摘要:【目的】探究低溫脅迫下羅非魚鰓組織損傷的調(diào)控機(jī)制,為后續(xù)開展羅非魚越冬養(yǎng)殖提供理論依據(jù)?!痉椒ā恳詮V溫性草魚為參照,對羅非魚進(jìn)行12℃室外低溫脅迫及18℃室內(nèi)復(fù)溫試驗(yàn),采集羅非魚和草魚的鰓組織,分別制作組織切片、測定抗氧化酶活性及采用實(shí)時熒光定量PCR檢測免疫相關(guān)基因表達(dá)情況?!窘Y(jié)果】當(dāng)溫度由18℃降至12℃后,羅非魚鰓組織發(fā)生嚴(yán)重?fù)p傷,具體表現(xiàn)為細(xì)胞凋亡程度加重,次級鰓瓣形態(tài)不完整,板層融合,層間細(xì)胞團(tuán)增多,組織內(nèi)空泡化,血細(xì)胞堆積較多;復(fù)溫至18℃后,羅非魚鰓組織細(xì)胞凋亡程度有所緩解,但板層融合現(xiàn)象并未好轉(zhuǎn)。草魚在12℃低溫脅迫下其鰓絲上皮組織略微增厚,但次級鰓瓣和鰓小片結(jié)構(gòu)相對較完整,凋亡細(xì)胞數(shù)量遠(yuǎn)少于羅非魚;復(fù)溫至18℃后,草魚的次級鰓瓣結(jié)構(gòu)損傷情況好轉(zhuǎn),鰓絲上皮組織厚度下降,凋亡細(xì)胞數(shù)量明顯減少。在12℃低溫脅迫下,羅非魚鰓組織中的超氧化物歧化酶(SOD)和過氧化氫酶(CAT)活性極顯著升高(Plt;0.01,下同),而谷胱甘肽過氧化物酶(GSH-PX)活性極顯著降低;草魚則表現(xiàn)為CAT活性極顯著升高,GSH-Px活性顯著升高(Plt;0.05,下同),SOD活性無顯著變化(Pgt;0.05,下同)。此外,羅非魚的BPI、MKK6、STAT1、CD122和IL-2基因相對表達(dá)量在12℃低溫脅迫下極顯著下降,而IL-1β基因相對表達(dá)量極顯著上升;而草魚在12℃低溫脅迫下表現(xiàn)為STAT1和IL-1β基因相對表達(dá)量極顯著上升,CD122和IL-2基因相對表達(dá)量顯著上升,BPI和MKK6基因相對表達(dá)量下降,但差異不顯著?!窘Y(jié)論】在低溫脅迫下,氧化應(yīng)激、細(xì)胞凋亡、免疫功能受損三者間的相互作用可能共同介導(dǎo)了羅非魚鰓組織的損傷,且這種損傷不可逆轉(zhuǎn)。在今后的羅非魚抗寒工作中應(yīng)以抗寒相關(guān)基因?yàn)榉肿訕?biāo)記,通過分子標(biāo)記輔助育種加速抗寒品種(系)的培育。
關(guān)鍵詞:羅非魚;鰓組織;低溫脅迫;氧化應(yīng)激;細(xì)胞凋亡;免疫功能
中圖分類號:S965.125文獻(xiàn)標(biāo)志碼:A文章編號:2095-1191(2024)10-3127-09
Changes on the gill tissue structure and physiological responses of tilapia(Oreochromis niloticus)under low temperature stress
GEYu-teng1,2,TONG Jing-yuan1,2,LI Wei1,2,ZHOU Yan1,2,CHEN Liang-biao1,2*
(1Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources(Shanghai Ocean University),Shanghai201306,China;2International Research Center for Marine Biosciences,Ministry of Science and Technology(ShanghaiOcean University),Shanghai 201306,China)
Abstract:【Objective】The aim of this study was to explore the regulatory mechanism of tilapia gill tissue damage un‐der low temperature stress and provide theoretical basis for the subsequent overwintering of tilapia.【Method】Tilapia was subjected to 12℃outdoor low temperature stress and 18℃indoor rewarming experiments,with the eurythermal grass carp as reference.The gill tissues of tilapia and grass carp were collected,and tissue sections were made,antioxidant en‐zyme activities were determined,and real-time fluorescence quantitative PCR was used to detect the expression of im‐mune related genes.【Result】When the temperature dropped from 18℃to 12℃,the gill tissue of tilapia was severely damaged,which was manifested by aggravated apoptosis,incomplete secondary gill lamellae,fused lamellae,increasedinterlamellar cell clusters,vacuolation in the tissue,and more blood cell accumulation;after rewarming to 18℃,the de‐gree of apoptosis in the gill tissue of tilapia was alleviated,but the lamellae fusion phenomenon did not improve.Underlow temperature stress of 12℃,the epithelial tissue of the gill filaments of grass carp was slightly thickened,but the se-condary gill lamellae and gill lamellae were relatively intact,and the number of apoptotic cells was much less than that oftilapia;after rewarming to 18℃,the secondary gill lamellae structure damage of grass carp improved,the thickness of epithelial tissue of gill filament decreased,and the number of apoptotic cells decreased greatly.Under low temperaturestress of 12℃,the activities of superoxide dismutase(SOD)and catalase(CAT)in the gill tissue of tilapia increased extremely significantly(Plt;0.01,the same below),while the activity of glutathione peroxidase(GSH-Px)decreased sig‐nificantly;grass carp showed an extremely significant increase in CAT activity,a significant increase in GSH-Px activity(Plt;0.05,the same below),and no significant change in SOD activity(Pgt;0.05,the same below).In addition,therela‐tive expression of BPI,MKK6,STAT1,CD122 and IL-2 genes in tilapia showed extremely significant down-regulationtrend under 12℃low temperature stress,while the relative expression of IL-1βgene showed extremely significant up-regulation trend;while the relative expression of STAT1 and IL-1βgenes in grass carp showed extremely significant up-regulation under 12℃low temperature stress,and the relative expression of CD122 and IL-2 genes up-regulated signifi‐cantly,and the relative expression of BPI and MKK6 genes showed a down-regulation trend,but the difference was notsignificant.【Conclusion】Under low temperature stress,the interaction between oxidative stress,apoptosis and impairedimmune function may jointly mediate the damage of tilapia gill tissue,and the damage is irreversible.In the future work on cold resistance of tilapia,molecular marker-assisted selection technology can be used to accelerate the breeding of coldresistant breeds(lines)with cold resistant related genes as molecular markers.
Key words:tilapia(Oreochromis niloticus);gill tissue;low temperature stress;oxidative stress;apoptosis;im‐mune function
Foundation items:National Natural Science Foundation of China(32130109);National Key Research and Develop‐ment Program of China(2022YFD2400800)
0引言
【研究意義】我國是全球羅非魚的最大生產(chǎn)和出口國(江東能等,2022),而廣西作為我國羅非魚的重要養(yǎng)殖產(chǎn)區(qū),羅非魚產(chǎn)業(yè)對廣西漁業(yè)起著至關(guān)重要的作用(趙立朝等,2019)。近年來,廣西地區(qū)寒潮頻發(fā),且寒潮持續(xù)時間長,大部地區(qū)氣溫下降幅度高達(dá)12℃,局部地區(qū)降溫幅度甚至在14℃以上(董雪晗等,2022)。氣溫大幅度下降導(dǎo)致羅非魚大批量死亡,給羅非魚養(yǎng)殖業(yè)帶來巨大經(jīng)濟(jì)損失和挑戰(zhàn)。因此,亟待研究低溫脅迫下羅非魚的表型變化及應(yīng)激機(jī)制,以確保我國羅非魚產(chǎn)業(yè)的持續(xù)健康發(fā)展?!厩叭搜芯窟M(jìn)展】低溫脅迫對不同溫度適性魚類的生理機(jī)能均會產(chǎn)生顯著影響,但具體表現(xiàn)在不同組織和生理過程中存在一定差異。鯉(Cyprinus carpio)在15℃下暴露90 s后因大腦供血量不足,導(dǎo)致神經(jīng)系統(tǒng)生理功能受損(van den Burg et al.,2005);莫桑比克羅非魚(Oreochromis mossambicus)經(jīng)過低溫或高溫脅迫后,其體內(nèi)白細(xì)胞數(shù)量、呼吸爆發(fā)和吞噬活性等免疫指標(biāo)下降,機(jī)體免疫力降低(Ndong et al.,2007);虹鱒(Oncorhynchus mykiss)在低溫脅迫下其心臟肌肉和結(jié)締組織含量增加,導(dǎo)致心臟肥大,最終引起心臟功能受損(Klaiman et al.,2011);草魚(Ctenopharyngodonidellus)在12℃低溫脅迫下,其腦組織中與類固醇生物合成、蛋白代謝及吞噬體功能相關(guān)的基因表達(dá)發(fā)生顯著變化(Shi et al.,2020);在越冬期間,草魚肝胰腺、肌肉和脂肪等組織中不飽和脂肪酸(UFA)與多不飽和脂肪酸(PUFA)的比例顯著上升(Sun et al.,2021);軍曹魚(Rachycentron canadum)幼魚在低溫脅迫后其血清抗氧化相關(guān)酶活性顯著降低,肝臟中凋亡相關(guān)基因表達(dá)上調(diào),從而造成氧化損傷及細(xì)胞凋亡(李豫等,2022)。鰓作為魚類的主要呼吸器官,在外界環(huán)境變化時發(fā)揮著調(diào)節(jié)機(jī)體生理穩(wěn)態(tài)的重要作用(岳苗等,2024),且鰓組織已被證實(shí)是感知外界溫度變化最敏感的器官(Hu et al.,2016)。Qiang等(2013)研究發(fā)現(xiàn),新吉富羅非魚幼魚在37℃高溫脅迫下其鰓組織中Na+,K+-ATPase活性顯著增加,即高溫脅迫會增加鰓組織的離子運(yùn)輸;胡玲紅等(2021)研究證實(shí),高溫或低溫脅迫致使青鳉(Oryziaslatipes)鰓組織發(fā)生不同程度的氧化應(yīng)激,并誘導(dǎo)細(xì)胞凋亡;劉明麗等(2021)研究表明,低溫脅迫導(dǎo)致羅非魚鰓組織中凋亡相關(guān)蛋白RPL11和P53的表達(dá)增加,且羅非魚對低溫的響應(yīng)較斑馬魚更敏感;Esam等(2022)研究發(fā)現(xiàn),熱應(yīng)激暴露會引起羅非魚的原發(fā)性和繼發(fā)性鰓絲變性、毛細(xì)血管擴(kuò)張及上皮血管充血等現(xiàn)象;Zhou等(2022)將羅非魚暴露于36℃高溫下,結(jié)果發(fā)現(xiàn)其鰓組織發(fā)生鰓片卷曲和絲端增生,且有氧代謝受到抑制;耿傳業(yè)等(2023)利用代謝組學(xué)技術(shù)研究高溫脅迫下的虹鱒生理反應(yīng),結(jié)果發(fā)現(xiàn)熱應(yīng)激導(dǎo)致其鰓組織脂質(zhì)代謝紊亂,鰓細(xì)胞發(fā)生炎癥并產(chǎn)生免疫應(yīng)答?!颈狙芯壳腥朦c(diǎn)】硬骨魚類的鰓組織具有呼吸、滲透調(diào)節(jié)及含氮廢物排泄等多種生理功能(Evans et al.,2005),能對金屬離子、低pH和洗滌等多種刺激物作出反應(yīng),且隨刺激物的變化而發(fā)生相應(yīng)改變,是生態(tài)環(huán)境監(jiān)測項(xiàng)目的良好候選器官(Danget al.,2020)。鰓組織生理功能的正常發(fā)揮對維持魚類生長、生活及其生理生化狀態(tài)尤為重要,但至今鮮見低溫脅迫下羅非魚鰓組織結(jié)構(gòu)變化及其生理響應(yīng)的相關(guān)報道?!緮M解決的關(guān)鍵問題】以廣溫性草魚為參照,對新吉富羅非魚進(jìn)行12℃室外低溫脅迫及18℃室內(nèi)復(fù)溫試驗(yàn),通過病理組織切片觀察及生理指標(biāo)比較,進(jìn)一步探究低溫脅迫下羅非魚鰓組織損傷的調(diào)控機(jī)制,為后續(xù)開展羅非魚越冬養(yǎng)殖提供理論依據(jù)。
1材料與方法
1.1溫度處理與樣品采集
新吉富羅非魚和草魚均由廣西水產(chǎn)科學(xué)研究院提供。羅非魚和草魚的成魚各50尾,從廣西良種場引進(jìn)后采用網(wǎng)箱養(yǎng)殖于上海海洋大學(xué)校園內(nèi)的天然河道(30°53′14.33″N,121°53′35.38″E,水深2.5 m),使羅非魚和草魚處于自然季節(jié)性變化的溫度和光周期下。以電子溫度計(jì)記錄每天的最高水溫和最低水溫。選用對低溫具有較強(qiáng)適應(yīng)性的草魚為參照,有利于揭示不同溫度適性魚類對低溫脅迫的生理反應(yīng)。參照李晨虹和李思發(fā)(1996)的研究結(jié)論,本研究設(shè)定18℃為第1個處理溫度、12℃為第2個處理溫度,河道溫度為18℃時脅迫7d后取樣,河道溫度為12℃時脅迫12 d后取樣(圖1),每次取樣均隨機(jī)挑選羅非魚和草魚各3尾。由于河道自然溫度的不可控性,待低溫脅迫試驗(yàn)結(jié)束后將剩余的羅非魚和草魚轉(zhuǎn)移至18℃室內(nèi)循環(huán)水養(yǎng)殖系統(tǒng)中,恢復(fù)7 d后再次隨機(jī)取樣。動物試驗(yàn)由上海海洋大學(xué)動物倫理委員會批準(zhǔn),批準(zhǔn)號SHOU-DW-20210118。
1.2組織切片及染色
解剖采集羅非魚和草魚的鰓組織,放入4%多聚甲醛中過夜固定,隨后進(jìn)行梯度酒精脫水、透明、浸蠟及包埋,采用Leica切片機(jī)切片(切片厚度5μm)。切片干燥后再進(jìn)行脫蠟、復(fù)水等操作,然后分別進(jìn)行蘇木素—伊紅染色和Tunel染色,以中性樹膠封片,置于Eclips 80i熒光顯微鏡(日本Nikon公司)下觀察拍照。
1.3抗氧化酶活性測定
采用購自南京建成生物工程研究所的超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、谷胱甘肽過氧化物酶(GSH-Px)等酶活性試劑盒,分別測定羅非魚和草魚鰓組織抗氧化酶活性,測定方法按試劑盒說明進(jìn)行操作。
1.4實(shí)時熒光定量PCR擴(kuò)增
采用實(shí)時熒光定量PCR檢測低溫脅迫下羅非魚和草魚的免疫相關(guān)基因(BPI、MKK6、STAT1、IL-1β、CD122和IL-2)表達(dá)變化。使用RNA提取試劑盒[天根生化科技(北京)有限公司]提取鰓組織RNA,以反轉(zhuǎn)錄試劑盒(TaKaRa)將RNA反轉(zhuǎn)錄合成cDNA,以β-Actin為內(nèi)參基因,通過SYBR?Green Master Mix(Vazyme)在CFX96 qPCR儀(Bio-Rad)上對目的基因進(jìn)行定量分析。實(shí)時熒光定量PCR反應(yīng)體系20.0μL:cDNA模板2.0μL,SYBR?Green Master Mix 10.0μL,上、下游引物(表1和表2)各0.4μL,RNase-Free H2O 7.2μL。擴(kuò)增程序:95℃預(yù)變性30 s;95℃10 s,60℃30 s,進(jìn)行40個循環(huán)。采用2-??Ct法計(jì)算目的基因相對表達(dá)量,并運(yùn)用R語言中的TukeyHSD函數(shù)進(jìn)行單因素方差分析(One-way ANOVA)。
2結(jié)果與分析
2.1低溫脅迫下羅非魚鰓組織結(jié)構(gòu)的變化
當(dāng)河道溫度處于18℃時,羅非魚的次級鰓瓣(Secondary gill lamellae,SGL)結(jié)構(gòu)相對較完整(圖2-A);通過觀察鰓組織局部放大圖,發(fā)現(xiàn)羅非魚鰓絲上皮由多層上皮細(xì)胞組成(圖2-D),包括泌氯細(xì)胞(Chloride cell,CC)和黏液細(xì)胞(Mucous cell,MC)等;鰓小片中含有血細(xì)胞(Blood cell,BC)和柱細(xì)胞(Pillar cell,PiC)等,細(xì)胞結(jié)構(gòu)清晰,形態(tài)完整。2種魚的鰓組織結(jié)構(gòu)在18℃時并無明顯差異,草魚次級鰓瓣結(jié)構(gòu)清晰,鰓小片數(shù)量較多(圖2-G),可清楚觀察到柱細(xì)胞、血細(xì)胞及上皮細(xì)胞(Epithelial cell,EC)(圖2-J)。當(dāng)羅非魚處于12℃(亞致死溫度)時,鰓組織結(jié)構(gòu)發(fā)生明顯變化,具體表現(xiàn)為次級鰓瓣形態(tài)不完整,間隙萎縮,出現(xiàn)板層融合現(xiàn)象,層間細(xì)胞團(tuán)(Interlamellar cell mass,ILCM)面積增大,鰓小片結(jié)構(gòu)模糊(圖2-B);從局部放大圖來看,鰓組織內(nèi)有明顯的空泡,毛細(xì)血管內(nèi)充血現(xiàn)象嚴(yán)重,血細(xì)胞堆積較多(圖2-E)。相對于羅非魚而言,草魚在12℃下的鰓絲上皮組織略微增厚,但次級鰓瓣和鰓小片結(jié)構(gòu)相對較完整(圖2-H和圖2-K)。當(dāng)復(fù)溫至18℃后,羅非魚次級鰓瓣的融合現(xiàn)象并未好轉(zhuǎn),但鰓小片完整性得到改善(圖2-C和圖2-F);草魚在復(fù)溫后,其次級鰓瓣結(jié)構(gòu)損傷情況好轉(zhuǎn),鰓絲上皮組織厚度下降(圖2-I和圖2-L)。
2.2低溫脅迫下羅非魚鰓組織細(xì)胞凋亡檢測結(jié)果
由圖3可看出,當(dāng)溫度由18℃降至12℃后羅非魚鰓組織中出現(xiàn)大量凋亡細(xì)胞,且凋亡細(xì)胞相對聚集(圖3-B);當(dāng)復(fù)溫至18℃后,羅非魚鰓組織中的凋亡細(xì)胞數(shù)量相對減少,細(xì)胞凋亡程度有所緩解(圖3-C)。從草魚鰓組織來看,在12℃低溫脅迫下鰓組織凋亡細(xì)胞數(shù)量較18℃下略微增多,但與羅非魚相比凋亡細(xì)胞數(shù)量較少(圖3-E);當(dāng)復(fù)溫至18℃后,草魚鰓組織凋亡細(xì)胞數(shù)量明顯減少(圖3-F)。
2.3低溫脅迫下羅非魚鰓組織抗氧化酶活性測定結(jié)果
由圖4可看出,當(dāng)溫度由18℃降至12℃后,羅非魚鰓組織中的CAT和SOD活性極顯著升高(Plt;0.01,下同),GSH-Px活性則極顯著降低;草魚鰓組織中的CAT活性也極顯著升高,但升高幅度小于羅非魚,GSH-Px活性顯著升高(Plt;0.05,下同),SOD活性則無顯著變化(Pgt;0.05,下同)。復(fù)溫至18℃后,羅非魚鰓組織中的CAT、SOD和GSH-Px活性基本恢復(fù)到初始水平。
2.4低溫脅迫下羅非魚免疫相關(guān)基因表達(dá)變化
采用實(shí)時熒光定量PCR檢測低溫脅迫下羅非魚和草魚鰓組織免疫相關(guān)基因的表達(dá)情況,結(jié)果(圖5)顯示,當(dāng)溫度由18℃降至12℃后,羅非魚鰓組織的BPI、MKK6、STAT1、CD122和IL-2基因相對表達(dá)量均極顯著下降,而IL-1β基因相對表達(dá)量極顯著上升;草魚鰓組織的STAT1和IL-1β基因相對表達(dá)量極顯著上升,CD122和IL-2基因相對表達(dá)量顯著上升,BPI和MKK6基因相對表達(dá)量下降,但差異不顯著。復(fù)溫至18℃后,免疫相關(guān)基因在羅非魚鰓組織中的相對表達(dá)量基本上恢復(fù)至初始水平。
3討論
魚類鰓組織受溫度影響發(fā)生形態(tài)重塑的現(xiàn)象最先在歐洲鯽(Carassius carassius)中被發(fā)現(xiàn)(Sollid et al.,2003),在低溫且氧氣充足的環(huán)境下,鰓小片間會產(chǎn)生層間細(xì)胞團(tuán),且這些細(xì)胞團(tuán)的聚集被認(rèn)為會減少鰓組織有效交換氣體和離子的區(qū)域,從而降低魚體進(jìn)行氣體交換和離子調(diào)節(jié)的能力(Sollid and Nils-son,2006);當(dāng)鯽暴露于高溫且缺氧的環(huán)境下,鰓小片間的層間細(xì)胞團(tuán)消失,次級鰓瓣的整個表面區(qū)域擴(kuò)大,以提高其攝氧能力(Sollid et al.,2005a;Nils-son,2007)。本研究結(jié)果表明,在18℃下羅非魚次級鰓瓣完整,可清晰觀察到與鰓組織呼吸、離子交換相關(guān)的黏液細(xì)胞和泌氯細(xì)胞等,說明羅非魚在18℃下其鰓組織功能仍保持正常的運(yùn)作狀態(tài);當(dāng)羅非魚處于12℃(亞致死溫度)時,鰓組織結(jié)構(gòu)發(fā)生重塑,具體表現(xiàn)為層間細(xì)胞團(tuán)增多,次級鰓瓣形態(tài)不完整,組織內(nèi)空泡化嚴(yán)重,有血細(xì)胞堆積,與Wu等(2017)的研究結(jié)果相似。故推測當(dāng)水溫降至羅非魚的極端耐受低溫時,水分可能會在羅非魚鰓組織細(xì)胞內(nèi)形成結(jié)晶,導(dǎo)致細(xì)胞膜破裂及細(xì)胞器受損,進(jìn)而引起細(xì)胞內(nèi)容物泄漏并形成空泡;血細(xì)胞堆積可能是由于細(xì)胞破裂引起的出血,層間細(xì)胞團(tuán)增多可能與羅非魚鰓組織細(xì)胞大量凋亡堆積有關(guān),板層融合現(xiàn)象導(dǎo)致其呼吸表面積減少,致使羅非魚面臨著缺氧的風(fēng)險。當(dāng)復(fù)溫至18℃后,羅非魚鰓組織的板層融合現(xiàn)象并未好轉(zhuǎn),說明低溫脅迫對羅非魚造成了不可逆轉(zhuǎn)的傷害,次級鰓瓣損傷的不可逆現(xiàn)象可能致使羅非魚在低溫條件下面臨著呼吸困難的風(fēng)險。已有研究證實(shí),歐洲鯽在15℃下會發(fā)生明顯的鰓組織重塑(Sollid etal.,2005a),而金魚(C.auratus)需在7.5℃下才發(fā)生鰓組織重塑(Sollid etal.,2005b)。本研究中,草魚在12℃下并未出現(xiàn)明顯的鰓組織重塑現(xiàn)象,可能是不同鯉科魚類的種間差異所致,也可能是12℃還不足以致使草魚鰓組織發(fā)生重塑以適應(yīng)周圍環(huán)境溫度的變化。
在低溫脅迫下,魚類線粒體膜多不飽和脂肪酸合成速率增加,從而促使線粒體呼吸速率加快。這一過程可能會導(dǎo)致魚體內(nèi)活性氧生成及質(zhì)子泄漏,最終導(dǎo)致膜脂過氧化(Pavlovi?et al.,2010)。當(dāng)魚類受到氧化應(yīng)激時,SOD、CAT和GSH-Px等抗氧化酶可消除魚體內(nèi)過多的活性氧,使其維持在正常的生理水平(Jeevitha etal.,2014)。本研究結(jié)果表明,當(dāng)溫度由18℃降至12℃后,羅非魚鰓組織中的CAT和SOD活性極顯著升高,即低溫脅迫誘導(dǎo)了羅非魚的氧化應(yīng)激,與Xu等(2018)研究發(fā)現(xiàn)凡納濱對蝦在冷休克后SOD和CAT等抗氧化酶活性升高、Wang等(2022)研究發(fā)現(xiàn)斑馬魚成纖維細(xì)胞ZF4在短期低溫刺激下SOD和CAT活性升高的結(jié)論相似。此外,在12℃低溫脅迫下羅非魚鰓組織中的GSH-Px活性極顯著降低,與de Cassia Santos Przepiura等(2019)對羅氏南極魚(Nototheniarossii)、Ratko等(2022)對湖麗脂鯉(Astyanax lacustris)的研究結(jié)果相似。GSH-Px活性下降可能與生物體維持還原型谷胱甘肽與氧化型谷胱甘肽比值(GSH/GSSG)有關(guān)(Alak etal.,2017),且這種平衡對于維持機(jī)體內(nèi)的氧化還原狀態(tài)和細(xì)胞功能至關(guān)重要。谷胱甘肽可在許多代謝途徑中被氧化(Iskusnykh et al.,2022)。在12℃低溫脅迫下,草魚鰓組織中的CAT、SOD和GSH-Px活性均升高,表明草魚也受到氧化應(yīng)激,但受到的氧化應(yīng)激損傷遠(yuǎn)低于羅非魚。
鰓組織是魚類與水接觸最密切的生理器官,像腸道組織一樣通過表面黏膜相關(guān)淋巴組織中的淋巴細(xì)胞、嗜酸性粒細(xì)胞和巨噬細(xì)胞等,參與機(jī)體的免疫防御(羅智文等,2021)。由于魚類長期生活在水中,體溫變化較大,在免疫反應(yīng)過程中主要依賴于固有免疫(非特異性免疫)機(jī)制(白姍姍等,2017)。在魚類的免疫體系中,Toll樣受體(TLR)扮演著重要角色,作為模式識別受體對識別和應(yīng)對入侵病原體發(fā)揮著重要作用(Barton and Medzhitov,2003)。本研究中,Toll樣受體信號通路相關(guān)基因BPI、MKK6和STAT1等在羅非魚經(jīng)歷低溫脅迫后極顯著下調(diào)表達(dá),復(fù)溫至18℃后其相對表達(dá)量又基本恢復(fù)至初始水平,表明低溫脅迫抑制了羅非魚鰓組織的免疫功能,導(dǎo)致其免疫功能受損。已有研究表明,草魚體內(nèi)免疫活性在10℃時達(dá)到臨界點(diǎn),環(huán)境溫度一旦下降至10℃以下其免疫反應(yīng)能力顯著減弱(郭帥等,2010)。本研究發(fā)現(xiàn),在12℃低溫脅迫下草魚的Toll樣受體信號通路相關(guān)基因并未完全發(fā)生變化,可能與尚未達(dá)到其臨界免疫溫度有關(guān),與Basu等(2015)研究發(fā)現(xiàn)卡特拉鲃魚(Catlacatla)在熱脅迫下鰓組織中TLR4基因表達(dá)顯著下調(diào)、Qi等(2017)研究發(fā)現(xiàn)花斑裸鯉(Gymnocypriseckloni)在急性缺氧時頭腎和鰓組織中大多數(shù)Toll樣受體基因(TLRs)表達(dá)顯著下調(diào)的結(jié)果相似。促炎細(xì)胞因子IL-1β是炎癥發(fā)生及組織嚴(yán)重?fù)p傷的主要指標(biāo)之一(Huang et al.,2014;Gao et al.,2019),而細(xì)胞免疫因子IL-2可通過JAK-STAT信號通路促進(jìn)T細(xì)胞和B細(xì)胞增殖及產(chǎn)生特異性抗體(Mu et al.,2023)。在本研究中,羅非魚鰓組織中的IL-1β基因在低溫脅迫后極顯著上調(diào)表達(dá),IL-2基因及其受體基因(CD122)則在低溫脅迫后極顯著下調(diào)表達(dá),進(jìn)一步證實(shí)低溫脅迫激活了羅非魚體內(nèi)的炎癥信號轉(zhuǎn)導(dǎo)通路,導(dǎo)致其免疫過程受到抑制。
4結(jié)論
在低溫脅迫下,氧化應(yīng)激、細(xì)胞凋亡、免疫功能受損三者間的相互作用可能共同介導(dǎo)了羅非魚鰓組織的損傷,且這種損傷不可逆轉(zhuǎn)。在今后的羅非魚抗寒工作中應(yīng)以抗寒相關(guān)基因?yàn)榉肿訕?biāo)記,通過分子標(biāo)記輔助育種加速抗寒品種(系)的培育。
參考文獻(xiàn)(References):
白姍姍,賈智英,石連玉.2017.魚類免疫應(yīng)答機(jī)制研究進(jìn)展[J].水產(chǎn)學(xué)雜志,30(4):59-67.[Bai S S,Jia Z Y,Shi L Y.2017.Research progress of immune response mecha‐nism in fish[J].Chinese Journal of Fisheries,30(4):59-67.]doi:10.3969/j.issn.1005-3832.2017.04.012
董雪晗,農(nóng)孟松.2022.2021年12月25—27日廣西寒潮天氣過程分析[J].氣象研究與應(yīng)用,43(2):41-44.[Dong X H,Nong M S.2022.Analysis of cold wave weather pro‐cess in Guangxi from December 25 to 27,2021[J].Journal of Meteorological Research and Application,43(2):41-44.]doi:10.19849/j.cnki.CN45-1356/P.2022.2.07.
耿傳業(yè),孫言春,李博倫,丁璐,劉英杰,魏曉鳳,劉文質(zhì),韓琳,袁芳英,王鵬,韓世成.2023.基于UPLC-Q-TOF/MS代謝組學(xué)探究虹鱒鰓對熱應(yīng)激的生理反應(yīng)[J].水生生物學(xué)報,47(8):1185-1194.[Geng C Y,Sun Y C,Li B L,Ding L,Liu Y J,Wei X F,Liu W Z,Han L,Yuan F Y,Wang P,Han S C.2023.Physiological responses to heat stress in the gill of rainbow trout(Oncorhynchus mykiss)revealed based on UPLC-Q-TOF/MS metabolomics[J].Acta Hydrobiologica Sinica,47(8):1185-1194.]doi:10.7541/2023.2022.0447.
郭帥,李家樂,呂利群.2010.草魚呼腸孤病毒的致病機(jī)制及抗病毒新對策[J].漁業(yè)現(xiàn)代化,37(1):37-42.[Guo S,Li J L,LüL Q.2010.Molecular pathogenesis of grass carp reovirus and novel anti-viral strategies[J].Fishery Moder-nization,37(1):37-42.]doi:10.3969/j.issn.1007-9580.2010.01.009.
胡玲紅,王映,王化敏,陳良標(biāo).2021.不同溫度脅迫對青鳉鰓凋亡的影響[J].大連海洋大學(xué)學(xué)報,36(6):929-936.[Hu L H,Wang Y,Wang H M,Chen L B.2021.Effects of different temperature stress on the gill apoptosis of medaka Oryziaslatipes[J].Journal of Dalian Fisheries University,36(6):929-936.]doi:10.16535/j.cnki.dlhyxb.2021-053.
江東能,焦開智,張峻銘,彭友幸,楊空松,鄭德鋒,郭向召,石紅娟,李廣麗.2022.羅非魚性別控制遺傳育種研究進(jìn)展[J].廣東海洋大學(xué)學(xué)報,42(2):148-156.[Jiang D N,Jiao K Z,Zhang J M,Peng Y X,Yang K S,Zheng D F,Guo X Z,Shi H J,Li G L.2022.A review of on genetic sex control breeding of tilapia[J].Journal of Guangdong Ocean University,42(2):148-156.]doi:10.3969/j.issn.1673-9159.2022.02.019.
李晨虹,李思發(fā).1996.不同品系尼羅羅非魚致死低溫的研究[J].水產(chǎn)科技情報,23(5):195-198.[Li C H,Li S F.1996.Study on low lethal temperature of different strains of Nile tilapia(Oreochromis niloticus)[J].Fisheries Scien-ceamp;Technology Information,23(5):195-198.]doi:10.16446/j.cnki.1001-1994.1996.05.001.
李豫,黃建盛,陳有銘,溫震威,歐光海,黃鑒鵬,蔣鑫濤,郭潮安,馬騫,陳剛.2022.低溫脅迫對軍曹魚幼魚血清生化指標(biāo)、肝臟抗氧化酶活性及凋亡相關(guān)基因表達(dá)量的影響[J].廣東海洋大學(xué)學(xué)報,42(5):18-26.[Li Y,Huang J S,Chen Y M,Wen Z W,Ou G H,Huang J P,Jiang X T,Guo C A,Ma Q,Chen G.2022.Effects of low-temperaturestress on serum biochemical,antioxidant enzymes activi‐ties and apoptosis-related gene expression in liver of juve‐nile cobia(Rachycentron canadum)[J].Journal of Guang‐dong Ocean University,42(5):18-26.]doi:10.3969/j.issn.1673-9159.2022.05.003.
劉明麗,楊文意,王金鳳,陳良標(biāo).2021.低溫脅迫下魚類鰓中RPL11/MDM2/P53信號通路相關(guān)基因及蛋白表達(dá)差異分析[J].大連海洋大學(xué)學(xué)報,36(1):51-56.[Liu M L,Yang WY,Wang J F,Chen L B.2021.Expression analysis of RPL11/MDM2/P53 pathway related gene and protein in gills of fish exposed to cold stress[J].Journal of Dalian Fisheries University,36(1):51-56.]doi:10.16535/j.cnki.dlhyxb.2020-008.
羅智文,董志祥,林連兵,張棋麟.2021.魚類重要免疫器官抗菌機(jī)制的研究進(jìn)展[J].水產(chǎn)科學(xué),40(4):624-634.[Luo Z W,Dong Z X,Lin L B,Zhang Q L.2021.Advances on immunological mechanisms of important immune organs against pathogenic microorganisms in fish:A review[J].Fisheries Science,40(4):624-634.]doi:10.16378/j.cnki.1003-1111.19236.
岳苗,衛(wèi)唯,高子韓,衛(wèi)福磊,梁健.2024.青海湖裸鯉顆粒蛋白基因克隆及其參與鹽堿適應(yīng)機(jī)制研究[J].南方農(nóng)業(yè)學(xué)報,55(5):1480-1492.[Yue M,Wei W,Gao Z H,Wei F L,Liang J.2024.Cloning of granulin gene in Gymnocyprisprzewalskii and its involvement in salinity-alkalinity adap‐tation mechanism[J].Journal of Southern Agriculture,55(5):1480-1492.]doi:10.3969/j.issn.2095-1191.2024.05.024.
趙立朝,吳志強(qiáng),張曼,鄭雄,李德越,劉博文.2019.廣西南部主要水系野生羅非魚建群狀況調(diào)查分析[J].南方農(nóng)業(yè)學(xué)報,50(2):397-404.[Zhao L C,Wu Z Q,Zhang M,Zheng X,Li D Y,Liu B W.2019.Establishment of wild tilapia population community in main rivers of southern Guangxi[J].Journal of Southern Agriculture,50(2):397-404.]doi:10.3969/j.issn.2095-1191.2019.02.26.
Alak G,Ucar A,Parlak V,YeltekinA?,Ta?I H,?lmez D,Kocaman E M,Y?lg?n M,Atamanalp M,Yan?k T.2017.Assessment of 8-hydroxy-2-deoxyguanosine activity,gene expression and antioxidant enzyme activity on rainbow trout(Oncorhynchus mykiss)tissues exposed to biopesti‐cide[J].Comparative Biochemistry and Physio-logy,203:51-58.doi:10.1016/j.cbpc.2017.10.007.
Barton G M,Medzhitov R.2003.Toll-like receptor signaling pathways[J].Science,300(5625):1524-1525.doi:10.1126/science.1085536.
Basu M,Paichha M,Swain B,Lenka S S,Singh S,Chakrabarti R,Samanta M.2015.Modulation of TLR2,TLR4,TLR5,NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla(Catlacatla)[J].3 Biotech,5:1021-1030.doi:10.1007/s 13205-015-0306-5.
Dang M,Pittman K,Sonne C,Hansson S,Bach L,S?ndergaard J,Stride M,Nowak B.2020.Histological mucous cell quantification and mucosal mapping reveal different aspects of mucous cell responses in gills and skin of short‐hornsculpins(Myoxocephalusscorpius)[J].Fishamp;Shell‐fish Immunology,100:334-344.doi:10.1016/j.fsi.2020.03.020.
de Cassia Santos Przepiura T,Herrerias T,Kandalski P K,Zaleski T,Machado C,F(xiàn)orgati M,de Souza M R D P,Donatti L.2019.Metabolic responses in Antarctic Notothe‐niidae brains subjected to thermal stress[J].Brain Resea-rch,1708:126-137.doi:10.1016/j.brainres.2018.12.004.
Esam F,Khalafalla M M,Gewaily M S,Abdo S,Hassan A M,Dawood MA O.2022.Acute ammonia exposure combined with heat stress impaired the histological features of gills and liver tissues and the expression responses of immune and antioxidative related genes in Nile tilapia[J].Ecotoxi‐cology and Environmental Safety,231:113187.doi:10.1016/j.ecoenv.2022.113187.
Evans D H,Piermarini P M,Choe K P.2005.The multifunc‐tional fish gill:Dominant site of gas exchange,osmoregu‐lation,acid-base regulation,and excretion of nitrogenous waste[J].Physiological Reviews,85(1):97-177.doi:10.1152/physrev.00050.2003.
Gao X J,Tang B,Liang H H,Yi L,Wei Z G.2019.Selenium deficiency inhibits micRNA-146a to promote ROS-induced inflammation via regulation of the MAPK path‐way in the head kidney of carp[J].Fishamp;ShellfishImmu‐nology,91:284-292.doi:10.1016/j.fsi.2019.05.039.
Hu P,Liu M L,Liu Y M,Wang J F,Zhang D,Niu H B,Jiang S W,Wang J,Zhang D S,Han B S,Xu Q H,Chen L B.2016.Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish[J].Scientific Reports,6:28952.doi:10.1038/srep28952.
Huang D,Yang L B,Wang C L,Ma S H,Cui L,Huang S Y,Sheng X,Weng Q,Xu M Y.2014.Immunostimulatory activity of protein hydrolysate from Oviductus Ranae onmacrophagein vitro[J].Evidence-Based Complementary and Alternative Medicine,2014:180234.doi:10.1155/2014/180234.
Iskusnykh I Y,Zakharova A A,Pathak D.2022.Glutathione in brain disorders and aging[J].Molecules,27(1):324.doi:10.3390/molecules27010324.
Jeevitha K,Mohana Priya K,Khora S.2014.Antioxidant acti-vity of fish protein hydrolysates from Sardinella longiceps[J].International Journal of Drug Development and Re-search,6(4):137-145.
Klaiman J M,F(xiàn)enna A J,Shiels H A,Macri J,Gillis T E.2011.Cardiac remodeling in fish:Strategies to maintain heart function during temperature change[J].PLoS One,6(9):e24464.doi:10.1371/journal.pone.0024464.
Mu P F,Teng Y,Wu H Y,Li X R,Huo J Y,Ao J Q,Chen X H.2023.Large yellow croaker(Lrimichthyscrocea)IL-2 mo-dulates humoral immunity via the conserved JAK-STAT5 signal pathway[J].Fishamp;Shellfish Immunology,133:108519.doi:10.1016/j.fsi.2023.108519.
Ndong D,Chen Y Y,Lin Y H,Vaseeharan B,Chen J C.2007.The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures[J].Fishamp;Shellfish Immuno-logy,22(6):686-694.doi:10.1016/j.fsi.2006.08.015.
Nilsson G E.2007.Gill remodeling in fish—A new fashion or an ancient secret?[J].The Journal of Experimental Bio-logy,210(14):2403-2409.doi:10.1242/jeb.000281.
Pavlovi?S Z,Borkovi?Miti?S S,Radovanovi?T B,Perendija B R,Despotovi?S G,Gavri?J P,Sai?i?Z S.2010.Sea‐sonal variations of the activity of antioxidant defense enzymes in the red mullet(Mullus barbatus L.)from the Adriatic Sea[J].Marine Drugs,8(3):413-428.doi:10.3390/md8030413.
Qi D L,Xia M Z,Chao Y,Zhao Y L,Wu R R.2017.Identifica‐tion,molecular evolution of toll-like receptors in a Tibetan schizothoracine fish(Gymnocypriseckloni)and their ex-pression profiles in response to acute hypoxia[J].Fishamp;Shellfish Immunology,68:102-113.doi:10.1016/j.fsi.2017.07.014.
Qiang J,Wang H,Kpundeh M D,He J,Xu P.2013.Effect of water temperature,salinity,and their interaction on growth,plasma osmolality,and gill Na+,K+-ATPase acti-vity in juvenile GIFT tilapia Oreochromis niloticus(L.)[J].Journal of Thermal Biology,38(6):331-338.doi:10.1016/j.jtherbio.2013.04.002.
Ratko J,da Silva N G,da Silva D O,Corrêa A P N,Pereira D M C,Schleger I C,NeundorfA K A,Herrerias T,Corso C R,de Souza M R D P,Donatti L.2022.Can high-and low-temperature thermal stress modulate the antioxidant defense response of Astyanax lacustris brain?[J].Brain Research,1797:148118.doi:10.1016/j.brainres.2022.14 8118.
Shi M J,Zhang Q X,Li Y M,Zhang W T,Liao L J,Cheng Y Y,Jiang Y X,Huang X L,Duan Y,Xia L,Ye W D,Wang Y P,Xia X Q.2020.Global gene expression profile under low-temperature conditions in the brain of the grasscarp(Ctenopharyngodonidellus)[J].PLoS One,15(9):e0239730.doi:10.1371/journal.pone.0239730.
Sollid J,de Angelis P,Gundersen K,Nilsson G E.2003.Hypoxia induces adaptive and reversible gross morphologi‐cal changes in crucian carp gills[J].The Journal of Expe-rimental Biology,206(20):3667-3673.doi:10.1242/jeb.00594.
Sollid J,Kjernsli A,de Angelis P M,R?hr?K,Nilsson G E.2005a.Cell proliferation and gill morphology in anoxic crucian carp[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,289(4):R1196-R1201.doi:10.1152/ajpregu.00267.2005.
Sollid J,Nilsson G E.2006.Plasticity of respiratory struc‐tures—Adaptive remodeling of fish gills induced by am-bient oxygen and temperature[J].Respiratory Physiologyamp;Neurobiology,154(1-2):241-251.doi:10.1016/j.resp.2006.02.006.
Sollid J,Weber R E,Nilsson G E.2005b.Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus[J].Journal of Experimental Biology,208(6):1109-1116.doi:10.1242/jeb.01505.
Sun J,Wu W Y,Ji H.2021.Effect of overwintering on body composition,antioxidant enzyme activities,fatty acid composition,glucose and lipid-metabolic related gene expression of grass carp(Ctenopharyngodonidellus)[J].Aquaculture,545:737125.doi:10.1016/j.aquaculture.2021.737125.
van den Burg E H,Peeters R R,Verhoye M,Meek J,F(xiàn)lik G,van der Linden A.2005.Brain responses to ambient tem‐perature fluctuations in fish:Reduction of blood volume and initiation of a whole-body stress response[J].Journal of Neurophysiology,93(5):2849-2855.doi:10.1152/jn.01113.2004.
Wang H M,Wang Y,Niu M H,Hu L H,Chen L B.2022.Cold acclimation for enhancing the cold tolerance of zebrafish cells[J].Frontiers in Physiology,12:813451.doi:10.3389/fphys.2021.813451.
Wu M,Chen N,Huang C X,He Y,Zhao Y Z,Chen X H,Chen X L,Wang H L.2017.Effect of low temperature on globin expression,respiratory metabolic enzyme activities,and gill structure of Litopenaeusvannamei[J].Biochemistry,82(7):844-851.doi:10.1134/S0006297917070100.
Xu Z H,Regenstein J M,Xie D D,Lu W J,Ren X C,Yuan J J,Mao L C.2018.The oxidative stress and antioxidant responses of Litopenaeusvannamei to low temperature and air exposure[J].Fishamp;Shellfish Immunology,72:564-571.doi:10.1016/j.fsi.2017.11.016.
Zhou Y,Zhang Y J,Wei S,Li W,Li W H,Wu Z C,Jiang S W,Lu Y,Xu Q H,Chen L B.2022.Reduced hypoxia tole-rance and altered gill morphology at elevated temperatures may limit the survival of tilapia(GIFT,Oreochromis nilo-ticus)under global warming[J].Fishes,7(5):216.doi:10.3390/fishes7050216.
(責(zé)任編輯蘭宗寶)