摘" 要:為揭示地質(zhì)構(gòu)造變化或爆破等產(chǎn)生的應(yīng)力波在不同影響因素條件的衰減機(jī)制,學(xué)者們借助位移不連續(xù)法和等效連續(xù)介質(zhì)法等理論方法,針對完整傳播過程的入射、傳播和透射3個(gè)不同階段,開展了應(yīng)力波傳播衰減規(guī)律影響的研究。研究結(jié)果表明波形、巖體性質(zhì)和節(jié)理性質(zhì)均會對其衰減特性產(chǎn)生顯著影響??偨Y(jié)以上研究方法,討論各方法之間的聯(lián)系和異同點(diǎn),在此基礎(chǔ)上提出亟待解決的問題和研究方向,為充分了解應(yīng)力波傳播過程中的衰減變化規(guī)律、完善波動理論和提高實(shí)際工程安全性提供參考。
關(guān)鍵詞:巖體;應(yīng)力波;衰減特性;節(jié)理裂隙;力學(xué)特性
中圖分類號:TD324" " " " " " " " " " 文獻(xiàn)標(biāo)志碼:A" " " " " " "文章編號:1008-0562(2024)05-0581-12
Research progress of stress wave propagation attenuation law in rock mass
XIAO Xiaochun1,2, LIU Kunlong1,2, ZHANG Wenping1,2
(1. School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China;
2. Liaoning Key Laboratory of Mining Environment and Disaster Mechanics, Liaoning Technical University, Fuxin 123000, China)
Abstract: In order to reveal the attenuation mechanism of stress waves produced by geological structure changes or blasting under different influencing factors, with the help of displacement discontinuity method and equivalent continuum method, scholars have studied the influence of stress wave propagation attenuation law on the incident, propagation and transmission stages of the complete propagation process. The study results show that, waveforms, rock mass properties and joint properties all have significant effects on its attenuation characteristics. This review summarizes the above research methods, discuss the similarities and differences between them, and put forward some urgent problems on the basis of this. This study provides a reference for fully understanding the attenuation law in the process of stress wave propagation, improving the wave theory and improving the safety of practical engineering.
Key words: rock mass; stress wave; attenuation characteristic; joint fissure; mechanical property
0" 引言
巖體應(yīng)力波傳播衰減規(guī)律研究是巖石動力學(xué)的關(guān)鍵難題。相比其他工程介質(zhì),巖體因其異質(zhì)性、各向異性及復(fù)雜的孔隙結(jié)構(gòu),展現(xiàn)出獨(dú)特的應(yīng)力波傳播特性。深入理解和研究巖體應(yīng)力波傳播衰減規(guī)律,不僅有助于完善巖石動力學(xué)理論體系,而且對工程現(xiàn)場危險(xiǎn)性預(yù)測和控制風(fēng)險(xiǎn)提供重要依據(jù)。
在礦山開采和隧道施工等工程中,突發(fā)的沖擊載荷會產(chǎn)生不同頻譜的應(yīng)力波。例如,巖層構(gòu)造發(fā)生變化時(shí),其沖擊載荷會以低頻應(yīng)力波的形式在巖層中傳播;爆破開采時(shí),爆炸產(chǎn)生的沖擊波會快速演化為高頻應(yīng)力波[1]。因此,國內(nèi)外學(xué)者對不同類型的入射波展開了衰減規(guī)律研究[2-4]。研究表明不同幅值、頻率和入射角的應(yīng)力波的傳播衰減特性具有較大差異。同時(shí),應(yīng)力波在不同巖性巖體中傳播的衰減規(guī)律千差萬別。根據(jù)其傳播特性與巖石性質(zhì)的聯(lián)系,能夠通過應(yīng)力波探測等方法獲取巖體內(nèi)部信息,波速的下降幅度可以描述巖體參數(shù)的變化[5],根據(jù)現(xiàn)場實(shí)測的巖體波速的變化值,可以估計(jì)巖體參數(shù)的跌落情況。然而,由于巖體中存在的大量節(jié)理導(dǎo)致應(yīng)力波發(fā)生嚴(yán)重衰減,獲取的信號往往難以準(zhǔn)確反映目標(biāo)介質(zhì)的實(shí)際狀態(tài)。因此,節(jié)理對其衰減特性的影響不容忽視。
綜上,本文從入射前的波形信息、傳播過程中巖體的力物特性和透、反射時(shí)的節(jié)理類型為切入點(diǎn)進(jìn)行總結(jié),分析現(xiàn)有研究方法的優(yōu)勢和不足,為應(yīng)力波傳播全過程的衰減特性提供進(jìn)一步的研究指導(dǎo)。
1 波形因素影響衰減規(guī)律的研究進(jìn)展
應(yīng)力波是巖石在沖擊荷載作用下的連續(xù)動態(tài)響應(yīng)結(jié)果,其波形對傳播行為具有顯著影響。關(guān)于波形因素對衰減特性影響的研究,目前,王夢等[4]研究了5種波形入射波(方形波、半正弦波、三角形波、左三角形波和右三角形波)在節(jié)理裂隙巖體內(nèi)的能量透射特性,其中,半正弦波更利于有效傳播。FAN等[6]建立了應(yīng)力波在復(fù)雜巖體中穿過非線性變形節(jié)理傳播的質(zhì)點(diǎn)速度表達(dá)式,討論了入射波的頻率和幅值、節(jié)理初始剛度和復(fù)雜巖體波阻抗比對質(zhì)點(diǎn)速度傳遞和能量傳遞的非線性影響,得到了質(zhì)點(diǎn)速度傳輸系數(shù)和能量傳輸系數(shù)。柴少波等[7]分析了入射波頻率對單節(jié)理巖體中柱面波透反射系數(shù)的影響。研究表明,巖體應(yīng)力波在傳播過程中,質(zhì)點(diǎn)速度傳遞系數(shù)和能量傳遞系數(shù)與初始節(jié)理剛度和波阻抗比密切相關(guān),且波頻是影響應(yīng)力波幅值衰減的主導(dǎo)因素。KING等[8]考慮入射角的影響,發(fā)現(xiàn)應(yīng)力波垂直于節(jié)理方向傳播時(shí)的高頻部分衰減更大,質(zhì)點(diǎn)速度降低得更多。
另外,應(yīng)力波對巖體破碎起著至關(guān)重要的作用。在許多工程項(xiàng)目中經(jīng)常使用爆破等方法進(jìn)行巖體開采。爆破時(shí)產(chǎn)生的沖擊波能量在傳播過程中會快速衰減,并在震源一定距離內(nèi)迅速衰減為應(yīng)力波。爆炸應(yīng)力波在巖體中傳播時(shí),其徑向應(yīng)力峰值σr不斷衰減,衰減率與傳播距離的關(guān)系表達(dá)式為
,
式中,Prmax為炮孔壁峰值載荷; 為相對距離, =r/rb,其中,r為距裝藥中心的距離,rb為炮孔半徑;β為應(yīng)力衰減指數(shù),β=2±v/(1-v),其中,v為基本頂?shù)牟此杀?,沖擊波作用時(shí)取“+”號,應(yīng)力波作用時(shí)取“-”號。
根據(jù)加載方式不同,應(yīng)力波加載試驗(yàn)可分為擺錘試驗(yàn)、輕氣炮試驗(yàn)、斷鉛試驗(yàn)和分離式霍普金森壓桿(SHPB)試驗(yàn)等[9-11]。劉少虹等[12]基于波動力學(xué)理論,利用SHPB裝置研究了波振幅和靜載荷對煤巖組合體內(nèi)傳播衰減特性的影響。楊仁樹等[13]利用SHPB試驗(yàn)系統(tǒng),對不同波阻抗材料的試件進(jìn)行了不同靜載下的沖擊試驗(yàn)。研究表明,巖體應(yīng)力波傳播衰減特性受沖擊速度、波阻抗和應(yīng)變率共同影響。其中,應(yīng)力波幅值對巖體應(yīng)力波的傳播衰減特性影響顯著[14]。金解放等[15]研究了沖擊荷載對巖石應(yīng)力波傳播速度的影響,利用SHPB裝置分別設(shè)置了7個(gè)不同大小的沖擊載荷,通過對比實(shí)驗(yàn)數(shù)據(jù),構(gòu)建了波速與沖擊載荷之間的聯(lián)系。研究結(jié)果表明,沖擊速度對波形均具有顯著影響,不同沖擊速度的應(yīng)力波形見圖1。
實(shí)際工程中,巖層通常有一定傾角,見圖2,針對層理傾角變化對應(yīng)力波傳播特性的影響,張斌等[16]通過數(shù)值模擬試驗(yàn)和理論分析的方法,發(fā)現(xiàn)當(dāng)層理傾角大于30°時(shí),應(yīng)力波的反射率隨層理傾角的增大而變大,入射角在一定范圍內(nèi),反射波不發(fā)生相位延遲現(xiàn)象,且能量耗散系數(shù)大于0[17]。同時(shí),應(yīng)力波的軟硬介質(zhì)入射順序也會影響其傳播特性[18]。不僅如此,入射角也顯著影響介質(zhì)的動力響應(yīng)。小角度入射主要引起橫向剪切變形,而大角度入射則主要導(dǎo)致豎向剪切變形[19]。SONG等[20]采用數(shù)值模擬和現(xiàn)場觀測相結(jié)合的方法,研究了節(jié)理巖體中應(yīng)力波的衰減規(guī)律和裂隙的演化機(jī)制。研究表明,入射角越接近90°,透射系數(shù)越大,分形維數(shù)越小,并且高頻幅值比低頻幅值減小得更顯著。隨著傳播距離的增加,信號的主要頻率逐漸降低[21]。WANG等[22]基于等效層模型推導(dǎo)了波在時(shí)域中傳播的控制方程,研究表明隨著波頻的增加,透射系數(shù)和有效波速均減小[23]。夾層內(nèi)的多次反射導(dǎo)致巖體中能量耗散率增加,通過引入頻率依賴的有效剛度改進(jìn)位移不連續(xù)方法(M-DDM),該方法能夠更準(zhǔn)確地預(yù)測應(yīng)力波穿過薄層節(jié)理的透射系數(shù)[24]。HUI等[25]采用等效節(jié)點(diǎn)力法和黏性彈簧人工邊界理論,分析了斜入射波作用下巖質(zhì)邊坡的峰值地面加速度(PGA)和譜加速(SA)的放大效應(yīng)。結(jié)果表明,波斜向入射時(shí)的PGA和SA的最大放大因子分別是垂直入射時(shí)的1.7倍到1.9倍,且放大效應(yīng)隨著邊坡角度和波入射角的增加而增大。LIANG等[26]基于波函數(shù)展開和保角映射方法,研究了不同入射方向下深U形洞室的動力響應(yīng),推導(dǎo)了洞室邊界動應(yīng)力集中系數(shù)的理論解,該理論方法能在實(shí)際工程中有助于預(yù)測圍巖的潛在危險(xiǎn)區(qū)。LIANG等[27]研究了靜動力耦合作用下圍巖的能量演化和破壞模式。結(jié)果表明,當(dāng)應(yīng)力波水平入射時(shí),洞室底板更易發(fā)生巖爆破壞,而入射邊界更易發(fā)生動態(tài)拉伸破壞。當(dāng)入射方向與最大主應(yīng)力方向一致時(shí),巖爆發(fā)生更加劇烈。HE等[28]提出一種基于矩張量理論的任意破裂機(jī)制震源模擬方法,并以東灘煤礦為工程背景,通過數(shù)值模擬的方法,模擬了從強(qiáng)震源激發(fā)、應(yīng)力波傳播到最終觸發(fā)巷道破壞失穩(wěn)的全過程。結(jié)果表明,巷道與震源的相對空間位置對巷道的破壞和失穩(wěn)起著重要作用,水平和垂直方向P波強(qiáng)度最大,與震源成45°角處S波強(qiáng)度最大,且強(qiáng)礦震以拉伸破壞為主要特征。
2 巖體性質(zhì)影響衰減規(guī)律的研究進(jìn)展
巖體作為一種多孔介質(zhì),其應(yīng)力波傳播過程受到孔隙結(jié)構(gòu)、礦物成分、孔隙流體等諸多因素的影響,呈現(xiàn)出復(fù)雜的衰減特性。巖體應(yīng)力波的傳播衰減特性不僅與波形因素有關(guān),還與巖體的物理力學(xué)性質(zhì)有密切關(guān)聯(lián)。針對巖體性質(zhì)影響的應(yīng)力波傳播行為,袁良柱等[29]通過對隨機(jī)多孔介質(zhì)模型進(jìn)行沖擊壓縮模擬試驗(yàn),對比分析了孔隙率對應(yīng)力波傳播特征和能量耗散行為的影響。LIM等[30]研究了泊松比v介于-1和0.5之間的兩個(gè)完全黏結(jié)各向同性固體中波的傳播,見圖3。結(jié)果表明,相鄰介質(zhì)在極端泊松比下,即當(dāng)介質(zhì)2泊松比v2為-1時(shí),傳遞應(yīng)力波幅值是入射波幅值的2倍。
溫度的變化通常會引起巖石性質(zhì)發(fā)生改變,從而導(dǎo)致波速變化,ELDERT等[31]發(fā)現(xiàn)彈性參數(shù)的固有溫度依賴性與熱壓力效應(yīng)具有相反影響,在純彈性介質(zhì)中,孔隙壓力效應(yīng)占主導(dǎo)地位,溫度升高會導(dǎo)致波速降低。不同類型巖石亦表現(xiàn)出不同的結(jié)果,因此,劉希靈等[32]通過斷鉛試驗(yàn),以紅砂巖、花崗巖、灰?guī)r、大理巖為研究對象,分析了不同類型巖石中彈性波的幅值、中心頻率、峰值頻率隨著傳播距離的增加而發(fā)生的變化,見圖4。研究表明,隨傳播距離的增加,各類巖石中的應(yīng)力波幅值呈不同速率下降。其中,結(jié)構(gòu)較為稀疏的紅砂巖內(nèi)的幅值衰減速率最大,而結(jié)構(gòu)致密的大理巖內(nèi)幅值的衰減速率最小。分析認(rèn)為造成彈性波衰減最主要的因素是巖石內(nèi)部礦物顆粒之間結(jié)合的緊密程度。
YUAN等[33]首次將拉普拉斯變換方法與歐拉控制方程相結(jié)合,得到了應(yīng)力波在密度梯度黏彈性介質(zhì)中傳播的理論解,推導(dǎo)并分析了斜沖擊作用下條紋密度梯度介質(zhì)中剪應(yīng)力的傳播規(guī)律。揭示了黏彈性介質(zhì)內(nèi)部幾何結(jié)構(gòu)和含量對黏彈性介質(zhì)動力學(xué)行為的影響。然而實(shí)際工程中,巖體為各向異性介質(zhì),如果不考慮各向異性或忽略巖層中彈性波的能速和相速之間的差別,會引起波信號轉(zhuǎn)換誤差,雖然信號識別方法不斷提高[34-35],但其波信號不能準(zhǔn)確地反演地下巖層的地質(zhì)結(jié)構(gòu)[36]。因此,基于實(shí)際巖層中土壤-巖石混合特性,郭俊鑫等[37]利用Biot孔彈性理論推導(dǎo)了由橫向各向同性飽和流體孔隙地層組成的層狀介質(zhì)中彈性波頻散、衰減與頻變各向異性的近似理論模型。結(jié)果表明,介質(zhì)的異質(zhì)性會導(dǎo)致波場中產(chǎn)生散射波,主要由瑞利面波產(chǎn)生,并位于波陣面之后,該散射波對反射縱波和轉(zhuǎn)換波有顯著影響[38]。黃杰等[39]將巖體簡化為二維隨機(jī)介質(zhì),研究了波的散射衰減規(guī)律,并確定了最小散射角的取值范圍。在二維高斯型隨機(jī)介質(zhì)中,P波的最小散射角范圍為60°~90°。
不同巖性巖體的動態(tài)力學(xué)響應(yīng)深受地應(yīng)力的影響,由于靜應(yīng)力對巖石孔隙度、微裂隙閉合與擴(kuò)展與介質(zhì)顆粒緊密程度的影響作用,致使在軸力作用下其應(yīng)力波傳播衰減特性亦會發(fā)生改變。金解放等[40]基于SHPB試驗(yàn)系統(tǒng),對紅砂巖試件進(jìn)行不同軸壓下的應(yīng)力波傳播試驗(yàn),研究了軸向靜應(yīng)力對應(yīng)力波傳播衰減的影響。通過縱波波速、振幅隨空間、時(shí)間以及軸向靜應(yīng)力的變化規(guī)律,獲取了不同初始條件下的衰減系數(shù)。結(jié)果表明,增加初始靜應(yīng)力使動載荷耗散能先增大后減小。相同應(yīng)變率條件下,減小波阻抗導(dǎo)致透射波幅值減小。FAN等[41]通過理論分析發(fā)現(xiàn),增加原巖應(yīng)力能夠提高應(yīng)力波的透射率和平均波速。然而深部工程巖體不僅受單方向的軸壓作用,通常受較大的圍壓作用,金解放等[42]利用可施加圍壓的動靜組合加載實(shí)驗(yàn)系統(tǒng)(圖5),研究了不同圍壓下紅砂巖的應(yīng)力波傳播特性。研究發(fā)現(xiàn),圍壓可以改變巖石內(nèi)部微觀結(jié)構(gòu),導(dǎo)致波阻抗發(fā)生變化,從而影響應(yīng)力波的傳播衰減規(guī)律。
李新平等[43]通過模型試驗(yàn)研究發(fā)現(xiàn),圍壓能夠使應(yīng)力波的透射能力增強(qiáng),巖石材料自身是引起應(yīng)力波衰減的主導(dǎo)因素之一。譚彬[44]通過圍壓加載試驗(yàn),研究了不同圍壓大小下應(yīng)力波的衰減特性變化規(guī)律。金解放等[42]通過一維應(yīng)力波理論,推導(dǎo)了透射系數(shù)和反射系數(shù)與波阻抗值的關(guān)系,研究發(fā)現(xiàn),隨圍壓的增加,透射系數(shù)T和反射系數(shù)R均呈二次函數(shù)形式增加,見圖6,可見增大圍壓有利于應(yīng)力波穿過巖石,減小其幅值的衰減。宮嘉辰等[45]基于波動方程,提出一種砂巖的縱波波速與靜水圍壓關(guān)系的數(shù)學(xué)模型,其靜彈性模量、靜泊松和縱波波速與靜水圍壓均呈正相關(guān)性,且增加速率逐漸變緩。地下工程巖體開挖卸載后,圍巖體承受的地應(yīng)力隨空間位置呈梯度形式變化。金解放等[46]利用具有梯度靜應(yīng)力巖石應(yīng)力波傳播試驗(yàn)系統(tǒng),探究了梯度應(yīng)力對紅砂巖應(yīng)力波傳播衰減的影響機(jī)制。應(yīng)力梯度的增加能夠增大巖體波阻抗和應(yīng)力波傳播速度。隨傳播距離的增加,應(yīng)力波幅值均呈指數(shù)形式減小。
此外,深部巖體通常富含水分,溫慶陽等[47]通過高水壓加載試驗(yàn)研究了高水壓和高地應(yīng)力共同作用的應(yīng)力波傳播衰減規(guī)律。對于初始損傷較小的紅砂巖,水壓的存在導(dǎo)致巖石內(nèi)部的裂隙被擠壓,使巖石的波阻抗增強(qiáng),有利于應(yīng)力波在巖石試件中的傳播。而WU等[48]通過試驗(yàn)發(fā)現(xiàn)最佳透射率時(shí)的介質(zhì)波阻抗值為1.12×106 kg/m2·s,該結(jié)果為研究應(yīng)力波傳播衰減機(jī)理提供了參考依據(jù)。ZHANG等[49]將圍壓與水壓結(jié)合考慮,利用華北平原兩口相鄰的地下水井研究表明在滲透性高且較淺的含水層中,受動載作用后具有更少的孔隙壓力變化。說明相對高滲透性的含水層對應(yīng)力波的影響更不敏感。
李新平等[43]以錦屏水電站引水隧洞深埋大理巖為原型,通過室內(nèi)模型試驗(yàn),測試了裂隙巖體在三軸壓縮和三軸拉伸條件下的彈性波變化規(guī)律。研究發(fā)現(xiàn),在圍壓固定條件下,軸向壓力能夠增加彈性波波速,當(dāng)軸壓達(dá)到峰值強(qiáng)度的60%時(shí),由于試件內(nèi)部裂隙尺寸和數(shù)量開始大量增加,從而使波速降低,見圖7。
由于工程巖體形狀復(fù)雜,巖體形狀對應(yīng)力波傳播衰減規(guī)律的影響作用不可忽視。袁偉針等[50]利用直錐桿,研究了變截面構(gòu)件對應(yīng)力波傳播規(guī)律的影響。其中,應(yīng)力波由構(gòu)件尖端入射,應(yīng)變片等間距布置以監(jiān)測波幅值變化規(guī)律,見圖8。結(jié)果顯示空間衰減系數(shù)呈“小幅降低-基本不變”的變化特征。
3 節(jié)理類型影響衰減規(guī)律的研究進(jìn)展
天然巖體中存在大量節(jié)理,節(jié)理不僅影響巖體的強(qiáng)度,而且會改變巖體中應(yīng)力波的傳播衰減特性。關(guān)于應(yīng)力波致裂機(jī)理,學(xué)者們普遍認(rèn)為拉應(yīng)力為主導(dǎo)因素,當(dāng)拉應(yīng)力波幅值超過巖體抗拉強(qiáng)度時(shí),致使裂紋擴(kuò)展,并且最終導(dǎo)致巖體發(fā)生破壞[51-52]。該結(jié)果揭示了節(jié)理巖體的損傷機(jī)理和應(yīng)力波傳播衰減規(guī)律。波的傳播方式受巖石節(jié)理的動力學(xué)性質(zhì)和幾何分布的共同影響,針對此問題,許多學(xué)者從理論和試驗(yàn)兩方面進(jìn)行了大量研究。如任夢等[53]基于衍射原理,通過斷續(xù)節(jié)理巖體中波幅值變化的試驗(yàn)結(jié)果分析了節(jié)理對波傳播衰減的影響,發(fā)現(xiàn)節(jié)理會導(dǎo)致波振幅衰減及波速降低[54]。PYRAK等[55]認(rèn)為節(jié)理能夠使應(yīng)力波在傳播過程中發(fā)生信號延遲、信號衰減和高頻濾波等現(xiàn)象,高頻波在層狀節(jié)理巖體中的衰減效果更明顯[56]。針對節(jié)理幾何分布對應(yīng)力波傳播特性的影響,學(xué)者們研究了不同傾角組合巖體(圖9)中波信號的變化規(guī)律。王建國等[57]研究發(fā)現(xiàn)不同傾角節(jié)理巖石中應(yīng)力波傳播衰減特性不同,傾角的增大使應(yīng)力波反射率先增大后減小。當(dāng)兩傾角節(jié)理相交時(shí),形成交叉節(jié)理。交叉節(jié)理角度越大,峰值強(qiáng)度越低,耗散能量比先增大后減小,反射能量先減小后增大。且傾角范圍為45°~60°,耗散能量最高[58]。
由于節(jié)理巖體中應(yīng)力波與節(jié)理相互作用,裂紋尖端的應(yīng)力波垂直于裂紋擴(kuò)展面,從而促進(jìn)裂紋的快速擴(kuò)展[59],使其傳播規(guī)律發(fā)生明顯改變,從而,連續(xù)介質(zhì)波動理論不再完全適用。因此,學(xué)者們開始應(yīng)用位移不連續(xù)模型來研究大尺度平面節(jié)理的影響[60],應(yīng)用等效黏彈性模型來研究細(xì)觀裂隙[61]。FAN等[62]將等效介質(zhì)與位移不連續(xù)結(jié)合,建立了適用于雙尺度結(jié)構(gòu)面巖體的均勻不連續(xù)模型,能夠在頻域內(nèi)分析應(yīng)力波的傳播衰減規(guī)律[63]。王觀石等[56]用振幅、相位的透射、反射系數(shù)表征了結(jié)構(gòu)面導(dǎo)致應(yīng)力波發(fā)生的波形變化,并提出垂直入射多個(gè)結(jié)構(gòu)面的透射系數(shù)計(jì)算公式。研究表明巖層厚度越小其諧振頻率越高,巖體帶通數(shù)越少,巖體濾波能力越強(qiáng)。隨節(jié)理數(shù)量增加,應(yīng)力波透射的幅值逐漸降低??紤]非線性節(jié)理對透射率的影響,基于時(shí)域遞歸分析法,LI等[64]深入研究了應(yīng)力波斜入射多個(gè)非線性平行結(jié)構(gòu)面的透射、反射率變化規(guī)律。李欣平等[65]推導(dǎo)出地應(yīng)力作用下應(yīng)力波穿越多條非線性節(jié)理的傳播方程,能夠用于求解應(yīng)力波多層介質(zhì)傳播問題。隨著特征線法相關(guān)理論方法的發(fā)展,李建春" 等[66]提出針對裂縫面處的時(shí)域遞歸方法,該方法能夠分析任意角度入射波在裂縫面處的傳播特性,并且能夠考慮波形轉(zhuǎn)換和裂縫面的非線性行為。同時(shí),學(xué)者們陸續(xù)采用庫倫摩擦模型、BB模型和連續(xù)屈服模型等表示應(yīng)力波在節(jié)理處的傳播規(guī)律,能夠準(zhǔn)確反映裂縫面的實(shí)際受力變形情況[67]。
針對多節(jié)理影響的應(yīng)力波衰減問題,劉婷婷等[68]提出了等效介質(zhì)模型,用于分析應(yīng)力波在含多條小間距充填節(jié)理巖體的傳播規(guī)律,發(fā)現(xiàn)節(jié)理數(shù)量的增加增強(qiáng)了反射波疊加效應(yīng)[69]。關(guān)于節(jié)理正規(guī)化剛度系數(shù)對透射系數(shù)的影響方面,柴少波等[70]研究了平面非線性特性的交叉節(jié)理對應(yīng)力波傳播規(guī)律的影響,LI等[71]采用Barton-Bandis模型描述節(jié)理的非線性變形,利用UDEC軟件對斜入射應(yīng)力波在一組平行節(jié)理和相交節(jié)理中的傳播進(jìn)行了研究,發(fā)現(xiàn)節(jié)理初始法向剛度增加導(dǎo)致傳遞系數(shù)增加(見圖10),表明剛度較低的節(jié)理能夠吸收更多波動能量,從而導(dǎo)致更高的波幅值衰減。這與波穿越單一節(jié)理的傳遞特性相似。王建國[57]和李新平等[65]通過對不同節(jié)理數(shù)量試件(見圖11)進(jìn)行應(yīng)力波加載試驗(yàn),驗(yàn)證了節(jié)理數(shù)量的影響,并建立了地應(yīng)力作用下應(yīng)力波在多條非線性節(jié)理處的關(guān)系。
當(dāng)應(yīng)力波穿越多個(gè)節(jié)理時(shí),節(jié)理特性(厚度、間距、數(shù)量)均對應(yīng)力波傳播規(guī)律有明顯影響。劉婷婷等[68]利用離散元方法(UDEC),通過改變單元體積以控制節(jié)理間距的大小,對不同節(jié)理間距巖體進(jìn)行了模擬試驗(yàn),見圖12。研究表明節(jié)理間距對透射系數(shù)具有顯著影響作用,增加節(jié)理間距及節(jié)理數(shù)量能降低透射應(yīng)力波幅值,且減小等效波速,不利于應(yīng)力波傳播[72]。
FAN等[73]建立了包含多個(gè)平行節(jié)理的層狀復(fù)合巖體和層狀均勻巖體模型,研究節(jié)理間的多重反射。結(jié)果表明,當(dāng)節(jié)理間距由0增加至波長的10%時(shí),透射率Tv逐漸增加;隨后Tv逐漸降低,直至節(jié)理間距增加到波長的20%時(shí),Tv趨于穩(wěn)定。并且在節(jié)理間距相同的巖體中,層狀復(fù)合巖體中透射波的起始時(shí)間和振幅均小于層狀均勻巖體,見圖13。
綜上所述,節(jié)理數(shù)量、節(jié)理傾角和節(jié)理間距均能改變應(yīng)力波的傳播衰減特性。同時(shí),節(jié)理表面形態(tài)對應(yīng)力波傳播規(guī)律也有顯著影響,天然節(jié)理面的表面形態(tài)是節(jié)理表面空間展布的幾何屬性,其由不同起伏度和粗糙度組合而成,具有不規(guī)則性。只有包含這些參數(shù)的理論模型和經(jīng)驗(yàn)公式才能準(zhǔn)確反映節(jié)理的實(shí)際力學(xué)行為。現(xiàn)有針對于節(jié)理表面形態(tài)影響的研究側(cè)重于節(jié)理粗糙度系數(shù)(JRC)、節(jié)理吻合系數(shù)(JMC)和充填物等,眾多學(xué)者針對不同影響因素開展了研究[74-75]。LI等[76]針對不同粗糙度的節(jié)理試樣,建立了節(jié)理粗糙度與巖體地震質(zhì)量因子之間的聯(lián)系。楊建明等[77]通過試驗(yàn)和理論分析,總結(jié)了節(jié)理吻合系數(shù)JMC及其幾何分布對應(yīng)力波能量耗散的影響。殷志強(qiáng)等[78]針對人工構(gòu)造節(jié)理試樣,利用SHPB裝置,探究了節(jié)理作用下應(yīng)力波傳播規(guī)律,發(fā)現(xiàn)隨節(jié)理吻合系數(shù)增大,地震波品質(zhì)因子增大,試樣耗散能量減少。
李娜娜等[79]通過人工切槽的方法,研究了節(jié)理接觸面和接觸面相對密集度與節(jié)理巖體中應(yīng)力波透射率的關(guān)系,發(fā)現(xiàn)增加接觸面能夠有效提高透射率。CHEN等[80]通過對試件進(jìn)行人工切縫,模擬了應(yīng)力波在節(jié)理巖體中的傳播實(shí)驗(yàn),揭示了其透射系數(shù)對接觸面接觸情況的影響機(jī)制。隨著二維理論逐漸完善,劉傳正等[81]基于細(xì)觀接觸理論進(jìn)而推導(dǎo)了巖石三維節(jié)理的應(yīng)力-變形本構(gòu)方程一般形式,并基于DDM方法給出P波、SV波與SH波在三維節(jié)理面上的折反射解析解,其中,P波在結(jié)構(gòu)面處的波形轉(zhuǎn)換見圖14。
實(shí)際工程中,大多數(shù)煤巖體存在不同程度的損傷,并分布有大量裂隙,張雨霏等[82]認(rèn)為節(jié)理面出現(xiàn)的損傷能夠降低應(yīng)力波在節(jié)理處的透射能力。裂縫會使應(yīng)力波發(fā)生延遲現(xiàn)象,且該效果與縫寬、荷載周期、荷載振幅及彈性模量呈現(xiàn)明顯的非線性關(guān)系。裂縫面法向開合行為和切向滑移行為不會影響垂直入射波,但會對應(yīng)力波斜入射的情況產(chǎn)生顯著影響,因此需要考慮裂縫面的切向力學(xué)行為和法向力學(xué)行為。為厘清裂縫面開合和滑移行為對斜入射波的影響,王瑞等[83]研究了應(yīng)力波斜入射裂縫面的傳播規(guī)律,得到了考慮裂縫面的相對位移和應(yīng)力時(shí)程,建立了考慮法向開合的切向滑移行為的裂縫面模型。結(jié)果表明裂縫面的切向滑移和法向開合行為會延長反射波和透射波的作用時(shí)間。王振偉等[84]采用數(shù)值計(jì)算的方法,分析了裂隙寬度、荷載參數(shù)及巖層參數(shù)對應(yīng)力波延時(shí)規(guī)律的影響。研究表明裂縫不會影響應(yīng)力波波形,但折射、反射和透射等現(xiàn)象會導(dǎo)致波形發(fā)生振蕩。其敏感度依次為:縫寬gt;彈性模量gt;巖層密度gt;荷載振幅gt;荷載周期。
由于應(yīng)力波在軟弱夾層中相互干涉產(chǎn)生的波形畸變現(xiàn)象,致使振幅具有較明顯的衰減。目前,夾層應(yīng)力波傳播問題已取得了一定的研究進(jìn)展。王斐笠等[85]將應(yīng)力波在含軟弱夾層巖體中的傳播過程分為3部分,見圖15。根據(jù)波陣面動量守恒原理,分析了應(yīng)力波在結(jié)構(gòu)面中的傳遞特征。夾層會導(dǎo)致應(yīng)力波產(chǎn)生衰減與相位超前等現(xiàn)象。劉傳正等[86]針對應(yīng)力波在夾層中的多次折、反射的具體過程中能量演化規(guī)律開展了系統(tǒng)分析,見圖16。研究了應(yīng)力波在夾層介質(zhì)中動態(tài)傳播的能量分布與演化規(guī)律,發(fā)現(xiàn)夾層內(nèi)部剩余的應(yīng)力波在經(jīng)歷4次折、反射后所剩余能量可忽略不計(jì)。當(dāng)軟弱夾層的波速小于圍巖波速的30%時(shí),會對特定頻率的波產(chǎn)生明顯的放大作用。對于充填材料,李春鵬等[87]研究表明,應(yīng)力波透反射系數(shù)隨充填材料厚度增大呈現(xiàn)周期波動變化。夾層與圍巖的波阻抗相差越大,其波動能量的空間分布差異越明顯[88],且發(fā)生波形轉(zhuǎn)換的部分越多[63]。
基于考慮黏結(jié)與滑移邊界條件的軟弱結(jié)構(gòu)面理論模型,孫寧新等[89]探討了軟弱夾層厚度、位置及角度對爆炸應(yīng)力波傳播的影響規(guī)律,推導(dǎo)了P波入射軟弱結(jié)構(gòu)面透反射系數(shù)。研究表明軟弱結(jié)構(gòu)面存在高頻濾波特性,實(shí)際工程中需重點(diǎn)關(guān)注低頻時(shí)結(jié)構(gòu)面的穩(wěn)定性。
4" 結(jié)論與展望
巖體中應(yīng)力波的傳播衰減規(guī)律對礦山開采和隧道施工等工程具有重要影響。近些年,國內(nèi)外學(xué)者們從不同角度進(jìn)行了分析,將傳播過程大致分為入射、傳播和透射3個(gè)階段,本研究針對不同階段已有方法分別進(jìn)行了綜述。
應(yīng)力波波形對其傳播衰減規(guī)律有顯著影響,針對加載方式、頻率、幅值、作用時(shí)間、入射角等,分別開展了相關(guān)研究?,F(xiàn)有理論成果已能夠解釋不同類型應(yīng)力波在巖體中傳播規(guī)律。但目前還沒有對不同波形進(jìn)行系統(tǒng)的對比分析。獲得不同波形具有的特殊性,將對分析波形因素進(jìn)一步的研究具有重要參考價(jià)值。
應(yīng)力波在巖體中傳播時(shí),其傳播過程受到孔隙結(jié)構(gòu)、礦物成分、孔隙流體等諸多因素的影響,通過進(jìn)行不同尺度的物理試驗(yàn),發(fā)現(xiàn)影響因素敏感度排序?yàn)椋嚎p寬gt;彈性模量gt;巖層密度gt;荷載振幅gt;荷載周期。由于巖體埋深不同,其受力狀況也不一樣,圍壓能夠改變應(yīng)力波的傳播規(guī)律,但溫度和含水率對應(yīng)力波的影響機(jī)制目前考慮欠妥。已有的數(shù)值方法能夠模擬不同尺寸的模型,但目前只在特定單一影響因素情況下提出了研究方法,對于多因素耦合影響的研究方法還有待開展下一步的研究。
高地應(yīng)力下,節(jié)理巖體中應(yīng)力波衰減由巖石材料和節(jié)理兩部分引起。巖體中存在的節(jié)理對應(yīng)力波具有重要影響作用,針對節(jié)理數(shù)量、節(jié)理尺寸、節(jié)理接觸面積、節(jié)理傾角、節(jié)理面力學(xué)性質(zhì)等均有較為顯著的成果。特征線法、時(shí)間遞歸法和黏彈性動態(tài)等效連續(xù)介質(zhì)方法等均可解釋應(yīng)力波在節(jié)理處發(fā)生透射衰減和波形轉(zhuǎn)換的現(xiàn)象。但目前只在特定假設(shè)平面情況下提出了研究方法。實(shí)際工程中,節(jié)理為3維結(jié)構(gòu),關(guān)于3維節(jié)理模型的建立及其對波動傳播影響的研究亟待解決。
研究應(yīng)力波傳播過程中不同階段的衰減特性對厘清傳播全過程的變化趨勢具有重要意義。明晰巖體應(yīng)力波傳播衰減規(guī)律,有助于完善應(yīng)力波致災(zāi)機(jī)制及在實(shí)際工程中能更準(zhǔn)確地預(yù)測應(yīng)力波和指導(dǎo)洞室支護(hù)結(jié)構(gòu)的設(shè)計(jì)。從而,有效降低應(yīng)力波所帶來的危險(xiǎn)性。
參考文獻(xiàn)(References):
[1] 王明洋,錢七虎.爆炸應(yīng)力波通過節(jié)理裂隙帶的衰減規(guī)律[J].巖土工程學(xué)報(bào),1995,17(2):42-46.
WANG Mingyang,QIAN Qihu.Attenuation law of explosive wave propagation in cracks[J].Chinese Journal of Geotechnical Engineering,1995,
17(2):42-46.
[2] LU J H,LUO J J,HUANG X Y,et al.Impact of surface-reflected seismic waves on the seismic isolation performance of circular tunnel isolation layers[J].Journal of Mountain Science,2024,21(3):901-917.
[3] 張全,鄒俊鵬,吳坤波,等.深部采煤上覆關(guān)鍵層破斷誘發(fā)礦震特征研究[J].巖石力學(xué)與工程學(xué)報(bào),2023(5):1150-1161.
ZHANG Quan,ZOU Junpeng,WU Kunbo,et al.On the characteristics of mine earthquakes induced by key strata breaking during deep mining[J].Chinese Journal of Rock Mechanics and Engineering, 2023,42(5):1150-1161.
[4] 王夢,范立峰.卸載效應(yīng)對節(jié)理裂隙巖體內(nèi)應(yīng)力波能量耗散影響研究[J].應(yīng)用力學(xué)學(xué)報(bào),2022,39(5):869-878.
WANG Meng,F(xiàn)AN Lifeng.The influence of macrojoint unloading effect on the stress waves energy dissipation in rock masses with microdefects and macrojoints[J].Chinese Journal of Applied Mechanics,2022,39(5):
869-878.
[5] 嚴(yán)鵬,張晨,高啟棟,等.不同損傷程度下巖石力學(xué)參數(shù)變化的聲波測試[J].巖土力學(xué),2015,36(12):3425-3432.
YAN Peng,ZHANG Chen,GAO Qidong,et al.Acoustic wave test on mechanical properties variation of rocks under different damage degrees[J].Rock and Soil Mechanics,2015,36(12):3425-3432.
[6] FAN L F,WANG L J,WANG M,et al.Investigation of stress wave transmission across a nonlinearly jointed complex rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2020,136(4):104485.
[7] 柴少波,趙均海,王昊.柱面波在含節(jié)理巖體中傳播的UDEC模擬[J].巖石力學(xué)與工程學(xué)報(bào),2019,38(增刊1):2848-2856.
CHAI Shaobo,ZHAO Junhai,WANG Hao.UDEC simulation on cylindrical wave propagation through jointed rock masses[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(Suppl.1):2848-2856.
[8] KING M S,MYER L R,REZOWALLI J J.Experimental studies of elastic-wave propagation in a columnar-jointed rock mass[J]. Geophysical Prospecting,1986,34(8):1185-1199.
[9] 宮偉力,孫雅星,高霞,等.基于落錘沖擊試驗(yàn)的恒阻大變形錨桿動力學(xué)特性[J].巖石力學(xué)與工程學(xué)報(bào),2018,37(11):2498-2509.
GONG Weili,SUN Yaxing,GAO Xia,et al.Dynamic characteristics of constant-resistance-large-deformation bolts based on weight-dropping tests[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(11):
2498-2509.
[10] 劉練,霍靜思,劉艷芝,等.普通混凝土落錘沖擊動態(tài)力學(xué)性能試驗(yàn)研究[J].鐵道科學(xué)與工程學(xué)報(bào),2018,15(6):1415-1423.
LIU Lian,HUO Jingsi,LIU Yanzhi,et al.Experimental study on dynamic mechanical properties of ordinary concrete under drop hammer impact loading[J].Journal of Railway Science and Engineering,2018,15(6):1415-1423.
[11] 黃韜,陳建康,李克武,等.氣炮加載下PBXs替代材料中的應(yīng)力波幅衰減特性[J].工程塑料應(yīng)用,2018,46(5):81-84.
HUANG Tao,CHEN Jiankang,LI Kewu,et al.Attenuation characteristics of stress amplitude in PBXs substitute materials under air gun loading[J].Engineering Plastics Application, 2018,46(5):81-84.
[12] 劉少虹,毛德兵,齊慶新,等.動靜加載下組合煤巖的應(yīng)力波傳播機(jī)制與能量耗散[J].煤炭學(xué)報(bào),2014,39(增刊1):15-22.
LIU Shaohong,MAO Debing,QI Qingxin,et al.Under static loading stress wave propagation mechanism and energy dissipation in compound coal-rock[J].Journal of China Coal Society,2014,39(Suppl.1):15-22.
[13] 楊仁樹,李煒煜,方士正,等.波阻抗對巖石動力學(xué)特性影響的模擬試驗(yàn)研究[J].振動與沖擊,2020,39(3):178-185.
YANG Renshu,LI Weiyu,F(xiàn)ANG Shizheng,et al.Tests for effects of wave impedance on rock's dynamic performance[J].Journal of Vibration and Shock,2020,39(3):178-185.
[14] 華心祝,劉嘯,黃志國,等.動靜耦合作用下無煤柱切頂留巷頂板成縫與穩(wěn)定機(jī)理[J].煤炭學(xué)報(bào),2020,45(11):3696-3708.
HUA Xinzhu,LIU Xiao,HUANG Zhiguo,et al.Stability mechanism of non-pillar gob-side entry retaining by roof cutting under the coupled static-dynamic loading[J].Journal of China Coal Society,2020,45(11): 3696-3708.
[15] 金解放,廖占象,楊益,等.沖擊荷載對具有軸向靜應(yīng)力紅砂巖應(yīng)力波傳播速度的影響特性[J].有色金屬科學(xué)與工程,2023,14(1):107-117.
JIN Jiefang,LIAO Zhanxiang,YANG Yi,et al.Effect of dynamic loading on the propagation velocity of stress waves in red sandstone under axial static stress[J].Nonferrous Metals Science and Engineering,2023,14(1):107-117.
[16] 張斌,吳超俊,張學(xué)富,等.不同傾角層理巖體爆破應(yīng)力波傳播規(guī)律[J].科學(xué)技術(shù)與工程,2018,18(23):205-211.
ZHANG Bin,WU Chaojun,ZHANG Xuefu,et al.Propagation law of blasting stress waves in stratified rock mass with different inclinations[J]. Science Technology and Engineering,2018,18(23):205-211.
[17] 劉嘯,華心祝,黃志國,等.應(yīng)力波作用下含大型結(jié)構(gòu)面巖體垮塌動力失穩(wěn)機(jī)制[J].巖石力學(xué)與工程學(xué)報(bào),2021,40(10):2003-2014.
LIU Xiao,HUA Xinzhu,HUANG Zhiguo,et al.Dynamic collapse mechanisms of rock mass with large structural planes under stress waves[J].Chinese Journal of Rock Mechanics and Engineering,2021, 40(10):2003-2014.
[18] 王雁冰,任斌,耿延杰,等.軟硬介質(zhì)組合巖體沖擊動力學(xué)特性研究[J].振動與沖擊,2023,42(12):135-144.
WANG Yanbing,REN Bin,GENG Yanjie,et al.A study on impact dynamic characteristics of soft and hard medium combined rock mass[J].Journal of Vibration and Shock,2023,42(12):135-144.
[19] BAO X,LIU J B,LI S T,et al.Seismic response analysis of the reef-seawater system under obliquely incident P and SV waves[J].Ocean Engineering,2020,200:107021.
[20] SONG J F,LU C P,ZHANG X F,et al.Damage mechanism and wave attenuation induced by blasting in jointed rock[J].Geofluids,2022, 2022:6950335.
[21] WU J,LIU Q S,ZHANG X P,et al.Attenuation characteristics of impact-induced seismic wave in deep tunnels: an in situ investigation based on pendulum impact test[J].Journal of Rock Mechanics and Geotechnical Engineering,2022,14(2):494-504.
[22] WANG S M,WANG Z L,WANG J G.Analysis of wave propagation across layered rock masses considering multiple reflection effects[J].Rock Mechanics and Rock Engineering,2024,57(9): 7565-7581.
[23] WANG L J,WU C Q,F(xiàn)AN L F,et al.Effective velocity of reflected wave in rock mass with different wave impedances of normal incidence of stress wave[J].International Journal for Numerical and Analytical Methods in Geomechanics,2022,46(9):1607-1619.
[24] WANG M,JIA L,LI G Y,et al.A modified displacement discontinuity method for seismic wave propagation across rock masses with thin-layer joints[J].Geophysics,2024,89(4): T227-T234.
[25] SHEN H,LIU Y Q,LI H B,et al.Numerical evaluation of ground motion amplification of rock slopes under obliquely incident seismic waves[J].Soil Dynamics and Earthquake Engineering,2024,178: 108488.
[26] LIANG L S,LI X B, LIU Z X,et al.Influence of incident orientation on the dynamic response of deep U-shaped cavern subjected to transient loading[J].Mathematics,2024,12(12):1786.
[27] LIANG L S,LI X B,LIU Z X,et al.Dynamic responses of U-shaped caverns under transient stress waves in deep rock engineering[J]. Mathematics,2024,12(12):1836.
[28] HE Z L,ZHANG Y B,LU C P,et al.Numerical and field investigations of dynamic failure caused by mining-induced tremor based on focal mechanism[J].Rock Mechanics and Rock Engineering,2024,57(10): 8679-8700.
[29] 袁良柱,陳美多,謝雨珊,等.細(xì)觀非連續(xù)介質(zhì)的應(yīng)力波傳播研究[J/OL].爆炸與沖擊,2024:1-14[2024-10-15].http://kns.cnki.net/kcms/
detail/51.1148.O3.20240320.1408.024.html.
TYAN Liangzhu,CHEN Meiduo,XIE Yushan,et al.Investigation on stress wave propagation in mesoscopic discontinuous medium[J]. Explosion and Shock Waves,2024:1-14[2024-10-15].http://kns.cnki.net/kcms/detail/
51.1148.O3.20240320.1408.024.html.
[30] LIM T C.Stress wave transmission and reflection through auxetic solids[J].Smart Materials and Structures,2013,22(8):084002.
[31] FOKKER E,RUIGROK E,TRAMPERT J.On the temperature sensitivity of near-surface seismic wave speeds: application to the Groningen Region,the Netherlands[J].Geophysical Journal International,2024,237(2):1129-1141.
[32] 劉希靈,崔佳慧,李夕兵,等.不同類型巖石中彈性波衰減特性研究[J].巖石力學(xué)與工程學(xué)報(bào),2018,37(增刊1):3223-3230.
LIU Xiling,CUI Jiahui,LI Xibing,et al.Study on attenuation characteristics of elastic wave in different types of rocks[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(Suppl.1):3223-3230.
[33] YUAN L Z,MIAO C H,XU S L,et al.Stress-wave propagation in multilayered and density-graded viscoelastic medium[J].International Journal of Impact Engineering,2023,173:104415.
[34] 邱磊,李彩華.STA/LTA方法拾取天然地震波初至及其改進(jìn)分析[J].地球物理學(xué)進(jìn)展,2023,38(4):1497-1506.
QIU Lei,LI Caihua.STA/LTA method for picking up the first arrival of natural seismic waves and its improvement analysis[J].Progress in Geophysics,2023,38(4):1497-1506.
[35] 趙書棟,宋建國,雷剛林.基于地震波波形相似的薄互層識別方法[J].石油地球物理勘探,2024,59(1):133-141.
ZHAO Shudong,SONG Jianguo,LEI Ganglin.Thin interbed identification method based on seismic waveform similarity[J].Oil Geophysical Prospecting,2024,59(1):133-141.
[36] 法林,劉釗瑒,房向榮,等.各向異性對地震波勘探信號時(shí)-深轉(zhuǎn)換的影響[J].振動,測試與診斷,2024,44(2):353-364,413-414.
FA Lin,LIU Zhaoyang,F(xiàn)ANG Xiangrong,et al.Effects of Anisotropy on Time-Depth Conversion of Seismic Exploration Signals[J].Journal of Vibration,Measurement amp; Diagnosis,2024,44(2):353-364,413-414.
[37] 郭俊鑫,曹呈浩,陳曉非,等.本征各向異性對地震波頻散、衰減與頻變各向異性的影響[J].科學(xué)通報(bào),2023,68(26):3491-3505.
GUO Junxin,CAO Chenghao,CHEN Xiaofei,et al.Effects of intrinsic anisotropy on seismic dispersion,attenuation and frequency-dependent anisotropy[J].Chinese Science Bulletin,2023,68(26):3491-3505.
[38] XU H,YU X J,CHENG F,et al.Effects of earth-rock dam heterogeneity on seismic wavefield characteristics[J].Energies,2023,16(5):2423.
[39] 黃杰,朱良保.二維隨機(jī)介質(zhì)中地震波的散射衰減分析[J].地球物理學(xué)進(jìn)展,2016,31(4):1817-1823.
HUANG Jie,ZHU Liangbao.Analysis of seismic wave attenuation induced by two-dimensional random scatters[J].Progress in Geophysics,2016,31(4):1817-1823.
[40] 金解放,程昀,昌曉旭,等.軸向靜載對紅砂巖中應(yīng)力波傳播特性的影響試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2017,36(8):1939-1950.
JIN Jiefang,CHENG Yun,CHANG Xiaoxu,et al.Experimental study on stress wave propagation characteristics in red sandstone under axial static stress[J].Chinese Journal of Rock Mechanics and Engineering, 2017,36(8):1939-1950.
[41] FAN L F,SUN H Y.Seismic wave propagation through an in-situ stressed rock mass[J].Journal of Applied Geophysics,2015,121:13-20.
[42] 金解放,王杰,郭鐘群,等.圍壓對紅砂巖應(yīng)力波傳播特性的影響[J].煤炭學(xué)報(bào),2019,44(2):435-444.
JIN Jiefang,WANG Jie,GUO Zhongqun,et al.Influence of confining pressure on stress wave propagation character-istics in red sandstone[J].Journal of China Coal Society,2019,44(2):435-444.
[43] 李新平,趙航,羅憶,等.深部裂隙巖體中彈性波傳播與衰減規(guī)律試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2015,34(11):2319-2326.
LI Xinping,ZHAO Hang,LUO Yi,et al.Experimental study of propagation and attenuation of elastic wave in deep rock mass with joints[J].Chinese Journal of Rock Mechanics and Engineering,2015, 34(11):2319-2326.
[44] 譚彬.圍壓和含水率對紅砂巖應(yīng)力波傳播的影響特性試驗(yàn)研究[D].贛州:江西理工大學(xué),2023:19-35.
[45] 宮嘉辰,陳士海.高地應(yīng)力下砂巖力學(xué)參數(shù)和波速變化規(guī)律試驗(yàn)研究[J].山東大學(xué)學(xué)報(bào)(工學(xué)版),2020,50(3):82-87,97.
GONG Jiachen,CHEN Shihai.Experimental study on mechanical parameters and wave velocity variation of sandstone under high ground stress[J].Journal of Shandong University(Engineering Science), 2020,50(3):82-87,97.
[46] 金解放,張雅晨,劉康,等.梯度應(yīng)力對紅砂巖應(yīng)力波傳播特性的影響研究[J].巖土力學(xué),2023,44(4):952-964.
JIN Jiefang,ZHANG Yachen,LIU Kang,et al.Effect of gradient stress on stress wave propagation characteristics of red sandstone[J].Rock and Soil Mechanics,2023,44(4):952-964.
[47] 溫慶陽,胡瑋鋒,金解放.高水壓與高應(yīng)力對巖石應(yīng)力波傳播速度的影響[J].礦業(yè)研究與開發(fā),2022,42(12):127-133.
WEN Qingyang,HU Weifeng,JIN Jiefang.Influence of high water pressure and high stress on stress wave propagation velocity of rock[J]. Mining Research and Development,2022,42(12):127-133.
[48] WU J,GAO Y T,TANG S H,et al.Experimental study on the boundary reflection effect of stress wave propagation based on the newly developed test apparatus[J].Advances in Civil Engineering,2024: 7170963.
[49] ZHANG Y,MANGA M,F(xiàn)U L Y,et al.Long-and short-term effects of seismic waves and coseismic pressure changes on fractured aquifers[J].Journal of Geophysical Research(Solid Earth),2024,129(3): e2023JB027970.
[50] 袁偉,常軍然,金解放,等.軸向靜載對變截面桿中應(yīng)力波幅值的影響[J].振動與沖擊,2019,38(17):51-57,72.
YUAN Wei,CHANG Junran,JIN Jiefang,et al.Effects of axial static loads on stress wave amplitude in at apered aluminum rod[J].Journal of Vibration and Shock,2019,38(17):51-57,72.
[51] 范勇,郭一鳴,冷振東,等.交錯(cuò)起爆下爆炸應(yīng)力波的碰撞機(jī)制與破巖效果[J].爆炸與沖擊,2024,44(6):92-104.
FAN Yong,GUO Yiming,LENG Zhendong,et al.Collision mechanism and rock-breaking effect of explosive stress waves induced by staggered initiation[J].Explosion and Shock Waves,2024,44(6): 92-104.
[52] 郎穎嫻,梁正召,錢希坤,等.巖體結(jié)構(gòu)面對應(yīng)力波傳播及動態(tài)破壞影響研究[J].地下空間與工程學(xué)報(bào),2023,19(6):1896-1906.
LANG Yingxian,LIANG Zhengzhao,QIAN Xikun,et al.A study on the effect of rock discontinuities on stress wave propagation and dynamic fracture[J].Chinese Journal of Underground Space and Engineering, 2023,19(6):1896-1906.
[53] 任夢,蔣道東,黃威,等.斷續(xù)節(jié)理巖體中地震波響應(yīng)的數(shù)值與理論分析[J].地震學(xué)報(bào),2020,42(1):44-52,120.
REN Meng,JIANG Daodong,HUANG Wei,et al.Numerical and theoretical analyses of seismic wave response in non-persistent jointed rock mass[J].Acta Seismologica Sinica,2020,42(1):44-52,120.
[54] 王雁冰,宋佳輝,楊柳,等.組合傾角對軟硬介質(zhì)組合巖體動態(tài)力學(xué)特性的影響[J].巖石力學(xué)與工程學(xué)報(bào),2024,43(增刊1):3342-3353.
WANG Yanbing,SONG Jiahui,YANG Liu,et al.Effect of combined dip angle on dynamic mechanical properties of combined rock mass with hard and soft media[J].Chinese Journal of Rock Mechanics and Engineering,2024,43(Suppl.1):3342-3353.
[55] PYRAK-NOLTE L J,MYER L R,COOK N G W.Transmission of seismic waves across single natural fractures[J].Journal of Geophysical Research: Solid Earth,1990,95(B6):8617-8638.
[56] 王觀石,龍平,胡世麗.層狀巖體濾波特性研究[J].振動與沖擊,2015,34(20):135-142,149.
WANG Guanshi,LONG Ping,HU Shili.Filter property of stratified rock mass[J].Journal of Vibration and Shock,2015,34(20):135-142,149.
[57] 王建國,梁書鋒,高全臣,等.節(jié)理傾角對類巖石沖擊能量傳遞影響的試驗(yàn)研究[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,49(5):1237-1243.
WANG Jianguo,LIANG Shufeng,GAO Quanchen,et al.Experimental study of jointed angles impact on energy transfer characteristics of simulated rock material[J].Journal of Central South University (Science and Technology),2018,49(5):1237-1243.
[58] ZHU J B,DENG X F,ZHAO X B,et al.A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC[J].Rock Mechanics and Rock Engineering,2013,46(6): 1429-1442.
[59] DING P L,GONG X H,SUN L,et al.A study on crack initiation and propagation of welded joints under explosive load[J].Journal of Marine Science and Engineering,2024,12(6):927.
[60] SCHOENBERG M.Elastic wave behavior across linear slip interfaces[J].The Journal of the Acoustical Society of America,1980, 68(5):1516-1521.
[61] NIU L L,ZHU W C,LI S H,et al.Determining the viscosity coefficient for viscoelastic wave propagation in rock bars[J].Rock Mechanics and Rock Engineering,2018,51(5):1347-1359.
[62] FAN L F,REN F,MA G W.An extended displacement discontinuity method for analysis of stress wave propagation in viscoelastic rock mass[J].Journal of Rock Mechanics and Geotechnical Engineering, 2011,3(1):73-81.
[63] 周文海,胡才智,包娟,等.含節(jié)理巖體爆破過程中應(yīng)力波傳播與裂紋擴(kuò)展的數(shù)值研究[J].力學(xué)學(xué)報(bào),2022,54(9):2501-2512.
ZHOU Wenhai,HU Caizhi,BAO Juan,et al.Numerical study on crack propagation and stress wave propagation during blasting of jointed rock mass[J].Chinese Journal of Theoretical and Applied Mechanics, 2022,54(9):2501-2512.
[64] LI J C,MA G W.Experimental study of stress wave propagation across a filled rock joint[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(3):471-478.
[65] 李新平,董千,劉婷婷,等.不同地應(yīng)力下爆炸應(yīng)力波在節(jié)理巖體中傳播規(guī)律模型試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2016,35(11): 2188-2196.
LI Xinping,DONG Qian,LIU Tingting,et al.Model test on propagation of blasting stress wave in jointed rock mass under different in-situ stresses[J].Chinese Journal of Rock Mechanics and Engineering, 2016,35(11):2188-2196.
[66] LI J C,LI H B,MA G W,et al.A time-domain recursive method to analyse transient wave propagation across rock joints[J].Geophysical Journal International,2012,188(2):631-644.
[67] 宋林,邵珠山,吳敏哲,等.考慮剪切滑移效應(yīng)時(shí)節(jié)理巖體中剪切S波的傳播特性探析[J].西安建筑科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2011, 43(4):494-500.
SONG Lin,SHAO Zhushan,WU Minzhe,et al.Theoretical analysis on the propagation characteristic of S-wave across single fracture with consideration of shear slide behavior[J].Journal of Xi'an University of Architecture amp; Technology (Natural Science Edition),2011,43(4): 494-500.
[68] 劉婷婷,李新平,李海波,等.應(yīng)力波在充填節(jié)理巖體中傳播規(guī)律的數(shù)值研究[J].巖石力學(xué)與工程學(xué)報(bào),2016,35(增刊2):3552-3560.
LIU Tingting,LI Xinping,LI Haibo,et al.Numerical study on stress wave propagation across filled joints[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(Suppl.2):3552-3560.
[69] 李繼業(yè),康強(qiáng),趙明生,等.節(jié)理巖體爆破振動傳播衰減規(guī)律相似模型試驗(yàn)研究[J].爆破,2022,39(2):30-35,74.
LI Jiye,KANG Qiang,ZHAO Mingsheng,et al.Study on propagation attenuation law of blasting vibration in jointed rock mass by similarity model test[J].Blasting,2022,39(2):30-35,74.
[70] 柴少波,李建春,趙均海,等.P波在非線性交叉節(jié)理巖體中的傳播特性研究[J].巖石力學(xué)與工程學(xué)報(bào),2019,38(6):1149-1157.
CHAI Shaobo,LI Jianchun,ZHAO Junhai,et al.Study on stress P-wave propagation across intersecting rock joints with nonlinear deformation[J].Chinese Journal of Rock Mechanics and Engineering, 2019,38(6):1149-1157.
[71] LI H B,LIU T T,LIU Y Q,et al.Numerical modeling of wave transmission across rock masses with nonlinear joints[J].Rock Mechanics and Rock Engineering,2016,49(3):1115-1121.
[72] 趙安平,馮春,郭汝坤,等.節(jié)理特性對應(yīng)力波傳播及爆破效果的影響規(guī)律研究[J].巖石力學(xué)與工程學(xué)報(bào),2018,37(9):2027-2036.
ZHAO Anping,F(xiàn)ENG Chun,GUO Rukun,et al.Effect of joints on blasting and stress wave propagation[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(9):2027-2036.
[73] FAN L F,SHI X Y,WANG M,et al.The effects of joint spacing on transmission characteristics of stress waves through layered composite rock masses[J].International Journal for Numerical and Analytical Methods in Geomechanics,2024,48(3):822-836.
[74] 賈帥龍,王志亮,熊峰,等.充填節(jié)理巖體中應(yīng)力波傳播特性研究[J].合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,44(8):1073-1081.
JIA Shuailong,WANG Zhiliang,XIONG Feng,et al.Study on propagation characteristics of stress wave in rockmass with filled joint[J].Journal of Hefei University of Technology(Natural Science), 2021,44(8):1073-1081.
[75] 張智.不同節(jié)理巖石中應(yīng)力波傳播與能量傳遞規(guī)律研究[D].昆明:昆明理工大學(xué),2021:30-33.
[76] LI J C,RONG L F,LI H B,et al.An SHPB test study on stress wave energy attenuation in jointed rock masses[J].Rock Mechanics and Rock Engineering,2019,52(2):403-420.
[77] 楊建明,喬蘭,李慶文,等.節(jié)理形態(tài)及吻合度對應(yīng)力波傳播影響試驗(yàn)[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2019,51(11):194-200.
YANG Jianming,QIAO Lan,LI Qingwen,et al.Effects of joint roughness and joint matching degree coefficient on stress wave propagation[J].Journal of Harbin Institute of Technology,2019,51(11):
194-200.
[78] 殷志強(qiáng),王建恩,張卓,等.靜載對節(jié)理煤巖體動態(tài)力學(xué)特性和應(yīng)力波傳播的影響[J].巖石力學(xué)與工程學(xué)報(bào),2022,41(增刊2):3152-3162.
YIN Zhiqiang,WANG Jian'en,ZHANG Zhuo,et al.Influence of static load on dynamic mechanical properties and stress wave propagation of jointed coal rock masses[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(Suppl.2):3152-3162.
[79] 李娜娜,李建春,李海波,等.節(jié)理接觸面對應(yīng)力波傳播影響的SHPB試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2015,34(10):1994-2000.
LI Nana,LI Jianchun,LI Haibo,et al.SHPB experiment on influence of contact area of joints on propagation of stress wave[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(10):1994-2000.
[80] CHEN X,LI J C,CAI M F,et al.Experimental study on wave propagation across a rock joint with rough surface[J].Rock Mechanics and Rock Engineering,2015,48(6):2225-2234.
[81] 劉傳正,張建經(jīng),崔鵬.低幅值應(yīng)力波在巖石三維節(jié)理面的折反射規(guī)律理論研究[J].振動與沖擊,2018,37(15):68-77.
LIU Chuanzheng,ZHANG Jianjing,CUI Peng.Reflection and refraction laws of low amplitude stress wave on a 3D rock joint surface[J]. Journal of Vibration and Shock,2018,37(15):68-77.
[82]張雨霏,李建春,閆亞濤,等.基于SHPB試驗(yàn)的粗糙節(jié)理面動態(tài)損傷特征研究[J].巖土力學(xué),2021,42(2):491-500.
ZHANG Yufei,LI Jianchun,YAN Yatao,et al.Experimental study on dynamic damage characteristics of roughness joint surface based on SHPB[J].Rock and Soil Mechanics,2021,42(2):491-500.
[83] 王瑞,胡志平,王啟耀,等.考慮裂縫面開合和滑移的應(yīng)力波傳播模型[J].應(yīng)用力學(xué)學(xué)報(bào),2018,35(5):988-995,1182.
WANG Rui,HU Zhiping,WANG Qiyao,et al.Propagation of stress waves through fracture considering the normal close-open and the tangential slip behavior[J].Chinese Journal of Applied Mechanics, 2018,35(5):988-995,1182.
[84] 王振偉,馬克,田洪圓,等.煤巖體應(yīng)力波傳播規(guī)律及其影響因素的數(shù)值分析[J].煤炭科學(xué)技術(shù),2019,47(6):66-72.
WANG Zhenwei,MA Ke,TIAN Hongyuan,et al.Numerical analysis of stress wave propagation law of coal and rock mass and its influencing factors[J].Coal Science and Technology,2019,47(6):66-72.
[85] 王斐笠,王述紅,修占國.應(yīng)力波擾動下結(jié)構(gòu)面的應(yīng)力量化及強(qiáng)度表征[J].巖土力學(xué),2018,39(8):2844-2850,2857.
WANG Feili,WANG Shuhong,XIU Zhanguo.Method on stress quantification and strength characterization of rock structural plane under the disturbance of stress wave[J].Rock and Soil Mechanics, 2018,39(8):2844-2850,2857.
[86] 劉傳正,張建經(jīng),崔鵬.巖體夾層應(yīng)力波能量演化及應(yīng)力響應(yīng)特征分析[J].巖土力學(xué),2018,39(6):2267-2277.
LIU Chuanzheng,ZHANG Jianjing,CUI Peng.Energy evolution and stress response during stress wave prorogation in the intercalation[J]. Rock and Soil Mechanics,2018,39(6):2267-2277.
[87] 李春鵬,李遠(yuǎn)遠(yuǎn),仝霄金.平面P波入射軟弱結(jié)構(gòu)面?zhèn)鞑ヌ卣餮芯縖J].人民長江,2023,54(9):175-183.
LI Chunpeng,LI Yuanyuan,TONG Xiaojin.Propagation characteristics of planar P-wave injecting into weak structural plane[J].Yangtze River,2023,54(9):175-183.
[88] 張建卓,陳策,王潔,等.6 500kN液壓沖擊試驗(yàn)機(jī)剛性沖擊特性分析[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,42(4):469-474.
ZHANG Jianzhuo,CHEN Ce,WANG Jie,et al.Analysis of rigid impact characteristics of 6500kN hydraulic impact testing machine[J].Journal of Liaoning Technical University(Natural Science), 2023,42(4):469-474.
[89] 孫寧新,雷明鋒,張運(yùn)良,等.軟弱夾層對爆炸應(yīng)力波傳播過程的影響研究[J].振動與沖擊,2020,39(16):112-119,147.
SUN Ningxin,LEI Mingfeng,ZHANG Yunliang,et al.A study on the influence of weak interlayer on the propagation process of explosion stress wave[J].Journal of Vibration and Shock,2020,39(16):112-119,147.