤立的微裂縫,378 ℃時產(chǎn)生裂縫網(wǎng)絡(luò),380 ℃時出現(xiàn)裂縫群,400 ℃時出現(xiàn)體積膨脹,400 ℃~500 ℃時孔隙度顯著增大,形成主要沿富干酪根層狀結(jié)構(gòu)發(fā)育的連通孔道[78,115]。油頁巖三維渲染體見圖13,其中,藍(lán)色部分即為孔隙空間。PAN等[80]在納米尺度上對油頁巖開展實時熱解動力學(xué)成像,研究表明加熱溫度低于100 ℃時開始出現(xiàn)無機納米裂縫,有機質(zhì)干酪根面積隨溫度的升高逐漸減小。GENG等[88]研究表明熱解溫度為600 ℃時連通的裂縫均存在“轉(zhuǎn)向”現(xiàn)象,即裂縫尖端從層理面轉(zhuǎn)向相鄰層理面并不斷延伸。趙靜等[116-118]研究表明油頁巖有機質(zhì)熱解生成的孔隙逐漸與相鄰裂縫連通,最大孔隙群沿垂直于層理面方向擴展,單個裂縫的演化既與有機質(zhì)組成有關(guān),也與鄰近裂縫動態(tài)發(fā)育密切相關(guān)。

眾多學(xué)者通過電子顯微鏡、電子計算機斷層掃描儀和高壓汞等多種技術(shù)手段定量表征了油頁巖熱解過程中孔隙和裂縫的演化特征,從數(shù)量和尺寸角度利用計算機渲染生成了不同熱解條件下的孔縫結(jié)構(gòu),直觀呈現(xiàn)油頁巖的內(nèi)部結(jié)構(gòu)。在熱解過程中,固體干酪根向低密度瀝青、油的轉(zhuǎn)化增加了內(nèi)部結(jié)構(gòu)的壓力,導(dǎo)致油頁巖裂縫網(wǎng)發(fā)育。目前,大部分研究集中于熱解后的結(jié)構(gòu)掃描,在未來研究中應(yīng)開展油頁巖熱解過程的實時動態(tài)掃描。

2.3" 滲透率演化特征

在不受約束的條件下,由于油頁巖抗拉強度有限,會出現(xiàn)大量裂縫,滲透率從微達(dá)西或納米達(dá)西水平增加到達(dá)西水平。在原位壓裂條件下,受地應(yīng)力約束時,裂縫滲透率為毫達(dá)西水平[119]。熱解溫度為20 ℃~600 ℃時,油頁巖在三維應(yīng)力作用下的滲透率可分為3類[60]:20 ℃~200℃時幾乎不透水,滲透率為0;200 ℃~350℃時滲透率受圍巖應(yīng)力和附加膨脹應(yīng)力的雙重約束先增大后減小,最終趨于0;350 ℃~600℃時滲透率急劇增大,最大值為1.0×10-15 m2。WANG等[112]研究表明致密的低滲透油頁巖會演化成高滲透多孔介質(zhì),63.51%礦體的滲透率比室溫時的滲透率高23~38倍。熱解溫度為20 ℃~382 ℃時,滲透率的增速較低,382 ℃~555 ℃時滲透率顯著增大[38,73],不同溫度下油頁巖流場模擬見圖14。對油頁巖預(yù)制裂縫后研究其滲透率,HUANG等[66]研究表明油頁巖裂縫滲透率由25 ℃時的10-15 m2減小至350 ℃時的10-17 m2,這是由于在單穿透裂縫閉合的影響下,400 ℃時會出現(xiàn)一些新的穿透裂縫,導(dǎo)致滲透率增大,500 ℃后增大至10-15 m2量級。熱解油氣和載熱流體在儲層中的運移速度和范圍受巖層各向異性滲透率的影響[64]。WANG等[65]研究表明溫度從25 ℃增至 600 ℃時,垂直層理油頁巖滲透率從10-20 m2增至10-17 m2,平行層理的滲透率由10-19 m2增至10-15 m2。油頁巖平行層理滲透率增大的主要原因是溫度增加會產(chǎn)生裂縫,垂直層理滲透率增大的主要原因是大孔隙連通,符合油頁巖滲透率與孔隙連通性之間具有強關(guān)聯(lián)性的結(jié)論[106,120]。

滲透率是實現(xiàn)油頁巖原位高效開采的關(guān)鍵參數(shù)。眾多學(xué)者從溫度、應(yīng)力、加熱方式和各向異性等不同角度開展了研究。研究表明熱解溫度小于閾值溫度時,油頁巖的滲透率由巖石強度主導(dǎo);熱解溫度大于閾值溫度時,油頁巖的滲透率由巖石的熱解程度主導(dǎo),且滲透率與溫度呈正相關(guān)關(guān)系。滲透率受測量氣體的干擾較大[121],試驗結(jié)果與實際可能存在一定的偏差。

3" 展望

目前國內(nèi)已研發(fā)出多種具有自主知識產(chǎn)權(quán)的油頁巖原位開采技術(shù)物理模擬試驗設(shè)備,但影響油頁巖原位開采的現(xiàn)場因素較多,各因素耦合作用機理復(fù)雜,對油頁巖原位開采的熱解及傳熱機理尚存在較大的研究空間,目前諸多關(guān)鍵技術(shù)與裝備有待突破,距離油頁巖原位大規(guī)模開采仍有較長的路要走。根據(jù)我國目前油頁巖原位開采的形勢和特點,對未來油頁巖的研究提出如下建議和展望。

(1)建立多尺寸聯(lián)動油頁巖原位開采理論體系

油頁巖原位開采過程極其復(fù)雜,不僅涉及熱場的熱量傳遞和熱破裂、固體力學(xué)場的固體變形、滲流場的水油氣多相滲流和運移、化學(xué)場的干酪根熱解,還涉及各場之間互相耦合的流體相變和物性參數(shù)改變等復(fù)雜機理,亟需能夠準(zhǔn)確描述油頁巖原位熱解開采全過程和物理本質(zhì)的熱流固化耦合模型,并以該模型為基礎(chǔ)開展物理模擬試驗,進一步完善油頁巖原位開采理論體系,有效指導(dǎo)油頁巖原位開采模擬裝置的研制及試驗開展。

(2)實現(xiàn)對油頁巖原位開采全過程的數(shù)值模擬

油頁巖原位開采的現(xiàn)場物理試驗成本較高且難以重復(fù),相比較而言,數(shù)值模擬成本低、精度高、可重復(fù)性強,可通過改變數(shù)值模擬條件和相關(guān)參數(shù)獲取一般性規(guī)律。油頁巖原位開采是長時間動態(tài)演化過程,各種熱流固化參數(shù)時刻變化,現(xiàn)有監(jiān)測設(shè)備具有一定的局限性,數(shù)值模擬可精準(zhǔn)監(jiān)測各參數(shù)演化特征,預(yù)測油氣產(chǎn)量。但是單一的數(shù)值模型無法準(zhǔn)確模擬原位開采全程,導(dǎo)致對開采過程的量化分析不足。因此,亟需開發(fā)能夠模擬油頁巖動態(tài)開采全程的數(shù)值軟件,對儲層溫度、壓力和流體流動等方面進行耦合模擬,協(xié)同開展物理試驗和數(shù)值模擬,為定量研究提供有效的技術(shù)支撐。

(3)開展原位高效復(fù)合加熱技術(shù)和設(shè)備研究

油頁巖原位注熱開采是實現(xiàn)油頁巖深部開采的關(guān)鍵,注熱效果取決于油頁巖儲層性質(zhì)。油頁巖儲層滲透率低、各向異性顯著,現(xiàn)有4種加熱方式的綜合參數(shù)性價比較低,嚴(yán)重制約了油頁巖原位大規(guī)模開采,因此,亟需研發(fā)多深度、多階段、多尺寸的復(fù)合加熱技術(shù)和設(shè)備,有效提高油頁巖原位開采的加熱效率和資源利用率,降低開采成本。

(4)提高試驗結(jié)果對工程實際的指導(dǎo)意義

由于我國油頁巖礦區(qū)分布廣泛,各礦區(qū)的地質(zhì)構(gòu)造及瓦斯賦存狀態(tài)存在較大差異,室內(nèi)試驗的樣本量有限,對工程實際的指導(dǎo)作用存在局限性。如何增強室內(nèi)試驗結(jié)果對實際工程的指導(dǎo)意義,是未來進行試驗時必須要考慮的問題。

參考文獻(References):

[1] SUN Y H,LIU Z,LI Q,et al.Controlling groundwater infiltration by gas flooding for oil shale in situ pyrolysis exploitation[J].Journal of Petroleum Science and Engineering,2019,179:444-454.

[2] 趙陽升.多孔介質(zhì)多場耦合作用及其工程響應(yīng)[M].北京:科學(xué)出版社,2010,373-374.

[3] BANSAL V R,KUMAR R,SASTRY M I S,et al.Direct estimation of shale oil potential by the structural insight of Indian origin kerogen[J]. Fuel,2019,241:410-416.

[4] KANG Z Q,ZHAO Y S,YANG D.Review of oil shale in situ conversion technology[J].Applied Energy,2020,269:115121.

[5] ZHAO X S,ZHANG X L,LIU Z Y,et al.Organic matter in Yilan oil shale: characterization and pyrolysis with or without inorganic minerals[J]. Energy amp; Fuels,2017,31(4):3784-3792.

[6] NASRULLAH FAISAL H M,KATTI K S,KATTI D R.An insight into quartz mineral interactions with kerogen in Green River oil shale[J]. International Journal of Coal Geology,2021,238:103729.

[7] ?PIK I,GOLUBEV N,KAIDALOV A,et al.Current status of oil shale processing in solid heat carrier utt (galoter) retorts in Estonia[J].Oil Shale,2001,18:99-108.

[8] GOLUBEV N.Solid oil shale heat carrier technology for oil shale retorting[J].Oil Shale,2003,20(Suppl.3):324.

[9] WANG S,JIANG X M,HAN X X,et al.Investigation of Chinese oil shale resources comprehensive utilization performance[J].Energy,2012,42(1): 224-232.

[10] CRAWFORD P M,BIGLARBIGI K,DAMMER A R,et al.Advances in world oil shale production technologies[C]//All Days.September 21-24, 2008.Denver,Colorado,USA.SPE,2008:1165-1170.

[11] 孫友宏,郭威,鄧孫華.油頁巖地下原位轉(zhuǎn)化與鉆采技術(shù)現(xiàn)狀及發(fā)展趨勢[J].鉆探工程,2021,48(1):57-67.

SUN Youhong,GUO Wei,DENG Sunhua.Present situation and development trend of underground in-situ conversion and drilling technology of oil shale[J].Drilling engineering,2021,48(1):57-67.

[12] 孫友宏,郭威,李強,等.中國油頁巖原位轉(zhuǎn)化技術(shù)現(xiàn)狀與展望[J].石油科學(xué)通報,2023,8(4):475-490.

SUN Youhong,GUO Wei,LI Qiang,et al.Current status and prospects of oil shale in situ conversion technology in China[J].Petroleum Science Bulletin,2023,8(4):475-490.

[13] SUN Y H,BAI F T,LYU X S,et al.A novel energy-efficient pyrolysis process:self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed[J].Scientific Reports,2015,5:8290.

[14] BUMHAM A K,MCCONAGHY J R.Comparison of the acceptability of various oil shale processes[C]//26th Oil Shale Symposium,16-19 0ctober,2006,Colorado School of Mines.California:Lawrence Livermore National Lab,2006:1-10.

[15] 孫友宏,鄧孫華,王洪艷.國際油頁巖開發(fā)技術(shù)與研究進展記第33屆國際油頁巖會議[J].吉林大學(xué)學(xué)報(地球科學(xué)版),2015,45(4): 1052-1059.

SUN Youhong,DENG Sunhua,WANG Hongyan.Advances in the exploitation technologies and researches of oil shale in the world: report on 33rd oil shale symposium in US[J].Journal of Jilin University (Earth Science Edition),2015,45(4):1052-1059.

[16] 汪友平,王益維,孟祥龍,等.美國油頁巖原位開采技術(shù)與啟示[J].石油鉆采工藝,2013,35(6):55-59.

WANG Youping,WANG Yiwei,MENG Xianglong,et al.Enlightenment of American’s oil shale in situ retorting technology[J].Oil Drilling amp; Production Technology,2013,35(6):55-59.

[17] 劉德勛,王紅巖,鄭德溫,等.世界油頁巖原位開采技術(shù)進展[J].天然氣工業(yè),2009,29(5):128-132,148.

LIU Dexun,WANG Hongyan,ZHENG Dewen,et al.World progress of oil shale in-situ exploitation methods[J].Natural Gas Industry, 2009,29(5):128-132,148.

[18] 康志勤,呂兆興,楊棟,等.油頁巖原位注蒸汽開發(fā)的固-流-熱-化學(xué)耦合數(shù)學(xué)模型研究[J].西安石油大學(xué)學(xué)報(自然科學(xué)版),2008,23(4): 30-34,4.

KANG Zhiqin,LYU Zhaoxing,YANG Dong,et al.The solid-fluid- thermal-chemistry coupling mathematical model for oil shale in situ steam injecting development[J].Journal of Xi'an Shiyou University (Natural Science Edition),2008,23(4):30-34,4.

[19] GUO W,YANG Q C,DENG S H,et al.Experimental study of the autothermic pyrolysis in situ conversion process (ATS) for oil shale recovery[J].Energy,2022,258:124878.

[20] 趙文智,胡素云,侯連華.頁巖油地下原位轉(zhuǎn)化的內(nèi)涵與戰(zhàn)略地位[J].石油勘探與開發(fā),2018,45(4):537-545.

ZHAO Wenzhi,HU Suyun,HOU Lianhua.Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China [J].Petroleum exploration and development,2018,45(4):537-545.

[21] 趙陽升,梁衛(wèi)國,馮子軍.原位改性流體化采礦導(dǎo)論[M].北京:科學(xué)出版社,2019:172-175.

[22] 李強.油頁巖原位熱裂解溫度場數(shù)值模擬及實驗研究[D].長春:吉林大學(xué),2012:30-31.

[23] 鄧孫華.近臨界水對塊狀油頁巖中有機質(zhì)的提取研究[D].長春:吉林大學(xué),2013:22-23.

[24] 王志軍.不同地區(qū)油頁巖的近臨界水模擬提取及產(chǎn)物分析[D].長春:吉林大學(xué),2014:15-16.

[25] 何里.近臨界水原位提取油頁巖內(nèi)部有機質(zhì)模擬實驗及數(shù)值模擬研究[D].長春:吉林大學(xué),2018,17-21.

[26] 趙靜.高溫及三維應(yīng)力下油頁巖細(xì)觀特征及力學(xué)特性試驗研究[D].太原:太原理工大學(xué),2014:73-74.

[27] 白奉田.局部化學(xué)法熱解油頁巖的理論與室內(nèi)試驗研究[D].長春:吉林大學(xué),2015:73-74.

[28] 趙林,楊棟,康志勤,等.過熱蒸汽對流加熱油頁巖產(chǎn)氣規(guī)律研究[J].太原理工大學(xué)學(xué)報,2015,46(3): 323-326.

ZHAO Lin,YANG Dong,KANG Zhiqin,et al.Gas generation law of oil shale heated by superheated steam[J].Journal of Taiyuan University of Technology,2015,46(3):323-326.

[29] 姜鵬飛.油頁巖酸化壓裂注熱裂解原位轉(zhuǎn)化實驗研究[D].長春:吉林大學(xué),2016:44-45.

[30] 劉志軍.溫度作用下油頁巖孔隙結(jié)構(gòu)及滲透特征演化規(guī)律研究[D].太原:太原理工大學(xué),2018:95-96.

[31] 韓婧.水氧協(xié)同作用對油頁巖熱解特性影響研究[D].長春:吉林大學(xué),2019:48-49.

[32] 姚傳進,鄭洋,李蕾,等.高溫高壓蒸汽熱解模擬實驗系統(tǒng)設(shè)計[J].實驗技術(shù)與管理,2019,36(6):104-107.

YAO Chuanjin,ZHENG Yang,LI Lei,et al.Design of simulation experimental system for high temperature and high pressure steam pyrolysis [J].Experimental Technology and Management,2019,36(6):104-107.

[33] 王國營.高溫作用下油頁巖熱物理、滲流、力學(xué)特征各向異性演化規(guī)律及其應(yīng)用[D].太原:太原理工大學(xué),2019:39-40.

[34] 楊少強.高溫實時作用下油頁巖微觀結(jié)構(gòu)演化及力學(xué)響應(yīng)規(guī)律研究[D].太原:太原理工大學(xué),2021:58-59.

[35] 趙帥.超臨界二氧化碳熱解油頁巖數(shù)值模擬和實驗研究[D].長春:吉林大學(xué),2020:92-93.

[36] 梁鯤.基于原位開采的大尺度油頁巖熱解與燃燒貫通特性的研究[D].北京:中國礦業(yè)大學(xué)(北京),2020:18-19.

[37] 何璐.油頁巖微波熱解特性及其硫氮遷移規(guī)律研究[D].北京:中國石油大學(xué)(北京),2021:28-30.

[38] 王磊,楊棟,康志勤.高溫水蒸汽作用后油頁巖滲透特性及各向異性演化的試驗研究[J].巖石力學(xué)與工程學(xué)報,2021,40(11):2286-2295.

WANG Lei,YANG Dong,KANG Zhiqin.Experimental study on permeability characteristics and anisotropy evolution of oil shale after high-temperature water vapor treatment[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2286-2295.

[39] 康志勤,趙陽升,楊棟,等.油頁巖原位注蒸汽開采油氣中試與多模式原位熱采技術(shù)的適用性分析[J].石油學(xué)報,2021,42(11):1458-1468.

KANG Zhiqin,ZHAO Yangsheng,YANG Dong,et al.Pilot test of in-situ steam injection for oil and gas production from oil shale and applicability of multi-mode in-situ thermal recovery technology [J].Acta Petrolei Sinica,2021,42(11):1458-1468.

[40] 楊秦川.自生熱法原位裂解油頁巖的理論與室內(nèi)實驗研究[D].長春:吉林大學(xué),2022:78-79.

[41] 韋自健.頁巖油藏原位轉(zhuǎn)化機理及注空氣開采可行性研究[D].北京:中國石油大學(xué)(北京),2023:26-27.

[42] 黃旭東.油頁巖原位注蒸氣開采高效對流加熱機理及應(yīng)用研究[D].太原:太原理工大學(xué),2023:80-83.

[43] LE DOAN T V,BOSTROM N W,BURNHAM A K,et al.Green river oil shale pyrolysis:semi-open conditions[J].Energy amp; Fuels,2013,27(11): 6447-6459.

[44] SAEED S A,TAURA U,AL-WAHAIBI Y,et al.Hydrothermal conversion of oil shale:synthetic oil generation and micro-scale pore structure change[J].Fuel,2022,312:122786.

[45] BARUAH B,TIWARI P.Soaking and hydrous pyrolysis of Indian oil shale:identification of produced hydrocarbons and moieties[J].Fuel, 2022,322:124255.

[46] YAN J W,JIANG X M,HAN X X,et al.A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J].Fuel,2013,104:307-317.

[47] CUI Z N,LU Y,CAO R,et al.Synergistic effect and hydrogen migration during co-pyrolysis of oil shale and cherry pit[J].Fuel,2024, 365:131275.

[48] XU S T,SUN Y H,LYU X S,et al.Effects of composition and pore evolution on thermophysical properties of Huadian oil shale in retorting and oxidizing pyrolysis[J].Fuel,2021,305:121565.

[49] XU S T,SUN Y H,GUO W,et al.Regulating the oxidative assisted pyrolysis of Huadian oil shale by preheating temperature and oxygen flow rate[J].Energy,2023,262:125602.

[50] 馬中良,鄭倫舉,趙中熙,等.吉林樺甸油頁巖原位近臨界水熱解開采室內(nèi)實驗[J].科學(xué)技術(shù)與工程,2016,16(12):55-61.

MA Zhongliang,ZHENG Lunju,ZHAO Zhognxi,et al.Laboratory experiment of in-situ conversion process in near-critical water of Huadian oil shale of Jilin[J].Science Technology and Engineering,2016,16(12):55-61.

[51] GUO W,ZHANG X,DENG S H,et al.Enhanced pyrolysis of Huadian oil shale at high temperature in the presence of water and air atmosphere[J].Journal of Petroleum Science and Engineering,2022, 215:110623.

[52] HU X D,LU Y,LI W,et al.Study on the pyrolysis behavior and product characteristics of Balikun oil shale with different water pressures in sub- and supercritical states[J].Fuel,2024,369:131701.

[53] ZHENG Y,LEI G L,YAO C J,et al.Characteristics and kinetics of Maoming oil shale pyrolysis in the presence of CoCl2 assisted steam[J]. Fuel,2023,338:127279.

[54] HE L,MA Y,YUE C T,et al.Kinetic modeling of Kukersite oil shale pyrolysis with thermal bitumen as an intermediate[J].Fuel,2020,279: 118371.

[55] HE L,MA Y,YUE C T,et al.Transformation mechanisms of organic S/N/O compounds during microwave pyrolysis of oil shale:a comparative research with conventional pyrolysis[J].Fuel Processing Technology,2021,212:106605.

[56] HE L,MA Y,TAN T,et al.Mechanisms of sulfur and nitrogen transformation during Longkou oil shale pyrolysis[J].Energy,2021, 232:120977.

[57] MU M,HOU S Z,HAN X X,et al.Interactions of oil shale and hydrogen-rich wastes during co-pyrolysis:improvements of oil quality[J].Journal of Analytical and Applied Pyrolysis,2024,178:106381.

[58] ESEME E,LITTKE R,KROOSS B M,et al.Experimental investigation of the compositional variation of petroleum during primary migration[J].Organic Geochemistry,2007,38(8):1373-1397.

[59] BOLOTOV A V,YUAN C D,VARFOLOMEEV M A,et al.In-situ combustion technique for developing fractured low permeable oil shale: experimental evidence for synthetic oil generation and successful propagation of combustion front[J].Fuel,2023,344:127995.

[60] ZHAO J,KANG Z Q.Permeability of oil shale under in situ conditions: Fushun oil shale (China) experimental case study[J].Natural Resources Research,2021,30(1):753-763.

[61] 趙靜,劉增琪,康志勤,等.原位開采狀態(tài)下油頁巖滲透特性演化規(guī)律研究[J].巖石力學(xué)與工程學(xué)報,2021,40(5):892-901.

ZHAO Jing,LIU Zengqi,KANG Zhiqin,et al.Study on evolution of permeability characteristics of oil shale under in situ exploitation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5): 892-901.

[62] WANG L,YANG D,LI X,et al.Macro and meso characteristics of in-situ oil shale pyrolysis using superheated steam[J].Energies,2018,11(9): 2297.

[63] 趙林.過熱蒸汽對流加熱油頁巖原位開采基礎(chǔ)實驗研究[D].太原:太原理工大學(xué),2015:56-59.

[64] 王國營,楊棟,康志勤.高溫三軸應(yīng)力作用下油頁巖的滲透特征各向異性演化規(guī)律實驗研究[J].巖石力學(xué)與工程學(xué)報,2020,39(6):1129-1141.

WANG Guoying,YANG Dong,KANG Zhiqin.Experimental study on anisotropic permeability of oil shale under high temperature and triaxial stress[J].Chinese Journal of Rock Mechanics and Engineering, 2020,39(6):1129-1141.

[65] WANG G Y,YANG D,ZHAO Y S,et al.Experimental investigation on anisotropic permeability and its relationship with anisotropic thermal cracking of oil shale under high temperature and triaxial stress[J]. Applied Thermal Engineering,2019,146:718-725.

[66] HUANG X D,KANG Z Q,ZHAO J,et al.Experimental investigation on micro-fracture evolution and fracture permeability of oil shale heated by water vapor[J].Energy,2023,277:127677.

[67] 馮增朝,石建行.熱力耦合作用下有機類巖石滲透率演化規(guī)律及機理 [J].煤炭學(xué)報,2024,49(9):3798-3809.

FENG Zengchao,SHI Jianhang.Evolution law and mechanisms of permeability of organic rocks under the action of thermal-mechanical coupling [J].Journal of China Coal Society,2024,49(9):3798-3809

[68] SHI J H,F(xiàn)ENG Z C,ZHOU D,et al.Experimental study on permeability evolution of bituminous coal under high temperature and volumetric stress[J].Rock Mechanics and Rock Engineering,2023,56(7): 5223-5239.

[69] SHI J H,F(xiàn)ENG Z C,ZHOU D,et al.Analysis of the permeability evolution law of in situ steam pyrolysis of bituminous coal combing with in situ CT technology[J].Energy,2023,263:126009.

[70] LIU Z,SUN Y H,GUO W,et al.Reservoir-scale study of oil shale hydration swelling and thermal expansion after hydraulic fracturing[J].Journal of Petroleum Science and Engineering,2020,195:107619.

[71] WANG L,ZHANG R,WANG G Y,et al.Effect of long reaction distance on gas composition from organic-rich shale pyrolysis under high-temperature steam environment[J].International Journal of Coal Science amp; Technology,2024,11(1):34.

[72] WANG L,YANG D,ZHANG Y X,et al.Research on the reaction mechanism and modification distance of oil shale during high- temperature water vapor pyrolysis[J].Energy,2022,261:125213.

[73] WANG L,YANG D,KANG Z Q.Evolution of permeability and mesostructure of oil shale exposed to high-temperature water vapor[J]. Fuel,2021,290:119786.

[74] WANG L,YANG D,KANG Z Q,et al.Experimental study on the effects of steam temperature on the pore-fracture evolution of oil shale exposed to the convection heating[J].Journal of Analytical and Applied Pyrolysis,2022,164:105533.

[75] KANG Z Q,ZHAO Y S,YANG D,et al.A pilot investigation of pyrolysis from oil and gas extraction from oil shale by in-situ superheated steam injection[J].Journal of Petroleum Science and Engineering,2020,186:106785.

[76] 王磊,張睿,趙陽升,等.地應(yīng)力約束下米級油頁巖高溫蒸汽壓裂與滲流-傳熱特征[J].中國礦業(yè)大學(xué)學(xué)報,2024,53(1):68-78.

WANG Lei,ZHANG Rui,ZHAO Yangsheng,et al.Characteristics of high-temperature steam fracturing and seepage-heat transfer of meter-scale oil shale under the constraint of geostress[J].Journal of China University of Mining amp; Technology,2024,53(1):68-78.

[77] TIWARI P,DEO M,LIN C L,et al.Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel,2013,107:547-554.

[78] SAIF T,LIN Q Y,SINGH K,et al.Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography[J].Geophysical Research Letters,2016,43(13):6799-6807.

[79] SAIF T,LIN Q Y,GAO Y,et al.4D in situ synchrotron X-ray tomographic microscopy and laser-based heating study of oil shale pyrolysis[J].Applied Energy,2019,235:1468-1475.

[80] PAN B,YIN X,YANG Z R,et al.Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy[J].Applied Energy,2024,363:123093.

[81] TANG H B,ZHAO Y S,KANG Z Q,et al.Investigation on the fracture-pore evolution and percolation characteristics of oil shale under different temperatures[J].Energies,2022,15(10):3572.

[82] HUANG X D,YANG D,KANG Z Q.Three-phase segmentation method for organic matter recognition in source rocks via CT images:a case study on oil shale pyrolyzed by steam[J].Energy amp; Fuels,2021,35(12): 10075-10085.

[83] 王越,孫南翔,高燕,等.樺甸油頁巖熱解過程中熱膨脹特性研究[J].工程熱物理學(xué)報,2017,38(4):800-806.

WANG Yue,SUN Nanxiang,GAO Yan,et al.Thermal expansion characteristics of Huadian oil shale in pyrolysis process[J].Journal of Engineering Thermophysics,2017,38(4):800-806.

[84] 李廣友,馬中良,鄭家錫,等.油頁巖不同溫度原位熱解物性變化核磁共振分析[J].石油實驗地質(zhì),2016,38(3):402-406.

LI Guangyou,MA Zhongliang,ZHENG Jiaxi,et al.NMR analysis of the physical change of oil shales during in situ pyrolysis at different temperatures[J].Petroleum Geology amp; Experiment,2016,38(3): 402-406.

[85] 王磊,楊棟,康志勤,等.注蒸汽原位開采油頁巖熱解溫度確定及可行性分析[J].科學(xué)技術(shù)與工程,2015,15(29):109-113.

WANG Lei,YANG Dong,KANG Zhiqin,et al.Experimental study on feasibility and proper temperature in situ mining based overheat steam heating oil shale[J].Science Technology and Engineering,2015,15(29): 109-113.

[86] ZHAO J,WANG L,YANG D,et al.Characteristics of oil and gas production of oil shale pyrolysis by water vapor injection[J].Oil Shale, 2022,39(3):153-168.

[87] BURNHAM A K.Thermomechanical properties of the garden gulch member of the green river formation[J].Fuel,2018,219:477-491.

[88] GENG Y D,LIANG W G,LIU J,et al.Evolution of pore and fracture structure of oil shale under high temperature and high pressure[J]. Energy amp; Fuels,2017,31(10):10404-10413.

[89] 耿毅德,梁衛(wèi)國,劉劍,等.不同溫壓條件下油頁巖孔裂隙結(jié)構(gòu)演化試驗研究[J].巖石力學(xué)與工程學(xué)報,2018,37(11):2510-2519.

GENG Yide,LIANG Weiguo,LIU Jian,et al.Experimental study on the variation of pore and fracture structure of oil shale under different temperatures and pressures[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2510-2519.

[90] YANG S,YANG D,ZHAO J.Correlation between the surface infrared radiation and deformation characteristics of oil shale during uniaxial compression[J].Oil Shale,2020,37(1):70-88.

[91] YANG S Q,YANG D,KANG Z Q.Experimental investigation of the anisotropic evolution of tensile strength of oil shale under real-time high-temperature conditions[J].Natural Resources Research,2021, 30(3):2513-2528.

[92] YANG D,WANG G Y,KANG Z Q,et al.Experimental investigation of anisotropic thermal deformation of oil shale under high temperature and triaxial stress based on mineral and micro-fracture characteristics[J].Natural Resources Research,2020,29(6):3987-4002.

[93] WANG G Y,YANG D,LIU S W,et al.Experimental study on the anisotropic mechanical properties of oil shales under real-time high-temperature conditions[J].Rock Mechanics and Rock Engineering, 2021,54(12):6565-6583.

[94] 劉中華,楊棟,薛晉霞,等.干餾后油頁巖滲透規(guī)律的實驗研究[J].太原理工大學(xué)學(xué)報,2006,37(4):414-416.

LIU Zhonghua,YANG Dong,XUE Jinxia,et al.Experimental study on seepage law of distilied oil shale[J].Journal of Taiyuan University of Technology,2006,37(4):414-416.

[95] ALJARIRI ALHESAN J S,F(xiàn)EI Y,MARSHALL M,et al.Long time, low temperature pyrolysis of El-Lajjun oil shale[J].Journal of Analytical and Applied Pyrolysis,2018,130:135-141.

[96] LIU Q Q,LIU C,MA J Y,et al.Comprehensive evaluation of low-temperature oxidation characteristics of low-rank bituminous coal and oil shale[J]. Energy,2024,294:131001.

[97] GUO W,PAN J F,ZHANG X,et al.Experimental and mechanistic study on isothermal oxidative pyrolysis of oil shale[J].Journal of Analytical and Applied Pyrolysis,2023,175:106215.

[98] 李家晟,孫友宏,郭威,等.高壓-工頻電加熱裂解油頁巖技術(shù)室內(nèi)試驗及氧的驅(qū)動效應(yīng)分析[J].探礦工程(巖土鉆掘工程),2018,45(5):13-17.

LI Jiasheng,SUN Youhong,GUO Wei,et al.Laboratory test of oil shale pyrolysis by high" voltage-power frequency electric heating and the analysis on oxygen driving effect[J].Exploration Engineering(Rock amp; Soil Drilling and Tunneling),2018,45(5):13-17.

[99] 于海龍,姜秀民.樺甸油頁巖熱解特性的研究[J].燃料化學(xué)學(xué)報,2001, 29(5):450-453.

YU Hailong,JIANG Xiumin.Study of pyrolysis property of Huadian oil shale[J].Journal of Fuel Chemistry and Technology,2001,29(5): 450-453.

[100] ZHANG H,LIU J,KANG Z,et al.Experimental research of the pyrolytic properties and mineral components of bogda oil shale, China[J].Oil Shale,2018,35(3):214-229.

[101] LIU X P,LAI J,F(xiàn)AN X C,et al.Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin,China[J].Marine and Petroleum Geology,2020,114:104228.

[102] ZHAO J P,DONG X,ZHANG J Y,et al.A 3D FIB-SEM technique for quantitative characterization of oil shale's microstructure:a case study from the Shahejie Formation in Dongying Depression,China[J].Energy Science amp; Engineering,2021,9(1):116-128.

[103] SUN L N,TUO J C,ZHANG M F,et al.Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J].Fuel, 2015,158:549-557.

[104] SABERI F,HOSSEINI-BARZI M.Effect of thermal maturation and organic matter content on oil shale fracturing[J].International Journal of Coal Science amp; Technology,2024,11(1):16.

[105] SAIF T,LIN Q Y,BUTCHER A R,et al.Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro- tomography,automated ultra-high resolution SEM,MAPS Mineralogy and FIB-SEM[J].Applied Energy,2017,202:628-647.

[106] RABBANI A,BAYCHEV T G,AYATOLLAHI S,et al.Evolution of pore-scale morphology of oil shale during pyrolysis: a quantitative analysis[J].Transport in Porous Media,2017,119(1):143-162.

[107] 康志勤,李翔,楊濤,等.基于傳導(dǎo)、對流不同加熱模式的油頁巖孔隙結(jié)構(gòu)變化的對比研究[J].巖石力學(xué)與工程學(xué)報,2018,37(11): 2565-2575.

KANG Zhiqin,LI Xiang,YANG Tao,et al.Comparisons of pore structures of oil shale upon conduction and convection heating[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2565-2575.

[108] KANG Z,ZHAO J,YANG D,et al.Study of the evolution of micron-scale pore structure in oil shale at different temperatures[J]. Oil Shale,2017,34(1):42-54.

[109] WANG L,YANG D,ZHAO J,et al.Changes in oil shale characteristics during simulated in-situ pyrolysis in superheated steam[J].Oil Shale, 2018,35(3):230-241.

[110] 王磊,趙陽升,楊棟.注水蒸汽原位熱解油頁巖細(xì)觀特征研究[J].巖石力學(xué)與工程學(xué)報,2020,39(8):1634-1647.

WANG Lei,ZHAO Yangsheng,YANG Dong.Investigation on meso-characteristics of in situ pyrolysis of oil shale by injecting steam[J].Chinese Journal of Rock Mechanics and Engineering,2020, 39(8):1634-1647.

[111] LEI J,PAN B Z,GUO Y H,et al.A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods[J].Energy,2021,227:120359.

[112] WANG L,ZHAO Y S,YANG D,et al.Effect of pyrolysis on oil shale using superheated steam: a case study on the Fushun oil shale, China[J].Fuel,2019,253:1490-1498.

[113] HUANG X D,YANG D,KANG Z Q.Impact of pore distribution characteristics on percolation threshold based on site percolation theory[J].Physica A:Statistical Mechanics and its Applications, 2021,570:125800.

[114] KANG Z,YANG D,ZHAO Y,et al.Thermal cracking and corresponding permeability of Fushun oil shale[J].Oil Shale,2011,28(2):273-283.

[115] SAIF T,LIN Q Y,BIJELJIC B,et al.Microstructural imaging and characterization of oil shale before and after pyrolysis[J].Fuel, 2017,197:562-574.

[116] 趙靜,馮增朝,楊棟,等.基于三維CT圖像的油頁巖熱解及內(nèi)部結(jié)構(gòu)變化特征分析[J].巖石力學(xué)與工程學(xué)報,2014,33(1):112-117.

ZHAO Jing,F(xiàn)ENG Zengchao,YANG Dong,et al.Study of pyrolysis and internal structural variation of oil shale based on 3D CT images[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):112-117.

[117] ZHAO J,YANG L,YANG D,et al.Study on pore and fracture evolution characteristics of oil shale pyrolysed by high-temperature water vapour[J].Oil Shale,2022,39(1):79-95.

[118] ZHAO J,YANG D,KANG Z,et al.A micro-CT study of changes in the internal structure of Daqing and Yan'an oil shales at high temperatures[J].Oil Shale,2012,29(4):357-367.

[119] BURNHAM A K.Porosity and permeability of Green River oil shale and their changes during retorting[J].Fuel,2017,203:208-213.

[120] 張潔瑩,楊棟,康志勤.油頁巖孔裂隙結(jié)構(gòu)隨溫度演化規(guī)律細(xì)觀研究

[J].遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版),2019,38(3):228-233.

ZHANG Jieying,YANG Dong,KANG Zhiqin.Micro study on the variation of pore and crack structure of oil shale under different temperatures[J].Journal of Liaoning Technical University(Natural Science),2019,38(3):228-233.

[121] 唐巨鵬,魏志豪,邱于曼.高溫作用對三維應(yīng)力下花崗巖滲透率影響

試驗研究[J].遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版),2023,42(5): 513-520.

TANG Jupeng,WEI Zhihao,QIU Yuman.Experimental study on the effect of high temperature on the permeability of granite under three dimensional stress[J].Journal of Liaoning Technical University (Natural Science),2023,42(5):513-520.

猜你喜歡
油頁巖試驗裝置
對油頁巖勘探現(xiàn)狀的評價分析
智能城市(2019年14期)2019-08-15 08:58:36
秋千動載性能試驗裝置的研制
直流斷路器瞬動試驗裝置的設(shè)計與實現(xiàn)
自行車車閘的試驗裝置的概述
自行車前叉組件的疲勞試驗裝置的專利分布
中國自行車(2018年9期)2018-10-13 06:16:58
國外油頁巖資源的利用分析
油頁巖與木屑混合熱解特性研究
油頁巖微波熱解氣態(tài)產(chǎn)物析出特性
化工進展(2015年3期)2015-11-11 09:18:28
油頁巖煉制過程技術(shù)經(jīng)濟分析
化工進展(2015年3期)2015-11-11 09:18:19
2MV陡前沿沖擊試驗裝置同步技術(shù)研究
黔江区| 高阳县| 繁昌县| 新民市| 广南县| 麻栗坡县| 西宁市| 浮梁县| 赣州市| 虎林市| 呼伦贝尔市| 忻城县| 枣阳市| 永康市| 临漳县| 济源市| 崇明县| 嘉黎县| 和顺县| 昌都县| 克东县| 资溪县| 宜昌市| 咸阳市| 星座| 灯塔市| 湖州市| 肥西县| 松原市| 武夷山市| 那坡县| 城口县| 邵东县| 五寨县| 马龙县| 健康| 盐津县| 江阴市| 新乡市| 潞西市| 明水县|