摘要:【目的】從腸道健康角度揭示華南鯉生長遲緩的原因,為深入探究魚類生長遲緩現(xiàn)象與腸道健康的內在關聯(lián)提供理論依據(jù)?!痉椒ā咳‘斈晖敝车娜A南鯉幼魚,分別在循環(huán)水和池塘網(wǎng)箱2種養(yǎng)殖模式下養(yǎng)殖5個月,根據(jù)其體質量分為4組[循環(huán)水模式生長正常組(R-N),循環(huán)水模式生長遲緩組(R-GS),池塘網(wǎng)箱模式生長正常組(P-N),池塘網(wǎng)箱模式生長遲緩組(P-GS)],然后比較分析4組華南鯉的腸道組織形態(tài)、消化酶活性及菌群結構差異?!窘Y果】2種養(yǎng)殖模式下,生長遲緩華南鯉的腸絨毛高度和肌層厚度均顯著低于生長正常華南鯉(Plt;0.05,下同),腸道淀粉酶、胰蛋白酶和脂肪酶的活性也低于生長正常華南鯉,其中胰蛋白酶活性差異達顯著水平。池塘網(wǎng)箱模式下華南鯉腸道菌群Alpha多樣性指標顯著高于循環(huán)水模式下的華南鯉;但同一養(yǎng)殖模式下,生長遲緩與正常華南鯉的腸道菌群Alpha多樣性差異不顯著(Pgt;0.05,下同)。相對于生長正常華南鯉,循環(huán)水模式生長遲緩華南鯉腸道變形菌門相對豐度顯著降低,而脫硫桿菌門、厚壁菌門和放線菌門的相對豐度顯著升高;池塘網(wǎng)箱模式生長遲緩華南鯉腸道梭桿菌門和厚壁菌門的相對豐度顯著下降,而綠彎菌門、藍藻門和酸桿菌門的相對豐度顯著升高,脫硫桿菌門、放線菌門、浮霉菌門和變形菌門的相對豐度也有所升高,但差異不顯著。在屬分類水平上,循環(huán)水模式生長遲緩華南鯉腸道的未分類脫硫弧菌科、紅球菌屬、弧菌屬和希瓦氏菌屬相對豐度較生長正常華南鯉顯著升高;池塘網(wǎng)箱模式生長遲緩華南鯉腸道的unclassified Pirellulaceae和Fimbriiglobus相對豐度較生長正常華南鯉顯著升高。KEGG信號通路分析結果表明,2種養(yǎng)殖模式下生長遲緩與正常華南鯉腸道豐度差異菌群均顯著富集在內分泌系統(tǒng)通路上?!窘Y論】無論是在池塘網(wǎng)箱模式還是循環(huán)水模式下,生長遲緩華南鯉的腸道健康指標均發(fā)生明顯變化,具體表現(xiàn)為消化酶活性降低,對食物消化能力減弱,即腸道健康水平下降可能是分化出生長遲緩華南鯉的主要原因之一。
關鍵詞:華南鯉;生長遲緩;腸道健康;消化酶;菌群結構
中圖分類號:S965.116文獻標志碼:A文章編號:2095-1191(2024)10-3147-13
Comparison of intestinal health status in growth-stunted andnormal Cyprinus carpio rubrofuscus under differentaquaculture modes
GENG Guo-hua1,2,ZHU Hua-ping2,3*,MA Dong-mei2,3,ZHONG Zai-xuan2,3,ZHAO Shu-hao1,2,F(xiàn)AN Jia-jia2,3,TIANYuan-yuan2,3,HAN Fang1,LIU Xian-de1*
(1Fisheries College,Jimei University,Xiamen,F(xiàn)ujian 361021,China;2Pearl River Fisheries Research Institute,Chi-nese Academy of Fishery Sciences/Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultiva-tion,Ministry of Agriculture and Rural Affairs,Guangzhou,Guangdong 510380,China;3Guangdong Provincial KeyLaboratory of Aquatic Animal Immunology and Sustainable Aquaculture,Guangzhou,Guangdong 510380,China)
Abstract:【Objective】To elucidate the causes of stunted growth in Cyprinus carpio rubrofuscus from the perspectiveof intestinal health,which provided theoretical reference for further investigation of the intrinsic relationship between thefish stunted growth and intestinal health.【Method】C.carpiorubrofuscus juveniles bred in the same batch in the same year were cultured in 2 culture modes for 5 months:recirculating water system and pond netting.They were then divided into 4 groups according to their body weight,with the following designations:normal group in recirculating water system(R-N);growth-stunted group in recirculating water system(R-GS);normal group in pond netting(P-N);growth-stunted group in pond netting(P-GS).The differences in intestinal tissue morphology,digestive enzyme activities and bacterialflora structure of C.carpiorubrofuscus among the 4 groups were compared and analyzed.【Result】In the 2 culture modes,the height of intestinal villi and the thickness of muscularis propria of growth-stunted C.carpiorubrofuscus were signifi-cantly lower than those of normal C.carpiorubrofuscus(Plt;0.05,the same below),and the activities of intestinal amy-lase,trypsin and lipase were lower than those of normal C.carpiorubrofuscus,with the difference in the activity of tryp-sin reaching a significant level.The Alpha diversity of the intestinal flora of C.carpiorubrofuscus in the pond netting mode was significantly higher than that of C.carpiorubrofuscus in the recirculating water system mode;however,the difference in the Alpha diversity of intestinal flora of growth-stunted and normal-growing C.carpiorubrofuscus in thesame culture mode was not significant(Pgt;0.05,the same below).Compared with the normal-growing C.carpiorubrofus-cus,the relative abundance of growth-stunted C.carpiorubrofuscus intestinal Proteobacteria was significantly decreasedintherecirculating water system mode,while the relative abundance of Desulfobacterota,F(xiàn)irmicutes and Actinobacteria were significantly increased;the relative abundance of growth-stunted C.carpiorubrofuscus intestinal Fusobacteria and Firmicutes in the pond netting mode was significantly decreased,while the relative abundance of Chloroflexi,Cyanobac-teria and Acidobacteria were significantly increased,and Desulfobacterota,Actinobacteria,Planctomycetes and Protebac-teria also increased in relative abundance,but the differences were not significant.At the genus level,the relative abun-dance of unclassified Desulfovibrionaceae,Rhodococcus,Vibrio,Shewanella in the intestine of growth-stunted C.carpiorubrofuscus in therecirculating water system mode was significantly increased compared with that of normal C.carpioru-brofuscus;the relative abundance of unclassified Pirellulaceae and Fimbriiglobus in the intestine of growth-stunted C.car-piorubrofuscusin the pond netting mode was significantly increased compared with that of normal C.carpiorubrofuscus.The results of KEGG signaling pathway analysis showed that intestinal abundance differential flora in 2 modes of culturein growth-stunted and normal C.carpiorubrofuscus all enriched in the endocrine system pathway.【Conclusion】Both inthe pond netting andrecirculating water system modes,the intestinal health indexes of growth-stunted C.carpiorubrofus-cus change greatly,which is manifested by the reduced activity of digestive enzymes and weakened ability to digest food.In other words,the reduced level of intestinal health is one of the main reasons for the differentiation of growth-stunted C.carpiorubrofuscus.
Key words:Cyprinus carpio rubrofuscus;stunted growth;intestinal health;digestive enzyme;flora structure
Foundation items:National Key Research and Development Program of China(2023YFD2400203);National Natu-ral Science Foundation of China(32072971);Guangdong Rural Revitalization Strategy Special Project(2022-SPY-00-019);Fujian Science and Technology Plan Project(2023N0011)
0引言
【研究意義】華南鯉(Cyprinus carpio rubrofus-cus)是我國云南省元江流域、珠江流域廣東和廣西段及海南省島內水域的土著魚類,屬于鯉(Cyprinus carpio Linnaeus)的4個亞種之一(朱華平等,2018)。在池塘或稻田人工養(yǎng)殖模式下,部分同批繁殖的華南鯉養(yǎng)殖至5月齡后會分化為生長遲緩型和生長正常型2種群體,二者形體差異明顯,其體質量差異在25%左右。腸道健康對魚類的健康至關重要,健康的腸道具備完善的機械保護屏障、化學保護屏障、免疫保護屏障和微生物保護屏障,在維持內環(huán)境平衡及阻礙外來病原微生物入侵方面發(fā)揮重要作用(Vancamelbeke and Vermeire,2017;Zhang et al.,2020;陳秀梅等,2022;蔣鑫濤等,2023)。魚類腸表面是機械保護屏障的重要組成部分,其完整性和表面積是評估魚類腸道吸收功能、生長性能及健康水平的重要指標(Chen et al.,2018;Bai etal.,2019);消化酶是魚類健康的化學保護屏障,消化酶活性升高可增強對食物的消化能力,有效抵御外來有害物質的侵害(Hu etal.,2014);腸道菌群是魚類的微生物保護屏障,適宜的菌群組成及比例可為魚類提供維生素等營養(yǎng)物質,抑制腸道致病菌生長和促進魚體快速生長(Tran et al.,2018;羅君等,2022)。因此,明確生長遲緩華南鯉腸道健康狀況對揭示其生長遲緩的原因具有重要意義?!厩叭搜芯窟M展】腸道是動物消化器官中最長的部分,主要的消化和吸收作用均在腸道內完成,尤其是腸道上皮細胞不僅具有營養(yǎng)物質消化和吸收的功能,還發(fā)揮屏障保護和免疫防御的作用(徐革鋒等,2009)。腸道病變可引起肝胰腺等器官的損傷及功能障礙,進而影響魚類的整體健康水平(米海峰等,2015)。經(jīng)濟魚類常見的腸道健康評估指標包括腸道內壁組織形態(tài)、消化酶活性、腸道微生物組成及其多樣性(Hooper and Macpher-son,2010;米海峰等,2015;何琴等,2023),通過腸道內壁組織形態(tài)觀察可測定腸道內的腸絨毛高度和寬度,而這2個指標與腸道表面積呈正相關,是評估腸道消化能力的重要指標之一(Caspary,1992;黃玉章等,2010)。魚類腸道內消化酶具有消化分解食物和促進營養(yǎng)物質吸收的作用,其活性可反映魚類消化吸收營養(yǎng)物質的能力及腸道健康狀況(Dawood,2021),根據(jù)底物類型的不同,可分為蛋白酶、淀粉酶及脂肪酶等(張云龍等,2017)。魚類腸道內定殖有種類豐富、數(shù)量龐大的菌群,在促進魚類生長發(fā)育、營養(yǎng)代謝、維持宿主健康和免疫調控等方面發(fā)揮著重要作用(孟曉林等,2019;Xiong et al.,2019)。至今,關于異速生長魚類個體生長速度與腸道菌群結構多樣性及組成相關性的研究已有較多報道。李英英等(2017)研究表明,生長緩慢大黃魚(Pseudos-ciaenacrocea)腸道菌群OTU數(shù)量及Chao1指數(shù)顯著高于生長正常的大黃魚;饒劉瑜等(2018)通過比較轉生長激素基因鯉(Cyprinus carpio L.)和野生對照鯉不同發(fā)育階段的腸道微生物群落結構差異,結果發(fā)現(xiàn)轉基因鯉腸道中存在高豐度的厚壁菌門(Fir-micutes)細菌,而對照鯉中擬桿菌門(Bacteroidetes)細菌較多;王沈同(2023)研究證實,低體質量組草魚(Ctenopharyngodonidella)的腸道菌群Alpha多樣性指數(shù)高于高體質量組草魚。此外,某些特殊菌屬可能與魚類生長速率相關,如快速生長達氏鰉(Huso dauricus)群體腸道中的鞘氨醇單胞菌屬(Sphin-gomonas)相對豐度(67.0%)顯著高于慢速生長達氏鰉群體(29.5%)(王若愚等,2023)?!颈狙芯壳腥朦c】目前,有關異速生長魚體腸道微生物種群特征的研究已有較多報道(Sun et al.,2009;Zhang et al.,2021),但系統(tǒng)揭示腸道健康狀況影響魚類生長的研究鮮見報道?!緮M解決的關鍵問題】以華南鯉為研究對象,比較分析池塘網(wǎng)箱和循環(huán)水養(yǎng)殖模式下生長遲緩和正常華南鯉的腸道形態(tài)結構、消化酶活性及其菌群結構特征,以期從腸道健康角度揭示華南鯉生長遲緩的原因,為深入探究魚類生長遲緩現(xiàn)象與腸道健康的內在關聯(lián)提供理論依據(jù)。
1材料與方法
1.1試驗魚飼養(yǎng)管理與試驗設計
取當年同批繁殖的華南鯉幼苗(平均體長5.0 cm),400尾養(yǎng)殖于珠江水產研究所室內循環(huán)水水泥池(長4.0 m,寬2.5 m,水深約0.8 m;水體約8.0 m3),400尾養(yǎng)殖于池塘網(wǎng)箱(在面積約2234m2的池塘中放置長4.0 m,寬3.0 m,水深約1.8 m的網(wǎng)箱),各養(yǎng)殖階段根據(jù)魚體大小投喂適口的人工配合飼料,循環(huán)水模式的投喂時間分別為8:30和18:00,池塘網(wǎng)箱模式的投喂時間分別為9:00和18:30,每日投餌量約為魚體總體質量的3%。2種養(yǎng)殖模式在試驗期間均持續(xù)充氣增氧,循環(huán)水水池每周換1次曝氣的自來水,換水量為養(yǎng)殖水量的1/2。養(yǎng)殖5個月后,2種養(yǎng)殖模式下的華南鯉均出現(xiàn)生長遲緩個體,檢測其腸道健康狀況,分析出現(xiàn)生長遲緩個體的原因。停止投餌15h后,從循環(huán)水模式中挑選30尾體質量高的華南鯉(85.35±15.21 g)設為循環(huán)水模式生長正常組(R-N),30尾體質量低的個體(17.51±3.43 g)設為循環(huán)水模式生長遲緩組(R-GS);從池塘網(wǎng)箱模式中挑選30尾體質量高的個體(93.09±13.78 g)設為池塘網(wǎng)箱模式生長正常組(P-N),30尾體質量低的個體(18.74±4.57 g)設為池塘網(wǎng)箱模式生長遲緩組(P-GS)。動物試驗由中國水產科學研究院珠江水產研究所實驗動物管理和使用倫理委員會批準,批準號LAEC-PRFRI-2023-06-35。
1.2腸道樣品采集
華南鯉經(jīng)MS-222麻醉后稱重,每組隨機取18尾,用75%酒精擦洗體表,無菌操作剪開腹腔和腸道,取出腸道內容物,將每3尾魚的腸道內容物制成1個混合樣品,放入2 mL凍存管中,每組采集6個樣品,液氮速凍后置于-80℃超低溫冰箱保存。每組另取6尾,按腸道生理彎曲部位在中腸相同位置分別截取一小段,4%多聚甲醛固定保存,用于制作腸道組織切片;其他中腸部分經(jīng)液氮速凍后放入-80℃超低溫冰箱保存,用于測定消化酶活性。
1.3腸道組織切片制備及觀察
4%多聚甲醛固定24h的腸道樣品經(jīng)梯度濃度乙醇脫水、二甲苯透明及石蠟包埋后,截面橫切5μm厚的切片,蘇木精—伊紅染色,置于光學顯微鏡下觀察拍照。通過ImageJ比較分析腸道組織結構差異,測量記錄各組華南鯉的腸絨毛高度、寬度和肌層厚度(n=50),并沿腸道橫截面的黏膜曲線畫線測量黏膜長度(n=5),根據(jù)對應黏膜上的絨毛數(shù)量計算腸絨毛密度:
腸絨毛密度(根/mm)=腸絨毛數(shù)量/對應黏膜長度
1.4腸道消化酶活性測定
將用于消化酶活性測定的腸道樣品剪開,PBS洗去腸道內容物,吸水紙吸干,稱重,然后按照重量(g)∶體積(mL)=1∶9的比例加入預冷生理鹽水,置于冰上勻漿,2500 r/min離心10 min,取上清液用于腸道消化酶活性測定。采用紫外比色法測定胰蛋白酶(Trypsin)活性,使用淀粉—碘比色法測定淀粉酶(Amylase)活性,以比色法測定脂肪酶(Lipase)活性,所有消化酶活性檢測試劑盒均購自南京建成生物工程研究所。
1.5水環(huán)境樣品采集
為分析水環(huán)境菌群與魚類腸道菌群間的關聯(lián)性,采用五點取樣法分別對循環(huán)水模式(R-W)和池塘網(wǎng)箱模式(P-W)進行水樣采集,共5 L水樣,分別重復取3次水樣。采集的水樣先用0.45μm大孔徑濾膜抽濾去除雜質,然后以0.22μm濾膜過濾收集水體中的微生物,液氮速凍保存。
1.6高通量測序分析
采用十六烷基三甲基溴化銨(CTAB)法提取4組華南鯉24個腸道內容物樣品及6個水環(huán)境微生物樣品的基因組DNA,經(jīng)1.0%瓊脂糖凝膠電泳和紫外分光光度計檢測合格后,以基因組DNA為模板,使用微生物16S rDNA序列V3~V4可變區(qū)特異性引物(341F:5'-CCTACGGGNGGCWGCAG-3';805R:5'-GACTACHVGGGTATCTAATCC-3')進行PCR擴增(Logue et al.,2015)。PCR擴增產物經(jīng)純化、定量和回收后,委托上海百趣生物醫(yī)學科技有限公司在NovaSeq 6000測序儀上完成2×250 bp雙端測序。測序獲得的原始數(shù)據(jù)采用Cutadapt去除接頭和引物序列,以FLASH對雙端測序得到的每對Reads進行拼接,再用Fqtrim(v0.94)過濾掉長度小于100 bp或不確定堿基含量大于5%的低質量Reads,運用Vsearch(v2.3.4)去除嵌合體,然后利用DADA2進行長度過濾及去噪,最終獲得高質量的擴增子序列變異體(Ampliconsequence variants,ASVs)(張小明等,2024)。在SILVA數(shù)據(jù)庫(https://www.arbsilva.de/documenta‐tion/release 138/)中對獲得的ASVs進行比對分析及物種注釋,采用Qiime計算每個樣品的物種豐度指數(shù)(Observed species)、Shannon指數(shù)、Simpson指數(shù)、Chao1指數(shù)和Pieloue指數(shù),以明確華南鯉腸道微生物群落Alpha多樣性,并通過主坐標分析(PCoA)評估腸道微生物群落Beta多樣性。
1.7統(tǒng)計分析
試驗數(shù)據(jù)采用SPSS 24.0進行單因素方差分析(One-way ANOVA)和Duncan?s多重比較,并以t檢驗對不同樣本的微生物群落結構及物種組成進行差異顯著性分析。
2結果與分析
2.1 2種養(yǎng)殖模式下華南鯉腸道組織結構差異
2種養(yǎng)殖模式下,華南鯉的中腸組織結構如圖1所示。在顯微鏡觀察的基礎上,對華南鯉腸絨毛的高度、寬度、肌層厚度及腸絨毛密度4個形態(tài)指標進行統(tǒng)計,結果(圖2)顯示,在池塘網(wǎng)箱模式下,P-GS組華南鯉的腸絨毛高度、肌層厚度和腸絨毛密度均顯著低于P-N組華南鯉(Plt;0.05,下同),腸絨毛寬度也低于P-N組華南鯉,但差異不顯著(Pgt;0.05,下同);在循環(huán)水模式下,R-GS組華南鯉的腸絨毛高度、寬度和肌層厚度均顯著低于R-N組華南鯉,但腸絨毛密度與R-N組華南鯉無顯著差異。
2.2 2種養(yǎng)殖模式下華南鯉腸道消化酶活性差異
由圖3可看出,無論是池塘網(wǎng)箱模式還是循環(huán)水模式,生長遲緩華南鯉腸道的胰蛋白酶活性均顯著低于生長正常華南鯉,淀粉酶活性和脂肪酶活性也低于生長正常華南鯉,但差異不顯著。在4組華南鯉中,以R-N組華南鯉腸道的胰蛋白酶活性和淀粉酶活性最高。
2.3養(yǎng)殖水體菌群與華南鯉腸道菌群的相關性
2.3.1養(yǎng)殖水體和華南鯉腸道菌群多樣性基于微生物16S rDNA序列V3~V4可變區(qū)對4組華南鯉24個腸道內容物樣品及2種養(yǎng)殖模式6個水環(huán)境微生物樣品進行高通量測序,并計算各樣品的菌群多樣性指數(shù),結果(表1)顯示,循環(huán)水模式養(yǎng)殖水體及其養(yǎng)殖的華南鯉腸道菌群Alpha多樣性(物種豐度指數(shù)、Shannon指數(shù)、Simpson指數(shù)、Chao1指數(shù)和Pieloue指數(shù))均顯著低于池塘網(wǎng)箱模式下對應的各組樣品。同一養(yǎng)殖模式下,生長遲緩與正常華南鯉腸道菌群Alpha多樣性指數(shù)的差異均不顯著,說明環(huán)境對不同生長速度華南鯉腸道微生物組成具有相似的影響。
基于PCoA分析評估養(yǎng)殖水體和華南鯉腸道菌群Beta多樣性,結果如圖4所示。在未加權距離矩陣的PCoA分析中,第一主坐標(PCoA1)、第二主坐標(PCoA2)的貢獻率分別為34.55%和15.29%;在加權距離矩陣的PCoA分析中,PCoA1、PCoA2的貢獻率分別為47.29%和22.18%。2種PCoA分析獲得的結果基本相似,循環(huán)水模式下的樣品聚集于第三象限,池塘網(wǎng)箱模式下的樣品聚集于第四象限;2種養(yǎng)殖模式下的華南鯉腸道內容物樣品明顯分開,同一養(yǎng)殖模式下生長遲緩與正常華南鯉的腸道內容物樣品聚集在一起,表明養(yǎng)殖模式對華南鯉腸道菌群組成有明顯影響。
2.3.2養(yǎng)殖水體和華南鯉腸道菌群結構特征基于布雷柯蒂斯(Bray-Curtis)距離的UPGMA聚類分析結果(圖5)顯示,在2種養(yǎng)殖模式下均表現(xiàn)為生長遲緩華南鯉腸道內容物樣品先聚為一支,再與生長正常華南鯉腸道內容物樣品聚類在一起,即生長遲緩與正常華南鯉的腸道菌群結構存在差異,二者間可有效區(qū)分開。
通過繪制Venn圖展示各組樣品間的共有或特有ASV數(shù)目,直觀反映不同樣品間ASV組成的相似性及重疊情況。由圖6-A可看出,所有樣品的共有ASV數(shù)目為19個,R-W樣品、P-W樣品、P-N樣品、P-GS樣品、R-N樣品、R-GS樣品的特有ASV數(shù)目分別為1244、2572、3124、3847、1367和641個。由圖6-B~圖6-D可看出,池塘網(wǎng)箱模式下養(yǎng)殖華南鯉腸道內容物樣品及其養(yǎng)殖水體的共有ASV數(shù)目明顯高于循環(huán)水模式下對應的各組樣品,表明池塘網(wǎng)箱模式養(yǎng)殖水體的菌群多樣性較循環(huán)水模式養(yǎng)殖水體更豐富,使得池塘網(wǎng)箱模式下的生長遲緩華南鯉腸道菌群結構可能更復雜,涉及的菌群種類更多。此外,2種養(yǎng)殖模式下的生長遲緩華南鯉腸道內容物樣品共有ASV數(shù)目為131個(圖6-B),說明2種養(yǎng)殖模式下生長遲緩華南鯉腸道菌群結構存在相似性。
2.3.3生長遲緩與正常華南鯉腸道菌群組成差異如圖7-A所示,循環(huán)水模式養(yǎng)殖水體的菌群組成以擬桿菌門和變形菌門(Proteobacteria)為主,其相對豐度分別為48.63%和35.81%;池塘網(wǎng)箱模式養(yǎng)殖水體的菌群組成多樣性更高,主要包括放線菌門(Actinobacteria,25.79%)、變形菌門(21.30%)、藍藻門(Cyanobacteria,17.88%)和浮霉菌門(Planctomy-cetes,11.27%)等;變形菌門是2種養(yǎng)殖模式下的共有優(yōu)勢菌門。循環(huán)水模式下,華南鯉腸道菌群主要由變形菌門、梭桿菌門(Fusobacteria)和放線菌門組成,相對于生長正常華南鯉,生長遲緩華南鯉腸道變形菌門相對豐度顯著降低,而脫硫桿菌門(Desulfo-bacterota)、厚壁菌門和放線菌門的相對豐度顯著升高。池塘網(wǎng)箱模式下,華南鯉腸道菌群優(yōu)勢菌門由浮霉菌門、梭桿菌門和變形菌門組成,與生長正常華南鯉相比,生長遲緩華南鯉腸道梭桿菌門和厚壁菌門的相對豐度顯著下降,而綠彎菌門(Chloroflexi)、藍藻門和酸桿菌門(Acidobacteriota)的相對豐度顯著升高,脫硫桿菌門、放線菌門、浮霉菌門和變形菌門的相對豐度也有所升高,但差異不顯著。
如圖7-B所示,在屬分類水平上2種養(yǎng)殖水體的菌群組成存在明顯差異,循環(huán)水模式養(yǎng)殖水體菌群結構組成中相對豐度排名前3的屬分別是黃桿菌屬(Flavobacterium,35.97%)、Limnohabitans(16.47%)和Emticicia(6.03%),池塘網(wǎng)箱模式養(yǎng)殖水體菌群結構組成中相對豐度排名前3的屬分別為hgcI clade(16.35%)、雙色藻屬(Cyanobium PCC-6307,12.80%)和unclassified Pirellulaceae(7.26%)。循環(huán)水模式下,生長遲緩華南鯉腸道的優(yōu)勢菌屬包括氣單胞菌屬(Aeromonas,27.69%)、鯨桿菌屬(Cetobacterium,20.99%)、未分類脫硫弧菌科(unclassified Desulfovi-brionaceae,13.99%)、紅球菌屬(Rhodococcus,10.65%)、弧菌屬(Vibrio,6.65%)和短螺旋體屬(Brevinema,2.48%),生長正常華南鯉腸道的優(yōu)勢菌屬包括氣單胞菌屬(47.96%)、鯨桿菌屬(16.66%)、鄰單胞菌屬(Plesiomonas,7.12%)和短螺旋體屬(1.78%);相對于生長正常華南鯉,生長遲緩華南鯉的未分類脫硫弧菌科、紅球菌屬、弧菌屬和希瓦氏菌屬(Shewanella)相對豐度顯著升高。池塘網(wǎng)箱模式下,生長遲緩華南鯉腸道的優(yōu)勢菌屬有小梨形菌屬(Pirellula,17.14%)、鯨桿菌屬(7.62%)和unclassified Gemmataceae(4.58%),生長正常華南鯉腸道的優(yōu)勢菌屬包括鯨桿菌屬(31.45%)和unclassified Pirellulaceae(10.85%);與生長正常華南鯉相比,生長遲緩華南鯉的unclassified Pirellulaceae和Fimbriiglobus相對豐度顯著升高。
2.4華南鯉腸道菌群功能預測結果
采用PICRUSt 2預測華南鯉腸道菌群功能,結果(圖8)顯示,池塘網(wǎng)箱模式下,生長遲緩與正常華南鯉腸道豐度差異菌群顯著富集在心血管疾病(Cardiovascular disease)、消化系統(tǒng)(Digestive sys-tem)、能量代謝(Energy metabolism)、內分泌系統(tǒng)(Endocrine system)及信號分子與相互作用(Signal molecules and interaction)等KEGG信號通路上;循環(huán)水模式下,生長遲緩與正常華南鯉腸道豐度差異菌群則顯著富集在外源性物質生物降解與代謝(Xenobiotics biodegradation and metabolism)、細胞運動(Cell motility)、循環(huán)系統(tǒng)(Circulatory system)、折疊/分類/降解(Folding,sorting and degradation)及內分泌系統(tǒng)等KEGG信號通路上。其中,內分泌系統(tǒng)是2種養(yǎng)殖模式下生長遲緩與正常華南鯉腸道豐度差異菌群均顯著富集到的KEGG信號通路,說明無論是在池塘網(wǎng)箱模式還是循環(huán)水模式下,華南鯉腸道健康水平下降和生長遲緩現(xiàn)象可能都與內分泌相關通路異常存在潛在關聯(lián)。
3討論
腸道健康對于魚類的健康養(yǎng)殖至關重要,其中,腸絨毛高度和密度的增加可擴大腸道消化吸收食物的表面積,肌層厚度增加可增強腸道收縮蠕動的能力,因此腸道形態(tài)結構指標可從側面反映魚體的消化能力(翟少偉等,2016;Cao et al.,2022)。本研究結果表明,在循環(huán)水和池塘網(wǎng)箱模式下,生長遲緩華南鯉的腸絨毛高度和肌層厚度均顯著低于生長正常華南鯉,與李英英等(2015)對大黃魚、麥浩彬等(2020)對珍珠龍膽石斑幼魚(Epinephelus lanceolatu♂×E.fuscoguttatus♀)的研究結果相似,即生長緩慢型個體的腸道肌層較薄、腸絨毛高度和密度較低,而生長快速型個體的腸絨毛高度和密度均高于正常個體。由此推測,2種養(yǎng)殖模式下生長遲緩華南鯉的腸道健康均出現(xiàn)異常,腸絨毛高度和密度降低致使腸表面積相應減小,腸道消化吸收能力下降,進而出現(xiàn)魚體生長緩慢現(xiàn)象。消化酶具有催化食物分解的作用,其活性水平可反映魚體對營養(yǎng)成分的消化和吸收利用能力,是衡量魚類腸道健康及生長狀況的重要指標之一(田宏杰等,2006;Comabella et al.,2006;劉敏和張輝,2008;余友斌等,2023)。本研究結果顯示,無論是池塘網(wǎng)箱模式還是循環(huán)水模式,生長遲緩華南鯉腸道淀粉酶、胰蛋白酶和脂肪酶的活性均低于生長正常華南鯉,其中胰蛋白酶活性差異達顯著水平。消化酶活性與經(jīng)濟魚類的生長性能間存在高度相關性,錢永生等(2019)研究發(fā)現(xiàn)快速生長的甌江彩鯉具有較高的蛋白酶活性和脂肪酶活性,袁禹惠等(2023)研究表明生長性能最高的斜帶石斑魚(E.coioides)稚魚腸道胰蛋白酶活性顯著高于其他組別的斜帶石斑魚稚魚。生長遲緩華南鯉消化酶活性降低,導致魚體腸道對食物的消化能力減弱,也是腸道健康水平降低的表現(xiàn)。
魚類腸道內定殖有種類豐富、數(shù)量龐大的菌群(Eckburg et al.,2005;Roeselers et al.,2011),與宿主經(jīng)過長期進化選擇后共同形成一個在調節(jié)生理生化反應、促進食物消化、介導宿主免疫應答及抵抗病原體侵染等方面發(fā)揮重要作用的微生態(tài)系統(tǒng)(Sugita et al.,1996;Pérez et al.,2010;Ghanbari et al.,2015;Wang et al.,2018)。魚類腸道菌群Alpha多樣性可反映其健康狀況和代謝能力(Clarke et al.,2014;Luan et al.,2023)。本研究結果表明,池塘網(wǎng)箱模式養(yǎng)殖水體菌群Alpha多樣性指標顯著高于循環(huán)水模式養(yǎng)殖水體,與之對應的是,池塘網(wǎng)箱模式下華南鯉腸道菌群Alpha多樣性指標均顯著高于循環(huán)水模式下的華南鯉,說明魚體腸道菌群多樣性與養(yǎng)殖水環(huán)境中的菌群多樣性呈正相關,與李存玉等(2015)的研究結果基本一致,即池塘養(yǎng)殖牙鲆(Paralichthys olivaceus)腸道菌群多樣性高于工廠化養(yǎng)殖牙鲆,且水環(huán)境中的菌群可能直接影響牙鲆腸道菌群結構及其穩(wěn)態(tài)。在同一養(yǎng)殖模式下,生長遲緩與正常華南鯉的腸道菌群Alpha多樣性差異不顯著,說明華南鯉腸道菌群Alpha多樣性與其生長性狀間無顯著相關性,與Chapagain等(2019)的研究結果一致,即快速生長與慢速生長虹鱒(Oncorhynchus mykiss)間的腸道菌群Alpha多樣性無顯著差異;但Zhao等(2023)對祁連山裸鯉(Gymnocyprischilianensis)的研究發(fā)現(xiàn),較高體質量個體的腸道微生物群落豐度和均勻度均高于較低體質量個體??梢姡~類生長差異與腸道菌群多樣性的關聯(lián)尚未明確。
除了菌群Alpha多樣性外,腸道菌群結構組成也是衡量腸道健康的重要指標(王飛飛等,2022)。本研究結果顯示,2種養(yǎng)殖模式下華南鯉腸道菌群結構中相對豐度排名前5的門均包括變形菌門、厚壁菌門、浮霉菌門、梭桿菌門和放線菌門,與Wu等(2013)、Eichmiller等(2016)、王蕾(2017)的研究結果相似。2種養(yǎng)殖模式下,生長遲緩與正常華南鯉的腸道菌群結構組成雖然在門和屬分類水平上相似,但各菌群的相對豐度存在差異,與工廠化和網(wǎng)箱養(yǎng)殖模式下黃條鰤(Seriola lalandi)幼魚(周鶴庭等,2022)、稻田和池塘養(yǎng)殖模式下建鯉(Cyprinus car-piovar.Jian)(趙柳蘭等,2021)的腸道菌群研究結果相似,說明不同養(yǎng)殖模式下魚類具有穩(wěn)定的核心菌群,但腸道菌群結構組成比例會隨著養(yǎng)殖水體的變化而改變。此外,無論是池塘網(wǎng)箱模式還是循環(huán)水模式,生長遲緩華南鯉腸道菌群中放線菌門、脫硫桿菌門和藍藻門的相對豐度較生長正常華南鯉均呈升高趨勢,其中,放線菌門和脫硫桿菌門相對豐度在循環(huán)水模式下呈顯著升高趨勢,藍藻門相對豐度在池塘網(wǎng)箱模式下呈顯著升高趨勢。放線菌門相對豐度的變化趨勢與王悅等(2021)的研究結果相似,故推測腸道菌群中放線菌門的相對豐度與華南鯉生長性能存在一定相關性。在屬分類水平上,循環(huán)水模式下生長遲緩華南鯉腸道菌群中希瓦氏菌屬的相對豐度較生長正常華南鯉顯著升高。希瓦氏菌屬具有適應性極強的代謝系統(tǒng),可產生硫化氫(H2S)(商寶娣等,2015)。哺乳動物體內的H2S濃度升高,會破壞腸道屏障而引起腸道炎癥反應(Dordevi?et al.,2021;盧歌雪,2023)。張燕玉等(2019)研究證實,海藻希瓦氏菌(Shewanella algae)能引起半滑舌鰨腸絨毛出現(xiàn)溶解、脫落等組織損傷,且伴有大量炎性細胞浸潤于肌肉層和黏膜下層;Choi等(2021)研究發(fā)現(xiàn),希瓦氏菌在低體質量皺紋盤鮑(Haliotis discus han-nai)腸道中的相對豐度顯著升高。由此推測,華南鯉腸道菌群中希瓦氏菌屬相對豐度較高,可產生高濃度的H2S而破壞腸道屏障,引起腸道損傷及消化能力減弱,最終導致華南鯉出現(xiàn)生長緩慢現(xiàn)象。
4結論
無論是在池塘網(wǎng)箱模式還是循環(huán)水模式下,生長遲緩華南鯉的腸道健康指標均發(fā)生明顯變化,具體表現(xiàn)為消化酶活性降低,對食物消化能力減弱,即腸道健康水平下降是分化出生長遲緩華南鯉的主要原因之一。
參考文獻(References):
陳秀梅,王桂芹,單曉楓,錢愛東.2022.魚類腸道屏障損傷與腸道炎癥發(fā)生發(fā)展關系的研究進展[J].河南農業(yè)科學,51(5):1-9.[Chen X M,Wang G Q,Shan X F,Qian A D.2022.Research progress on the relationship between intes‐tinal barrier damage and intestinal inflammation develop‐ment in fish[J].Journal of Henan Agricultural Sciences,51(5):1-9.]doi:10.15933/j.cnki.1004-3268.2022.05.001.
何琴,王利,段薈芹,茍小蘭.2023.枯草芽孢桿菌和糞腸球菌對鯽魚生長性能、血清學指標和腸道微生物多樣性的影響[J].江蘇農業(yè)學報,39(1):142-147.[He Q,Wang L,Duan H Q,Gou X L.2023.Effects of Bacillus subtilis and Enterococcus faecalis on growth performance,serum bio‐chemical indices and intestinal microflora of Carassius auratus[J].Jiangsu Journal of Agricultural Sciences,39(1):142-147.]doi:10.3969/j.issn.1000-4440.2023.01.017.
黃玉章,林旋,王全溪,謝建強,陳佳銘,趙堇,林樹根.2010.黃芪多糖對羅非魚腸絨毛形態(tài)結構及腸道免疫細胞的影響[J].動物營養(yǎng)學報,22(1):108-116.[Huang Y Z,Lin X,Wang Q X,Xie J Q,Chen J M,Zhao J,Lin S G.2010.Effects of Astragalus polysaccharide on structure of intestinal villus and intestinal immunocyte of tilapia[J].Chinese Journal of Animal Nutrition,22(1):108-116.]doi:10.3969/j.issn.1006-267x.2010.01.017.
蔣鑫濤,陳有銘,黃鑒鵬,歐光海,溫震威,李豫,馬騫,陳剛.2023.復合益生菌對雜交石斑魚生長性能、抗氧化能力和腸道健康的影響[J].廣東海洋大學學報,43(5):81-91.[Jiang X T,Chen Y M,Huang J P,Ou G H,Wen Z W,Li Y,Ma Q,Chen G.2023.Effects of compound probio-tics on growth performance,antioxidant capacity and intes‐tinal health of hybrid grouper(Epinephelusfuscogutatus♀×Epinephelus polyphekadion♂)[J].Journal of Guang‐dong Ocean University,43(5):81-91.]doi:10.3969/j.issn.1673-9159.2023.05.011.
李存玉,徐永江,柳學周,楊洪軍,史寶,史學營,朱學武.2015.池塘和工廠化養(yǎng)殖牙鲆腸道菌群結構的比較分析[J].水產學報,39(2):245-255.[Li C Y,Xu Y J,Liu X Z,Yang H J,Shi B,Shi X Y,Zhu X W.2015.Comparative analysis of composition,diversity and origin of intestinal bacterial community in pond-and indoor-tank-culture Japa‐nese flounder(Paralichthys olivaceus)[J].Journal of Fis-heries of China,39(2):245-255.]doi:10.3724/SP.J.1231.2015.59484.
李英英,陳曦,李素一,李盼,李艷虹,宋鐵英.2015.腸道消化吸收相關因子對大黃魚生長速度的影響[J].大連海洋大學學報,30(3):271-275.[Li Y Y,Chen X,Li S Y,Li P,Li Y H,Song T Y.2015.Influence of factors related to the intestinal digestion and absorption on growth of cultured large yellow croaker Pseudosciaenacrocea[J].Journal of Dalian Ocean University,30(3):271-275.]doi:10.16535/j.cnki.dlhyxb.2015.03.007.
李英英,陳曦,宋鐵英.2017.不同生長速度的大黃魚腸道菌群結構的差異[J].大連海洋大學學報,32(5):509-513.[Li YY,Chen X,Song T Y.2017.Differences in intestinalflora of cultured large yellow croaker Pseudosciaenacro-cea with different growth rates[J].Journal of Dalian Ocean University,32(5):509-513.]doi:10.16535/j.cnki.dlhyxb.2017.05.002.
劉敏,張輝.2008.魚類消化酶的研究進展[J].漁業(yè)經(jīng)濟研究,(6):6-10.[Liu M,Zhang H.2008.Research progress on the digestive enzyme of the fish[J].Fisheries Economy Research,(6):6-10.]doi:10.3969/j.issn.1674-9189.2008.06.002.
盧歌雪.2023.肝硬化患者腸道脫硫弧菌分離鑒定及其比較研究[D].無錫:江南大學.[Lu G X.2023.Isolation,iden-tification and comparison of intestinal Desulfovibrio in patients with liver cirrhosis[D].Wuxi:Jiangnan Univer-sity.]doi:10.27169/d.cnki.gwqgu.2023.000629.
羅君,付偉杰,楊二軍,黃建盛,謝瑞濤,陳剛.2022.槲皮素對雜交石斑魚生長性能、抗氧化能力和腸道菌群的影響[J].廣東海洋大學學報,42(4):13-22.[Luo J,F(xiàn)u W J,Yang E J,Huang J S,Xie R T,Chen G.2022.Effects of quercetin on growth performance,antioxidant capacity andintestinal microflora of hybrid grouper(Epinephelusfus-coguttatus♀×Epinephelus polyphekadion♂)[J].Journal of Guangdong Ocean University,42(4):13-22.]doi:10.3969/j.issn.1673-9159.2022.04.002.
麥浩彬,郭鑫偉,王金港,遲淑艷,董曉慧,楊奇慧,劉泓宇,章雙.2020.攝食不同水平飼料蛋白質對珍珠龍膽石斑魚幼魚腸道組織形態(tài)和菌群組成的影響[J].大連海洋大學學報,35(1):63-70.[Mai H B,Guo X W,Wang J G,Chi S Y,Dong X H,Yang Q H,Liu H Y,Zhang S.2020.Effects of dietary protein levels on intestinal tract histomor-phology and microflora composition in juvenile pearl gen-tian grouper(Epinephelus lanceolatu♂×E.fuscoguttatus♀)[J].Journal of Dalian Ocean University,35(1):63-70.]doi:10.16535/j.cnki.dlhyxb.2019-123.
孟曉林,李文均,聶國興.2019.魚類腸道菌群影響因子研究進展[J].水產學報,43(1):143-155.[Meng X L,Li W J,Nie G X.2019.Effect of different factors on the fish intes-tinal microbiota[J].Journal of Fisheries of China,43(1):143-155.]doi:10.11964/jfc.20181011476.
米海峰,孫瑞健,張璐,李寶圣,王武剛,吳業(yè)陽,王用黎.2015.魚類腸道健康研究進展[J].中國飼料,(15):19-22.[Mi H F,Sun R J,Zhang L,Li B S,Wang W G,Wu Y Y,Wang Y L.2015.Research progress of fish intestinal health[J].China Feed,(15):19-22.]doi:10.15906/j.cnki.cn11-2975/s.20151505.
錢永生,陳紅林,杜金星,劉至治,王成輝.2019.4種體色甌江彩鯉的生長、攝食和呼吸特性差異及其相關性分析[J].中國水產科學,26(4):695-702.[Qian Y S,Chen H L,Du J X,Liu Z Z,Wang C H.2019.Comparison of growth,feeding and respiration characteristics and their correlation among four color patterns in Oujiang color carp[J].Jour-nal of Fishery Sciences of China,26(4):695-702.]doi:10.3724/SP.J.1118.2019.18367.
饒劉瑜,李學梅,李星浩,朱文根,余育和,顏慶云.2018.轉基因鯉魚與對照鯉腸道微生物群落差異研究[J].水生生物學報,42(2):349-355.[Rao LY,Li X M,Li X H,Zhu W G,Yu Y H,Yan Q Y.2018.Comparison between the intes-tinal bacterial communities of the transgenic common carp and the controls[J].Acta Hydrobiologica Sinica,42(2):349-355.]doi:10.7541/2018.044.
商寶娣,楊星,李正友,張效平.2015.希瓦氏菌的研究進展[J].福建農業(yè),(7):152-154.[Shang B D,Yang X,Li Z Y,Zhang X P.2015.Research progress on Shewanella[J].Fujian Agriculture,(7):152-154.]
田宏杰,莊平,高露姣.2006.生態(tài)因子對魚類消化酶活力影響的研究進展[J].海洋漁業(yè),28(2):158-162.[Tian H J,Zhuang P,Gao L J.2006.Advances on the studies of the effect of ecological factors on activities of digestive enzymes of fish[J].Marine Fisheries,28(2):158-162.]doi:10.3969/j.issn.1004-2490.2006.02.013.
王飛飛,王夏雯,金倩,張智慧,王澤平,田勝營,王信海.2022.溫度對克氏原螯蝦腸道菌群結構的影響[J].江蘇農業(yè)學報,38(1):157-164.[Wang F F,Wang X W,Jin Q,Zhang Z H,Wang Z P,Tian S Y,Wang X H.2022.Effects of temperature on gut microbiota structure of Procambarus clarkii[J].Jiangsu Journal of Agricultural Sciences,38(1):157-164.]doi:10.3969/j.issn.1000-4440.2022.01.019.
王蕾.2017.鯉魚早期發(fā)育階段腸道菌群的分析及其免疫相關性研究[D].濟南:山東師范大學.[Wang L.2017.Analysis of gut microflora in early developmental stage and its relationship with immunity in common carp,Cypri-nus carpio[D].Jinan:Shandong Normal University.]
王若愚,孫博,曹頂臣,孫志鵬,王念民,胡煒,張穎,許式見.2023.達氏鰉和施氏鱘生長差異群體腸道菌群特征研究[J].中國水產科學,30(9):1093-1101.[Wang R Y,Sun B,Cao D C,Sun Z P,Wang N M,Hu W,Zhang Y,Xu S J.2023.Gut microbiota of Huso dauricus and Acipenser schrencki populations with different growth rates[J].Jour-nal of Fishery Sciences of China,30(9):1093-1101.]doi:10.12264/JFSC2023-0208.
王沈同.2023.草魚生長差異腸道菌群鑒定及短鏈脂肪酸受體基因功能研究[D].上海:上海海洋大學.[Wang S T.2023.Identification of intestinal microbiotas in grass carp with different growth and functional research of short-chain fatty acid receptor gene[D].Shanghai:Shang-hai Ocean University.]doi:10.27314/d.cnki.gsscu.2021.000531.
王悅,趙盼月,陳學豪,翟少偉.2021.精養(yǎng)池模式下不同生長速度花鰻鱺的腸道菌群比較研究[J].飼料工業(yè),42(4):48-52.[Wang Y,Zhao P Y,Chen X H,Zhai S W.2021.The comparative research on intestinal flora of Anguilla marmorata with different growth rates under intensive cul-ture ponds condition[J].Feed Industry,42(4):48-52.]doi:10.13302/j.cnki.fi.2021.04.009.
徐革鋒,陳俠君,杜佳,牟振波.2009.魚類消化系統(tǒng)的結構、功能及消化酶的分布與特性[J].水產學雜志,22(4):49-55.[Xu G F,Chen X J,Du J,Mou Z B.2009.Fish diges-tive system:It’s structure,function and the distributions and characteristics of digestive enzymes[J].Chinese Jour-nal of Fisheries,22(4):49-55.]doi:10.3969/j.issn.1005-3832.2009.04.013.
余友斌,黃溫赟,崔銘超.2023.養(yǎng)殖密度對大黃魚生長、血清生化、營養(yǎng)成分、消化酶和代謝酶活力的影響[J].漁業(yè)現(xiàn)代化,50(3):64-71.[Yu Y B,Huang W Y,Cui M C.2023.Effects of stocking densities on growth performance,nutrient composition,serum biochemical,digestive and metabolic enzymes activities of large yellow croaker(Lari-michthyscrocea)[J].Fishery Modernization,50(3):64-71.]doi:10.3969/j.issn.1007-9580.2023.03.008.
袁禹惠,龔埜,黃巖,李松林.2023.飼料DHA與EPA質量比對斜帶石斑魚稚魚生長性能、體組成及消化酶活力的影響[J].廣東海洋大學學報,43(6):1-8.[Yuan Y H,Gong Y,Huang Y,Li S L.2023.Effects of dietary DHA/EPA mass ratio on growth performance,body composition and digestive enzyme activity of larval grouper(Epinephelus coioides)[J].Journal of Guangdong Ocean University,43(6):1-8.]doi:10.3969/j.issn.1673-9159.2023.06.001.
翟少偉,史慶超,陳學豪.2016.飼料中添加抗菌肽Surfactin對吉富羅非魚腸道健康的影響[J].水生生物學報,40(4):823-829.[Zhai S W,Shi Q C,Chen X H.2016.Effect of dietary antimicrobial peptides-Surfactin supplementation on parameters of intestinal health indices of genetically improved farmed tilapia(Gift,Oreochromis niloticus)[J].Acta Hydrobiologica Sinica,40(4):823-829.]doi:10.7541/2016.106.
張小明,張婷婷,張貞貞,李菁菁,趙旺生.2024.不同飼養(yǎng)方式對南江黃羊腸道菌群結構及血清免疫指標的影響[J].南方農業(yè)學報,55(2):334-345.[Zhang X M,Zhang T T,Zhang Z Z,Li J J,Zhao W S.2024.Effects of different feeding methods on the intestinal flora structure and serum immune indexes of Nanjiang yellow goat[J].Journal of Southern Agriculture,55(2):334-345.]doi:10.3969/j.issn.2095-1191.2024.02.004.
張燕玉,韓卓然,孫敬鋒,呂愛軍,胡秀彩,劉軍鋒.2019.海藻希瓦氏菌感染對半滑舌鰨腸道菌群結構及相關功能基因表達的影響[J].南方農業(yè)學報,50(10):2300-2307.[Zhang Y Y,Han Z R,Sun J F,LüA J,Hu X C,Liu J F.2019.Effects of infection with Shewanella algae on the microbial communities and expression of related func-tional genes in the intestine of Cynoglossussemilaevis[J].Journal of Southern Agriculture,50(10):2300-2307.]doi:10.3969/j.issn.2095-1191.2019.10.21.
張云龍,張海龍,王凌宇,顧貝易,樊啟學.2017.魚類早期發(fā)育階段異速生長及核酸、消化酶變化的研究進展[J].中國水產科學,24(3):648-656.[Zhang Y L,Zhang H L,Wang LY,Gu B Y,F(xiàn)an Q X.2017.Allometric growth and ontogenetic changes in nucleic acids and digestive enzy-mes during the early life stage in fish species[J].Journal of Fishery Sciences of China,24(3):648-656.]doi:10.3724/SP.J.1118.2017.16210.
趙柳蘭,龍亞男,羅杰,劉巧,周劍,杜軍,周亞,楊佰維,楊淞.2021.池塘和稻田兩種養(yǎng)殖模式下建鯉腸道菌群、免疫酶活性及肌肉氨基酸比較分析[J].中國水產科學,28(1):48-56.[Zhao L L,Long Y N,Luo J,Liu Q,Zhou J,Du J,Zhou Y,Yang B W,Yang S.2021.Analysis and com-parison of intestinal microbiota,immune enzyme activi-ties,and muscle flavor of Jian carp in two culture modes[J].Journal of Fishery Sciences of China,28(1):48-56.]doi:10.12264/JFSC2020-0148.
周鶴庭,徐永江,姜燕,崔愛君,王濱,柳學周.2022.兩種養(yǎng)殖模式下黃條鰤幼魚消化道菌群對生長的微生態(tài)調控作用[J].中國水產科學,29(10):1437-1448.[Zhou H T,XuY J,Jiang Y,Cui A J,Wang B,Liu X Z.2022.Micro eco-logical regulation of gastrointestinal microflora in the growth of yellowtail kingfish(Seriola lalandi)juveniles under indoor tank culture and cage culture modes[J].Jour-nal of Fishery Sciences of China,29(10):1437-1448.]doi:10.12264/JFSC2022-0185.
朱華平,蘇換換,馬冬梅,黃樟翰.2018.華南鯉選育品種與地方品種的遺傳多樣性比較分析[J].農業(yè)生物技術學報,26(8):1371-1381.[Zhu H P,Su H H,Ma D M,Huang Z H.2018.Comparative analysis of genetic diversity in Cyp-rinus carpio rubrofuscus among selective-breeding popula-tion and landraces[J].Journal of Agricultural Biotechno-logy,26(8):1371-1381.]doi:10.3969/j.issn.1674-7968.2018.08.010.
Bai N,Gu M,Liu M J,Jia Q,Pan S H,Zhang Z Y.2019.Corn gluten meal induces enteritis and decreases intestinal immunity and antioxidant capacity in turbot(Scophthal-mus maximus)at high supplementation levels[J].PLoS One,14(3):e213867.doi:10.1371/journal.pone.0213867.
Cao K L,Wang Y Y,Li M L,Zhang C Y,Lahaye L,Kabir Chowdhury M A,Li X Q,Leng X J.2022.Supplementa-tion of a multienzyme complex,an organic acid-essential oil complex,and prebiotic alone or in combination affects growth,nutrient utilization,and immune function of rain-bow trout(Oncorhynchus mykiss)[J].Aquaculture Nutri-tion,(1):1068537.doi:10.1155/2022/1068537.
Caspary W F.1992.Physiology and pathophysiology of intesti-nal absorption[J].The American Journal of Clinical Nutri-tion,55(1):299S-308S.doi:10.1093/ajcn/55.1.299s.
Chapagain P,Arivett B,Cleveland B M,Walker D M,Salem M.2019.Analysis of the fecal microbiota of fast-and slow-growing rainbow trout(Oncorhynchus mykiss)[J].BMC Genomics,20:788.doi:10.1186/s 12864-019-6175-2.
Chen K,Zhou X Q,Jiang W D,Wu P,Liu Y,Jiang J,Kuang S Y,Tang L,Tang W N,Zhang YA,F(xiàn)eng L.2018.Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency:Regulation of TOR,NF-κB,MLCK,JNK and Nrf2 signalling in grass carp(Ctenopharyngodonidella)after infection with Aeromonas hydrophila[J].Fishamp;Shellfish Immunology,74:175-189.doi:10.1016/j.fsi.2017.12.060.
Choi M J,Oh Y D,Kim Y R,Lim H K,Kim J M.2021.Intesti-nal microbial diversity is higher in pacific abalone(Halio-tis discus hannai)with slower growth rates[J].Aquacul-ture,537:736500.doi:10.1016/j.aquaculture.2021.736500.Clarke S F,Murphy E F,O'Sullivan O,Lucey A J,HumphreysM,Hogan A,Hayes P,O'Reilly M,Jeffery I B,Wood-Martin R,Kerins D M,Quigley E,Ross R P,O'Toole PW,Molloy M G,F(xiàn)alvey E,Shanahan F,Cotter P D.2014.
Exercise and associated dietary extremes impact on gut microbial diversity[J].Gut,63(12):1913-1920.doi:10.1136/gutjnl-2013-306541.
Comabella Y,Mendoza R,Aguilera C,Carrillo O,Hurtado A,García-Galano T.2006.Digestive enzyme activity duringearly larval development of the cubangarAtractosteus tris-toechus[J].Fish Physiology and Biochemistry,32:147-157.doi:10.1007/s 10695-006-0007-4.
Dawood M A O.2021.Nutritional immunity of fish intestines:Important insights for sustainable aquaculture[J].Reviews in Aquaculture,13(1):642-663.doi:10.1111/raq.12492.
Dordevi?D,Jan?íkováS,VítězováM,Kushkevych I.2021.Hydrogen sulfide toxicity in the gut environment:Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes[J].Journal of Advanced Research,27:55-69.doi:10.1016/j.jare.2020.03.003.
Eckburg P B,Bik E M,Bernstein C N,Purdom E,Dethlefsen L,Sargent M,Gill S R,Nelson K E,Relman D A.2005.Diversity of the human intestinal microbial flora[J].Scien-ce,308(5728):1635-1638.doi:10.1126/science.1110591.
Eichmiller J J,Hamilton M J,Staley C,Sadowsky M J,Sorensen P W.2016.Environment shapes the fecal micro‐biome of invasive carp species[J].Microbiome,4:44.doi:10.1186/s40168-016-0190-1.
Ghanbari M,Kneifel W,Domig K J.2015.A new view of the fish gut microbiome:Advances from next-generation sequencing[J].Aquaculture,448:464-475.doi:10.1016/j.aquaculture.2015.06.033.
Hooper L V,Macpherson A J.2010.Immune adaptations that maintain homeostasis with the intestinal microbiota[J].Na-ture Reviews Immunology,10(3):159-169.doi:10.1038/nri2710.
Hu C H,Xiao K,Jiao L F,Song J.2014.Effects of zinc oxidesupported on zeolite on growth performance,intestinal bar‐rier function and digestive enzyme activities of Nile tilapia[J].Aquaculture Nutrition,20(5):486-493.doi:10.1111/anu.12101.
Logue J B,Stedmon C A,Kellerman AM,Nielsen N J,Anders‐son A F,Laudon H,Lindstr?m E S,Kritzberg E S.2015.Experimental insights into the importance of aquatic bacte‐rial community composition to the degradation of dis‐solved organic matter[J].The ISME Journal,10(3):533-545.doi:10.1038/ismej.2015.131.
Luan Y Y,Li M,Zhou W,Yao YY,Yang Y L,Zhang Z,Ring?E,Erik Olsen R,Liu Clarke J,Xie S Q,Mai K S,Ran C,Zhou Z G.2023.The fish microbiota:Research progress and potential applications[J].Engineering,29:137-146.doi:10.1016/j.eng.2022.12.011.
Pérez T,Balcázar J L,Ruiz-Zarzuela I,Halaihel N,Vendrell D,de Blas I,Múzquiz J L.2010.Host-microbiota interactions within the fish intestinal ecosystem[J].Mucosal Immuno-logy,3(4):355-360.doi:10.1038/mi.2010.12.
Roeselers G,Mittge E K,Stephens W Z,Parichy D M,Cava-naugh C M,Guillemin K,Rawls J F.2011.Evidence for a core gut microbiota in the zebrafish[J].The ISME Jour‐nal,5(10):1595-1608.doi:10.1038/ismej.2011.38.
Sugita H,Shibuya K,Shimooka H,Deguchi Y.1996.Antibacte‐rial abilities of intestinal bacteria in freshwater cultured fish[J].Aquaculture,145(1-4):195-203.doi:10.1016/S0044-8486(96)01319-1.
Sun Y Z,Yang H L,Ling Z C,Chang J B,Ye J D.2009.Gut microbiota of fast and slow growing grouper Epinephelus coioides[J].African Journal of Microbiology Research,3(11):713-720.
Tran N T,Zhang J,Xiong F,Wang G T,Li W X,Wu S G.2018.Altered gut microbiota associated with intestinal di-sease in grass carp(Ctenopharyngodonidellus)[J].World Journal of Microbiologyamp;Biotechnology,34:71.doi:10.1007/s 11274-018-2447-2.
Vancamelbeke M,Vermeire S.2017.The intestinal barrier:A fundamental role in health and disease[J].Expert Review of Gastroenterologyamp;Hepatology,11(9):821-834.doi:10.1080/17474124.2017.1343143.
Wang A R,Ran C,Ring?E,Zhou Z G.2018.Progress in fish gastrointestinal microbiota research[J].Reviews in Aqua‐culture,10(3):626-640.doi:10.1111/raq.12191.
Wu S G,Tian J Y,Gatesoupe F J,Li W X,Zou H,Yang B J,Wang G T.2013.Intestinal microbiota of gibel carp(Carassius auratus gibelio)and its origin as revealed by 454 pyrosequencing[J].World Journal of Microbiology and Biotechnology,29(9):1585-1595.doi:10.1007/s11274-013-1322-4.
Xiong J B,Nie L,Chen J.2019.Current understanding on the roles of gut microbiota in fish disease and immunity[J].Zoological Research,40(2):70-76.doi:10.24272/j.issn.2095-8137.2018.069.
Zhang H L,Ran C,Teame T,Ding Q W,Hoseinifar S H,Xie M X,Zhang Z,Yang Y L,Olsen R E,Gatlin D M,Ring?E,Duan M,Zhou Z G.2020.Research progress on gut health of farmers teleost fish:A viewpoint concerning the intestinal mucosal barrier and the impact of its damage[J].Reviews in Fish Biology and Fisheries,30(4):569-586.doi:10.1007/s 11160-020-09614-y.
Zhang Y,Wen B,David M A,Gao J Z,Chen Z Z.2021.Com‐parative analysis of intestinal microbiota of discus fish(Symphysodonharaldi)with different growth rates[J].Aquaculture,540:736740.doi:10.1016/j.aquaculture.2021.736740.
Zhao Z M,Zhao H,Zhang L,Huang Z P,Ke H Y,Liu Y,Duan Y L,Li H D,Wang X Y,Li Q.2023.Integrated analysis of how gender and body weight affect the intestinal microbial diversity of Gymnocyprischilianensis[J].Scientific Re-ports,13:8811.doi:10.1038/s41598-023-35600-y.
(責任編輯蘭宗寶)